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ANALYSIS OF A FRICTIONAL CONTACT PROBLEM
WITH ADHESION

Z. LERGUET, M. SOFONEA and S. DRABLA

Abstract. We consider a mathematical model which describes the contact be-

tween a deformable body and an obstacle, the so-called foundation. The contact is
frictional and is modelled with a version of normal compliance condition and the

associated Coulomb’s law of dry friction in which the adhesion of contact surfaces is
taken into account. The evolution of the bonding field is described by a first order

differential equation and the the material’s behavior is modelled with a nonlinear

elastic constitutive law. We derive a variational formulation of the problem then,
under a smallness assumption on the coefficient of friction, we prove the existence

of a unique weak solution for the model. The proof is based on arguments of time-

dependent variational inequalities, differential equations and Banach fixed point
theorem. Finally, we extend our results in the case when the piezoelectric effect is

taken into account, i.e. in the case when the material’s behavior is modelled with a

nonlinear electro-elastic constitutive law.

1. Introduction

Processes of adhesion are important in many industrial settings where parts, usu-
ally nonmetallic, are glued together. For this reason, adhesive contact between
bodies, when a glue is added to prevent the surfaces from relative motion, has re-
cently received increased attention in the literature. Basic modelling can be found
in [7, 8, 9, 12]. Analysis of models for adhesive contact can be found in [3, 4, 6]
and in the monographs [15, 17]. An application of the theory of adhesive con-
tact in the medical field of prosthetic limbs was considered in [13, 14]; there, the
importance of the bonding between the bone-implant and the tissue was outlined,
since debonding may lead to decrease in the persons ability to use the artificial
limb or joint.

The novelty in all the above papers is the introduction of a surface internal
variable, the bonding field, denoted in this paper by β; it describes the pointwise
fractional density of active bonds on the contact surface, and sometimes referred
to as the intensity of adhesion. Following [7, 8], the bonding field satisfies the
restrictions 0 ≤ β ≤ 1; when β = 1 at a point of the contact surface, the adhesion
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is complete and all the bonds are active; when β = 0 all the bonds are inactive,
severed, and there is no adhesion; when 0 < β < 1 the adhesion is partial and
only a fraction β of the bonds is active. We refer the reader to the extensive
bibliography on the subject in [9, 12, 15, 17].

The aim of this paper is to continue the study of adhesive problems begun
in [3, 4, 17]. There, models for dynamic or quasistatic process of frictionless
adhesive contact between a deformable body and a foundation have been analyzed
and simulated; the contact was described with normal compliance or was assumed
to be bilateral, and the behavior of the material was modelled with a nonlinear
Kelvin–Voigt viscoelastic constitutive law; the existence of a unique weak solution
to the models has been obtained by using arguments of nonlinear evolutionary
equations in Banach spaces and a fixed point theorem. With respect to [3, 4], the
novelty of the present paper is three folds: 1) we model the material’s behavior
with a nonlinear elastic constitutive law; 2) the contact is frictional; 3) we extend
our study to problems in which the piezoelectric effect is taken into account.

The piezoelectric effect is characterized by the coupling between the mechanical
and electrical properties of the materials. A deformable material which presents
such a behavior is called a piezoelectric material. Piezoelectric materials are used
extensively as switches and actuary in many engineering systems, in radioelec-
tronics, electroacoustics and measuring equipments. General models for elastic
materials with piezoelectirec effect, called electro-elastic materials, can be found
in [1, 10]. A static frictional contact problem for electric-elastic materials was con-
sidered in [2, 11] and a slip-dependent frictional contact problem for electro-elastic
materials was studied in [16]. In this last reference the variational formulation of
the corresponding problem was derived and its unique solvability was proved.

The paper is structured as follows. In Section 2 we present the model of the
elastic contact problem with adhesion, normal compliance and friction. In Sec-
tion 3 we derive a variational formulation of the model; it consists in a system
coupling a time-dependent variational inequality for the displacement field with
an ordinary differential equations for the bonding field. In Section 4 we state and
prove our main existence and uniqueness result, Theorem 4.1. It states that if the
coefficient of friction is small enough, then the problem has a unique weak solu-
tion. We extend our results in Section 5 to the case when the material’s behavior
is modelled with a nonlinear electro-elastic constitutive law and we provide our
second existence and uniqueness result, Theorem 5.1.

