
JJ J I II

Go back

Full Screen

Close

Quit

SOME CONVERGENCE RESULTS FOR THE JUNGCK-MANN AND THE
JUNGCK-ISHIKAWA ITERATION PROCESSES IN THE CLASS OF

GENERALIZED ZAMFIRESCU OPERATORS

M. O. OLATINWO and C. O. IMORU

Abstract. In this paper, we shall establish some strong convergence results for the recently introduced
Jungck-Mann iteration process of Singh et al. [18] and the newly introduced Jungck-Ishikawa iteration
process in the class of non-selfmappings in an arbitrary Banach space. Our results are generalizations
and extensions of those of Berinde [4], Rhoades [13, 14] as well as some other analogous ones in the
literature.

1. Introduction

Let (E, ‖·‖) be a Banach space and T : E → E a self-map of E. Suppose that FT = {p ∈ E|Tp = p}
is the set of fixed points of T.

There are several iteration processes for which the fixed points of operators have been approxi-
mated over the years by various authors. In the Banach space setting we shall state some of these
iteration processes as follows:

For x0 ∈ E, the sequence {xn}∞n=0 defined by

xn+1 = (1− αn)xn + αnTxn, n = 0, 1, . . . ,(1.1)

where {αn}∞n=0 ⊂ [0, 1], is called the Mann iteration process (see Mann [12]).
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For x0 ∈ E, the sequence {xn}∞n=0 defined by

xn+1 = (1− αn)xn + αnTzn,
zn = (1− βn)xn + βnTxn,

}
n = 0, 1, . . . ,(1.2)

where {αn}∞n=0 and {βn}∞n=0 are sequences in [0, 1], is called the Ishikawa iteration process (see
Ishikawa [7]).

The following process is the iteration one introduced by Singh et al [18] to establish some
stability results: Let (X, ‖.‖) be a normed linear space and S, T : Y → X such that T (Y ) ⊆ S(Y ).
Then, for x0 ∈ Y, the sequence {Sxn}∞n=0 defined by

Sxn+1 = (1− αn)Sxn + αnTxn, n = 0, 1, . . . ,(1.3)

where {αn}∞n=0 is a sequence in [0, 1] is called the Jungck-Mann iteration process.
While the iteration processes (1.2) and (1.3) extend (1.1), both (1.2) and (1.3) are independent.
Berinde [4] obtained some strong convergence results in an arbitrary Banach space for the

Ishikawa iteration process by employing the following contractive definition:
For a mapping T : E → E, there exist real numbers α, β, γ satisfying 0 ≤ α < 1, 0 ≤ β < 1

2 ,
0 ≤ γ < 1

2 respectively such that for each x, y ∈ E, at least one of the following is true:

(z1) d(Tx, Ty) ≤ αd(x, y)

(z2) d(Tx, Ty) ≤ β [d(x, Tx) + d(y, Ty)]

(z3) d(Tx, Ty) ≤ γ [d(x, Ty) + d(y, Tx)] .

(1.4)

(1.4) is called the Zamfirescu contraction condition. It was employed by Zamfirescu [19] to prove
some fixed point results. The condition (z1) of (1.4) is the well known contraction condition or Ba-
nach’s contraction condition introduced by Banach [1], see also Zeidler [20] and several other ref-
erences. Any mapping satisfying the condition (z2) of (1.4) is called a Kannan mapping, while
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the mapping satisfying the condition (z3) is called Chatterjea operator. See Chatterjea [6] for the
detail on the Chatterjea operator. The condition (1.4) was used by Berinde [4] to obtain some
convergence results.

In the next section, we shall employ both Jungck-Mann and Jungck-Ishikawa iteration pro-
cesses to extend the results of Berinde [4] for non-selfmappings in an arbitrary Banach space. In
establishing our results, a more general contractive condition than (1.4) will be considered.

2. Preliminaries

We shall introduce the following iteration processes in establishing our results:
Let (E, ‖ · ‖) be a Banach space and Y an arbitrary set. Let S, T : Y → E be two nonselfmap-

pings such that T (Y ) ⊆ S(Y ), S(Y ) is a complete subspace of E and S is injective. Then, for
x0 ∈ Y, define the sequence {Sxn}∞n=0 iteratively by

Sxn+1 = (1− αn)Sxn + αnTyn

Syn = (1− βn)Sxn + βnTxn

}
, n = 0, 1, . . . ,(2.1)

where {αn}∞n=0 and {βn}∞n=0 are sequences in [0, 1].
The iteration process (2.1) will be called the Jungck-Ishikawa iteration process.

If in (2.1), S is the identity operator, Y = E, βn = 0, then we obtain the Mann iteration process
defined in (1.1).
Furthermore, with S being injective, if βn = 0, then we get the Jungck-Mann iteration process
defined in (1.3).

