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THE SHERMAN-MORRISON FORMULA AND
EIGENVALUES OF A SPECIAL BORDERED MATRIX

G. TRENKLER and D. TRENKLER

Abstract. The article of Ding and Pye [3] is reconsidered and extended. In contrast to their assertion, we find that

the Sherman-Morrison formula is well suited to prove certain statements about a class of bordered matrices.

1. Introduction

In their paper, Ding and Pye [3] were interested in finding the eigenvalues and the pseudoinverse of the (n + 1)×
(n + 1) bordered matrix

A =
(

1 pT

q uvT

)
,(1)

where u, v, p and q are real n-dimensional vectors. The authors reported that in the special case in which
p = Dv and q = D−1u, where D is a diagonal matrix and corresponding components of u and v are reciprocals
of each other, the characteristic polynomial for A can be obtained with the help of the Sherman-Morrison formula.
However, this approach would be “tedious and may not be applicable for general bordered matrix A as given in
(1)”.

Opposing this point of view, in the following we demonstrate that the Sherman-Morrison formula is a useful
tool to calculate the eigenvalues of the matrix A. Furthermore, we investigate a slightly more general class of
matrices and allow for complex entries. Finally, we do not assume linear independence of the occurring vectors
in order to treat the general case later by a continuity argument.
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2. A new class of matrices and its spectrum

Let us consider the (n + 1)× (n + 1) matrix

B =
(

0 s∗

r 0n×n

)
,(2)

where r and s are n× 1 vectors with complex entries, s∗ denoting the conjugate transpose of s. We are interested
in finding the eigenvalues of the matrix

M = B + bc∗,(3)

where b and c are complex vectors with n+1 components. Observe that the matrix A from (1) can be represented
in the form of (3) by choosing

B =
(

0 pT − vT

q− u 0n×n

)
, b =

(
1
u

)
and c =

(
1
v

)
.

Note that in the real case the notions transpose and conjugate transpose coincide.
The Moore-Penrose inverse B† of B is readily seen to be

B† =
(

0 r†

s†∗ 0n×n

)
,(4)

where r† = r∗/r∗r if r 6= 0 and r† = 0 otherwise. The Moore-Penrose inverse of M = B + bc∗ can be easily
calculated from B† with some additive correction terms (see [2, Ch. 3], or [1]). In their paper, Ding and Pye [3,
Theorem 3.2] computed the Moore-Penrose inverse of A on the basis of the eigenvalues of AAT.

It is easy to see that the rank of B cannot exceed 2. This follows from rk(B) = rk(B†B) = tr(B†B) =
s†s + r†r ≤ 2.
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Let us first calculate the eigenvalues of B. For this purpose put

B(λ) = B− λIn+1 =
(
−λ s∗

r −λIn

)
,(5)

and assume n ≥ 2.

Theorem 1. The characteristic polynomial of B is

pB(λ) = (−λ)n−1(λ2 − s∗r).

Proof. We have pB(λ) = detB(λ). By a well-known formula (see e.g. [4, Ch. 2]) for λ 6= 0 we get

detB(λ) = det(−λIn) det(−λ− s∗(−λIn)−1r)

= (−λ)n

(
−λ +

1
λ
s∗r

)
= (−λ)n−1(λ2 − s∗r).

�

Observe that Ding and Pye [3] define the characteristic polynomial in a different, but equivalent way.
The preceding result shows that λ = 0 is an eigenvalue of algebraic multiplicity n−1. The other two potentially

nonzero eigenvalues of B are λ = ±
√

s∗r. It easily follows that in this case the inverse of B(λ) is given by

B(λ)−1 =
1
λ

(
ϕλ ϕs∗

ϕr ϕ
λ rs∗ − In

)
,(6)

where ϕ = λ/(s∗r− λ2).
Let us now turn to the problem of finding the eigenvalues of M = B+bc∗, whose rank cannot exceed rk(B)+1.

For this purpose we consider M(λ) = M− λIn+1, i.e. M(λ) = B(λ) + bc∗.
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To determine the eigenvalues of M, the Sherman-Morrison formula will be used. It says that if F is nonsingular
and g and h are suitable vectors such that 1 + h∗F−1g 6= 0 then the sum F + gh∗ is nonsingular, and

(F + gh∗)−1 = F−1 − 1
1 + h∗F−1g

F−1gh∗F−1

(see [4, Ch. 3]).

Case 1: λ 6= 0, λ2 6= s∗r
Then detM(λ) = det(B(λ) + bc∗) = detB(λ)[1 + c∗B(λ)−1b], see [4, Ch. 6]. Partitioning c = (c0, c∗1)

∗ and
b = (b0,b∗1)

∗ from (6) we get

c∗B(λ)−1b =
1
λ2

[c0ϕλ2b0 + c0ϕλ(s∗b1) + ϕλb0(c∗1r) + ϕ(c∗1r)(s
∗b1)− λ(c∗1b1)].(7)

Hence from Theorem 1 we obtain

detM(λ) = (−λ)n−3(λ2 − s∗r)[c0ϕλ2b0 + c0ϕλ(s∗b1) + ϕλb0(c∗1r) + ϕ(c∗1r)(s
∗b1)− λ(c∗1b1) + λ2].

Since ϕ(λ2 − s∗r) = −λ it follows that

detM(λ) = (−λ)n−2[−λ3 + (c∗b)λ2 + (c0(s∗b1) + b0(c∗1r) + (s∗r))λ + (c∗1r)(s
∗b1)− (c∗1b1)(s∗r)],(8)

where use is made of the identity c∗b = c0b0 + c∗1b1.

Case 2: λ 6= 0, λ2 = s∗r
Then detM(λ) = detB(λ) + c∗B(λ)#b, where B(λ)# is the adjoint of B(λ) i.e. the transpose of the matrix
of cofactors of B(λ), see e.g. [5, Ch. 6]. However, since λ = s∗r, by Theorem 1 we have detB(λ) = 0, and
consequently detM(λ) = c∗B(λ)#b. Some direct calculations show that

B(λ)# = (−λ)n−2

(
λ2 λs∗

λr rs∗

)
.
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Thus we obtain

detM(λ) = (−λ)n−2[c0b0λ
2 + (c0(s∗b1) + b0(c∗1r))λ + (c∗1r)(s

∗b1)]

= (−λ)n−2[(c0(s∗b1) + b0(c∗1r))λ + c0b0(s∗r) + (c∗1r)(s
∗b1)]

(9)

by using s∗r = λ2 again. However, formula (9) coincides with formula (8) when inserting s∗r = λ2 in the latter.
This gives us the main result.

Theorem 2. The characteristic polynomial of M = B + bc∗ is

pM(λ) = detM(λ) = (−λ)n−2[−λ3 + (c∗b)λ2 + (c0(s∗b1) + b0(c∗1r)

+ (s∗r))λ + (c∗1r)(s
∗b1)− (c∗1b1)(s∗r)].

3. Final Remark

The eigenspaces corresponding to the eigenvalues λ of M = B+bc∗ can be found by solving the linear homogenous
equations M(λ)x = 0. Its explicit solution x = [In+1 −M(λ)†M(λ)]z is obtainable from List 2 in [1].
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