2. Problem statement

We consider an elastic body, which occupies a bounded domain Ω ⊂ Rd (d = 2, 3),
with a smooth boundary ∂Ω = Γ divided into three disjoint measurable parts
Γ1,Γ2 and Γ3 such that meas(Γ1) > 0. Let [0, T ] be the time interval of interest,
where T > 0. The body is clamped on Γ1 × (0, T ) and therefore the displacement
field vanishes there; it is also submitted to the action of volume forces of density
f0 in Ω× (0, T ) and surface tractions of density f2 on Γ2× (0, T ). On Γ3× (0, T ),
the body is in contact with an obstacle, the so-called foundation. The contact
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is modelled with a version of normal compliance condition and the associated
Coulomb’s law of dry friction in which the adhesion of contact surfaces is taken into
account. We denote by ν the outward normal unit vector on Γ and the subscripts ν
and τ will represent the normal and tangential components of vectors and tensors,
respectively. We also denote by Sd the space of second order symmetric tensors
on Rd and use “ · ” and ‖ · ‖ for the inner product and the Euclidean norm on Sd

and Rd, respectively. Then, the classical model for the frictional contact process
is as follows.

Problem P. Find a displacement field u : Ω × [0, T ] → Rd, a stress field σ :
Ω× [0, T ] → Sd and a bonding field β : Ω× [0, T ] → R such that

σ = F(ε(u)) in Ω× (0, T ),(1)

Divσ + f0 = 0 in Ω× (0, T ),(2)

u = 0 on Γ1 × (0, T ),(3)

σν = f2 on Γ2 × (0, T ),(4)

− σν = pν(uν)− γνβ
2Rν(uν) on Γ3 × (0, T ),(5) 

‖στ + γτβ
2Rτ (uτ )‖ ≤ µpν(uν),

‖στ + γτβ
2Rτ (uτ )‖ < µpν(uν) ⇒ uτ = 0,

‖στ + γτβ
2Rτ (uτ )‖ = µpν(uν) ⇒ ∃λ ≥ 0

such that στ + γτβ
2Rτ (uτ ) = −λuτ

on Γ3 × (0, T ),(6)

β̇ = −(β(γνRν(uν)2 + γτ‖Rτ (uτ )‖2)− εa)+ on Γ3 × (0, T ),(7)

β(0) = β0 on Γ3.(8)

We now provide some comments on equations and conditions (1)–(8) and send
to [15, 17, 18] for more details on the conditions (5)–(7) which describe the
frictional contact with adhesion.

First, equation (1) represents the elastic constitutive law in which ε(u) denotes
the linearized strain tensor and F is the elasticity operator, assumed to be non-
linear. Next, equation (2) is the equilibrium equation in which “Div” denotes the
divergence operator; we use it here since we assume that the inertial term in the
equation of motion can be neglected. Conditions (3) and (4) are the displacement
and traction boundary conditions, respectively, and condition (8) represents an
initial condition, in which β0 is the initial bonding field.

Condition (5) represents the normal compliance condition with adhesion and
condition (6) is the associated Coulomb’s law of dry friction on the contact surface
Γ3, in its static version. Here pν is a given function, µ is the coefficient of friction
and γν , γτ are material parameters; also, Rν and Rτ are truncation operators
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defined by

Rν(s) =


L if s < −L,
−s if − L ≤ s ≤ 0,
0 if s > 0,

Rτ (v) =


v if ‖v‖ ≤ L,

L
v

‖v‖
if ‖v‖ > L,

with L > 0 being a characteristic length of the bond, beyond which it stretches
without offering any additional resistance, see [12] for details. It follows from
(5) that the contribution of the adhesive to the normal traction is represented by
the term γνβ

2Rν(uν); the adhesive traction is tensile, and is proportional to the
square of the adhesion and to the normal displacement, but as long as it does not
exceed the bond length L. Also, it follows from (6) that the contribution of the
adhesive to the tangential shear on the contact surface is represented by the term
γτβ

2Rτ (uτ ); the adhesive shear is proportional to the square of the adhesion and
to the tangential displacement, but again, only up to the bond length L.