Indeed, (2.1) reduces to some other interesting iteration processes such as Picard and Jungck
iterations amongst others. See [1, 8, 18, 20] and some other references for Picard, Jungck and
Jungck-type iteration processes.
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In addition to the Jungck-Mann and Jungck-Ishikawa iteration processes defined in (1.3) and
(2.1) respectively, we shall employ the following contractive definition:

Definition 2.1. For two non-selfmappings S, T : Y → E with T (Y ) ⊆ S(Y ), there exist
real numbers α, β, γ satisfying 0 ≤ α < 1, 0 ≤ β < 1

2 , 0 ≤ γ < 1
2 respectively such that for

each x, y ∈ Y, at least one of the following is true:

(gz1) d(Tx, Ty) ≤ αd(Sx, Sy)

(gz2) d(Tx, Ty) ≤ β [d(Sx, Tx) + d(Sy, Ty)]

(gz3) d(Tx, Ty) ≤ γ [d(Sx, Ty) + d(Sy, Tx)] .

(2.2)

The ondition (2.2) will be called the generalized Zamfirescu contraction for the pair (S, T ).
Moreover, the condition (gz2) will be called the generalized Kannan condition for the pair

(S, T ), while the condition (gz3) will be called the generalized chatterjea condition for the pair
(S, T ). However, the condition (gz1) is contained in [8, 18].

The contractive condition (2.2) is more general than the Zamfirescu contraction defined in (1.4)
in the sense that if in (2.2), S is the identity operator and Y = E, then we obtain (1.4).

In this paper we shall introduce both the Jungck-Mann and the Jungck-Ishikawa iteration pro-
cesses defined in (1.3) and (2.1) to establish some strong convergence results for non-selfmappings
in an arbitrary Banach space by employing the contractive condition (2.2). Our results are gener-
alizations and extensions of some of the results of Kannan [9, 10], Rhoades [13, 14] and Berinde
[3, 4]. We shall employ the concept of coincidence points of two non-selfmappings.

Definition 2.2. Let X and Y be two nonempty sets and S, T : X → Y two mappings. Then
an element x∗ ∈ X is a coincidence point of S and T if and only if Sx∗ = Tx∗.
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We denote the set of the coincidence points of S and T by C(S, T ). There are several papers
and monographs on the coincidence point theory. However, we refer our readers to Rus [16] and
Rus et al [17] for the Definition 2.2 and some coincidence point results.

3. Main Results

We shall establish the following theorems as our main results.

Theorem 3.1. Let (E, ‖ ·‖) be an arbitrary Banach space and Y an arbitrary set. Suppose that
S, T : Y → E are non-selfoperators such that T (Y ) ⊆ S(Y ), where S(Y ) is a complete subspace
of E, and S an injective operator. Let z be a coincidence point of S and T (that is, Sz = Tz = p).
Suppose that S and T satisfy the condition (2.2). For x0 ∈ Y, let {Sxn}∞n=0 be the Jungck-Ishikawa
iteration process defined by (2.1), where {αn}∞n=0 and {βn}∞n=0 are sequences in [0, 1] such that∑∞

k=0 αk = ∞. Then {Sxn}∞n=0 converges strongly to p.

Proof. We shall first establish that the condition (2.2) implies

‖Tx− Ty‖ ≤ 2δ‖Sx− Tx‖+ δ‖Sx− Sy‖, ∀ x, y ∈ Y.(?)

Denoting

δ = max
{

α,
β

1− β
,

γ

1− γ

}
,(??)

then we have 0 ≤ δ < 1.
By the triangle inequality and the condition (gz2) of (2.2), we have

‖Tx− Ty‖ ≤ β [‖Sx− Tx‖+ ‖Sy − Sx‖+ ‖Sx− Tx‖+ ‖Tx− Ty‖] ,
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from which it follows that

‖Tx− Ty‖ ≤ 2β

1− β
‖Sx− Tx‖+

β

1− β
‖Sx− Sy‖.(3.1)

Again, using the triangle inequality and the condition (gz3) of (2.2), we obtain

‖Tx− Ty‖ ≤ γ [‖Sx− Tx‖+ ‖Tx− Ty‖+ ‖Sy − Sx‖+ ‖Sx− Tx‖] ,
from which it follows that

‖Tx− Ty‖ ≤ 2γ

1− γ
‖Sx− Tx‖+

γ

1− γ
‖Sx− Sy‖.(3.2)

Now by condition 0 ≤ δ < 1 given in (??) and also with (gz1), (3.1) and (3.2) we obtain (?). Hence,
the condition (2.2) implies (?).