Equation (7) describes the evolution of the bonding field in which εa is a given
material parameter and r+ = max {r, 0}. Here and below, for simplicity, we use the
notation Rν(uν)2 = (Rν(uν))2. We note that the adhesive process is irreversible
and, indeed, once debonding occurs bonding cannot be reestablished, since β̇ ≤ 0.
Also, it is easy to see that if 0 ≤ β0 ≤ 1 a.e. on Γ3, then 0 ≤ β ≤ 1 a.e. on Γ3

during the process.
Because of the friction condition (6), which is non-smooth, we do not expect

the problem to have, in general, any classical solution. For this reason, we derive
in the next section a variational formulation of the problem and investigate its
solvability.

3. Variational formulation

We recall that the inner products and the corresponding norms on Rd and Sd are
given by

u · v = uivi , ‖v‖ = (v · v)
1
2 ∀u,v ∈ Rd,

σ · τ = σijτij , ‖τ‖ = (τ · τ )
1
2 ∀σ, τ ∈ Sd.

Here and everywhere in this paper, i, j, k, l run from 1 to d, summation over re-
peated indices is applied and the index that follows a comma represents the partial
derivative with respect to the corresponding component of the spatial variable, e.g.
ui,j = ∂ui

∂xj
.

Everywhere below we use the classical notation for Lp and Sobolev spaces as-
sociated to Ω and Γ. Moreover, we use the notation L2(Ω)d, H1(Ω)d, H and H1

for the following spaces:

L2(Ω)d = { v = (vi) | vi ∈ L2(Ω) }, H1(Ω)d = { v = (vi) | vi ∈ H1(Ω) },
H = { τ = (τij) | τij = τji ∈ L2(Ω) }, H1 = { τ ∈ H | τij,j ∈ L2(Ω) }.
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The spaces L2(Ω)d, H1(Ω)d, H and H1 are real Hilbert spaces endowed with the
canonical inner products given by

(u,v)L2(Ω)d =
∫

Ω

u · v dx, (u,v)H1(Ω)d =
∫

Ω

u · v dx+
∫

Ω

ε(u) · ε(v) dx,

(σ, τ )H =
∫

Ω

σ · τ dx, (σ, τ )H1 =
∫

Ω

σ · τ dx+
∫

Ω

Divσ ·Div τ dx,

and the associated norms ‖ · ‖L2(Ω)d , ‖ · ‖H1(Ω)d , ‖ · ‖H and ‖ · ‖H1 , respectively.
Here and below we use the notation

ε(v) = (εij(v)), εij(v)
1
2

(vi,j + vj,i), Div τ = (τij,j)

for all v ∈ H1(Ω)d and τ ∈ H1. For every element v ∈ H1(Ω)d we also write v
for the trace of v on Γ and we denote by vν and vτ the normal and tangential
components of v on Γ given by vν = v · ν, vτ = v − vνν. Similarly, σν and στ

denote the normal and the tangential traces of a function σ ∈ H1. When σ is a
regular function, then σν = (σν) · ν, στ = σν − σνν, and the following Green’s
type formula holds:

(9) (σ, ε(v))Q + (Divσ,v)L2(Ω)d =
∫

Γ

σν · v da ∀v ∈ H1(Ω)d.

Consider the closed subspace of H1(Ω)d defined by

V = { v ∈ H1(Ω)d | v = 0 on Γ1 }.

Since meas(Γ1) > 0, the following Korn’s inequality holds:

(10) ‖ε(v)‖H ≥ cK ‖v‖H1(Ω)d ∀v ∈ V,

where cK > 0 is a constant which depends only on Ω and Γ1. Over the space V
we consider the inner product given by

(11) (u,v)V = (ε(u), ε(v))H

and let ‖ · ‖V be the associated norm. It follows from Korn’s inequality (10) that
‖ · ‖V and ‖ · ‖H1(Ω)d are equivalent norms on V and, therefore, (V, ‖ · ‖V ) is a real
Hilbert space. Moreover, by the Sobolev trace theorem combined with (10) and
(11), there exists a constant c0 depending only on the domains Ω, Γ1 and Γ3 such
that

(12) ‖v‖L2(Γ3)d ≤ c0‖v‖V ∀v ∈ V.

For every real Hilbert space X we use the classical notation for the spaces
Lp(0, T ;X) and W k,p(0, T ;X), 1 ≤ p ≤ ∞, k = 1, 2, . . .; we also use the space of
continuous functions on [0, T ] with values on X, denoted C([0, T ];X), equipped
with the norm

‖x‖C([0,T ];X) = max
t∈[0,T ]

‖x(t)‖X ,

and we introduce the set

Q = { θ : [0, T ] → L2(Γ3)) | 0 ≤ θ(t) ≤ 1 ∀ t ∈ [0, T ], a.e. on Γ3 }.
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In the study of the problem P, we assume that the elasticity operator F and
the normal compliance function pν satisfy:

(a) F : Ω× Sd → Sd.

(b) There exists LF > 0 such that
‖F(x, ε1)−F(x, ε2)‖ ≤ LF‖ε1 − ε2‖
∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω.

(c) There exists mF > 0 such that
(F(x, ε1)−F(x, ε2), ε1 − ε2) ≥ mF‖ε1 − ε2‖2
∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω.

(d) The mapping x 7→ F(x, ε) is Lebesgue measurable in Ω,
for all ε ∈ Sd.

(e) The mapping x 7→ F(x,0) belongs to H.

(13)



(a) pν : Γ3 × R → R+.

(b) There exists Lν > 0 such that
|pν(x, r1)− pν(x, r2)| ≤ Lν |r1 − r2| ∀ r1, r2 ∈ R, a.e. x ∈ Γ3.

(c) (pν(x, r1)− pν(x, r2)(r1 − r2) ≥ 0 ∀ r1, r2 ∈ R, a.e. x ∈ Γ3.

(d) The mapping x 7→ pν(x, r) is measurable on Γ3, for all r ∈ R.

(e) pν(x, r) = 0 for all r ≤ 0, a.e. x ∈ Γ3.

(14)

Examples of nonlinear operators which satisfy conditions (13) can be find in
[17]. Also, a simple example of a normal compliance function pν which satisfies
conditions (14) is pν(r) = cνr+ where cν ∈ L∞(Γ3) is a positive function.

We also suppose that the body forces and surface tractions have the regularity

(15) f0 ∈W 1,∞(0, T ;L2(Ω)d), f2 ∈W 1,∞(0, T ;L2(Γ2)d),

and the adhesion coefficients satisfy the conditions

(16) γν , γτ ∈ L∞(Γ3), εa ∈ L2(Γ3), γν , γτ , εa ≥ 0 a.e. on Γ3.

Finally, the friction coefficient and the initial bonding field are such that

µ ∈ L∞(Γ3), µ(x) ≥ 0 a.e. on Γ3,(17)
β0 ∈ L2(Γ3), 0 ≤ β0 ≤ 1 a.e. on Γ3.(18)

We define the function f : [0, T ] → V by

(19) (f(t),v)V =
∫

Ω

f0(t) · v dx+
∫

Γ2

f2(t) · v da,

for all u,v ∈ V and t ∈ [0, T ], and we note that the condition (15) implies that

(20) f ∈W 1,∞(0, T ;V ).
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Also, we define the adhesion functional jad : L∞(Γ3)× V × V → R, the normal
compliance functional jnc : V ×V → R and the friction functional jfr : V ×V → R
by equalities

jad(β,u,v) =
∫

Γ3

(
− γνβ

2Rν(uν)vν + γτβ
2Rτ (uτ ) · vτ

)
da,(21)

jnc(u,v) =
∫

Γ3

pν(uν)vν da,(22)

jfr(u,v) =
∫

Γ3

µpν(uν)‖vτ‖da.(23)

By a standard procedure based on Green’s formula (9) we derive the following
variational formulation of problem P, in terms of displacement and bonding fields.