Indeed, we shall use the condition (?) in the rest of the proof.
Let C(S, T ) be the set of the coincidence points of S and T . We shall now use the condition

(3.4) to establish that S and T have a unique coincidence point z (i.e. Sz = Tz = p): Injectivity
of S is sufficient. Suppose that there exist z1, z2 ∈ C(S, T ) such that Sz1 = Tz1 = p1 and
Sz2 = Tz2 = p2.

If p1 = p2, then Sz1 = Sz2 and since S is injective, it follows that z1 = z2.
If p1 6= p2, then we have by the contractiveness condition (2.2) for S and T that

0 < ‖p1 − p2‖ = ‖Tz1 − Tz2‖ ≤ 2δ‖Sz1 − Tz1‖) + δ‖Sz1 − Sz2‖
= δ‖p1 − p2‖,

which leads to
(1− δ)‖p1 − p2‖ ≤ 0,

from which it follows that 1 − δ > 0 since δ ∈ [0, 1), but ‖p1 − p2‖ ≤ 0, which is a contradiction
since the norm is nonnegative. Therefore, we have ‖p1 − p2‖ = 0, that is, p1 = p2 = p.
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Since p1 = p2, then we have p1 = Sz1 = Tz1 = Sz2 = Tz2 = p2, leading to Sz1 = Sz2 ⇒ z1 =
z2 = z (since S is injective).
Hence, z ∈ C(S, T ), that is, z is a unique coincidence point of S and T.

We now prove that {Sxn}∞n=0 converges strongly to p (where Sz = Tz = p) using again, the
condition (?). Therefore, we have

‖Sxn+1 − p‖ = ‖(1− αn)(Sxn − p) + αn(Tyn − p)‖

≤ (1− αn)‖Sxn − p‖+ αn‖Tz − Tyn‖

≤ (1− αn)‖Sxn − p‖+ δαn‖p− Syn‖.(3.3)

Now, we have that

‖p− Syn‖ ≤ (1− βn)‖Sxn − p‖+ βn‖p− Txn‖

= (1− βn)‖Sxn − p‖+ βn‖Tz − Txn‖

≤ (1− βn + δβn)‖Sxn − p‖.(3.4)

Using (3.4) in (3.3) yields

‖Sxn+1 − p‖ ≤ [1− (1− δ)αn − δ(1− δ)αnβn]‖Sxn − p‖

≤ [1− (1− δ)αn]‖Sxn − p‖

≤ Πn
k=0[1− (1− δ)αk]‖Sx0 − p‖

≤ e−[(1−δ)
Pn

k=0 αk]‖Sx0 − p‖ → 0 as n →∞,(3.5)

since
∑∞

k=0 αk = ∞ and δ ∈ [0, 1). Hence, from (3.5) we obtain ‖Sxn − p‖ → 0 as n →∞, that is,
{Sxn}∞n=0 converges strongly to p. �
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Remark 3.2. Theorem 3.1 is a generalization and extension of a multitude of results. In
particular, Theorem 3.1 is a generalization and extension of both Theorem 1 and Theorem 2 of
Berinde [4], Theorem 2 and Theorem 3 of Kannan [10], Theorem 3 of Kannan [11], Theorem 4 of
Rhoades [13] as well as Theorem 8 of Rhoades [14]. Also, both Theorem 4 of Rhoades [13] and
Theorem 8 of Rhoades [14] are Theorem 4.10 and Theorem 5.6 of Berinde [3] respectively.

Theorem 3.3. Let (E, ‖.‖) be an arbitrary Banach space and Y an arbitrary set. Suppose that
S, T : Y → E are non-selfoperators such that T (Y ) ⊆ S(Y ), where S(Y ) is a complete subspace of
E, and S is an injective operator. Let z be a coincidence point of S and T (that is, Sz = Tz = p).
Suppose that S and T satisfy the condition (2.2). For x0 ∈ Y, let {Sxn}∞n=0 be the Jungck-Mann
iteration process defined by (1.3), where {αn}∞n=0 is a sequence in [0, 1] such that

∑∞
k=0 αk = ∞.

Then {Sxn}∞n=0 converges strongly to p.

Proof. The proof of this theorem follows a similar argument as in that of Theorem 3.1. �

Remark 3.4. Theorem 3.3 is a generalization and extension of Theorem 1 of Berinde [4],
Theorem 2 and Theorem 3 of Kannan [10], Theorem 3 of Kannan [11] as well as Theorem 4 of
Rhoades [13].

Remark 3.5. If S = I (identity operator) and Y = E in Theorem 3.1, then the coincidence
point z becomes a fixed point of T . If in addition T satisfies the condition (1.4), we have that the
Ishikawa iteration process defined in (1.2) converges strongly to the fixed point z. It is also true
that if S = I (identity operator), Y = E and that T satisfies condition (1.4) in Theorem 3.3, then
the Mann iteration process obtained from (1.1) converges strongly to the fixed point z.
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