Problem PV . Find a displacement field u : [0, T ] → V and a bonding field
β : [0, T ] → L∞(Γ3) such that

(Fε(u(t)), ε(v)− ε(u(t)))H + jad(β(t),u(t),v − u(t))(24)

+ jnc(u(t),v − u(t)) + jfr(u(t),v)− jfr(u(t),u(t))

≥ (f(t),v − u(t))V ∀v ∈ V, t ∈ [0, T ],

β̇(t) = −
(
β(t)

(
γνRν(uν(t))2 + γτ‖Rτ (uτ (t))‖2

)
− εa

)
+

a.e. t ∈ (0, T ),(25)

β(0) = β0.(26)

In the rest of this section, we derive some inequalities involving the functionals

jad, jnc and jfr which will be used in the following sections. Below in this section
β, β1, β2 denote elements of L2(Γ3) such that 0 ≤ β, β1, β2 ≤ 1 a.e. on Γ3, u1,
u2,v1,v2, u and v represent elements of V ; and c is a generic positive constant
which may depend on Ω, Γ1, Γ3, pν , γν , γτ and L, whose value may change from
place to place. For the sake of simplicity, in the following text we suppress the
explicit dependence on various functions on x ∈ Ω ∪ Γ3.

First, we remark that the jad and jnc are linear with respect to the last argument
and therefore

(27) jad(β,u,−v) = −jad(β,u,v), jnc(u,−v) = −jnc(u,v).

Next, using (21) and inequalities |Rν(u1ν)| ≤ L, ‖Rτ (uτ )‖ ≤ L, |β1| ≤ 1,
|β2| ≤ 1, we deduce that

jad(β1,u1,u2 − u1) + jad(β2,u2,u1 − u2) ≤ c

∫
Γ3

|β1 − β2| ‖u1 − u2‖ da,

and, combining this inequality with (12), we obtain

(28) jad(β1,u1,u2−u1)+jad(β2,u2,u1−u2) ≤ c ‖β1−β2‖L2(Γ3)‖u1−u2‖V .
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Next, we choose β1 = β2 = β in (28) to find

(29) jad(β,u1,u2 − u1) + jad(β,u2,u1 − u2) ≤ 0.

Similar computations, based on the Lipschitz continuity of operators Rν , Rτ , show
that

(30) |jad(β,u1,v)− jad(β,u2,v)| ≤ c ‖u1 − u2‖V ‖v‖V .

Now, we use (22) to see that

|jnc(u1,v)− jnc(u2,v)| ≤
∫

Γ3

|pν(u1ν)− pν(u2ν)| |vν |da,

and therefore (14)(b) and (12) imply

(31) |jnc(u1,v)− jnc(u2,v)| ≤ c ‖u1 − u2‖V ‖v‖V .

We use again (22) to obtain

jnc(u1,u2 − u1) + jnc(u2,u1 − u2) =
∫

Γ3

(pν(u1ν)− pν(u2ν))(u2ν − u1ν) da,

and then, (14)(c) implies

(32) jnc(u1,u2 − u1) + jnc(u2,u1 − u2) ≤ 0.

Finally, we use (23) to find that

jfr(u1,v1)− jfr(u1,v2) + jfr(u2,v2)− jfr(u2,v1)

≤
∫

Γ3

µ |pν(u1ν)− pν(u2ν)| ‖v1τ − v2τ‖da.

Therefore, using (14)(b) and (12) we obtain

jfr(u1,v2)− jfr(u1,v1) + jfr(u2,v1)− jfr(u2,v2)(33)

≤ c20Lν ‖µ‖L∞(Γ3)‖u1 − u2‖V ‖v1 − v2‖V .

Inequalities (28)–(33) combined with equalities (27) will be used in various
places in the rest of the paper.

4. An existence and uniqueness result

Our main result which states the unique solvability of Problem PV , is the following.

Theorem 4.1. Assume that (13)–(18) hold. Then, there exists µ0 > 0 which
depends on Ω, Γ1, Γ3, F and pν such that Problem PV has a unique solution
(u, β), if ‖µ‖L∞(Γ3) < µ0. Moreover, the solution satisfies

u ∈W 1,∞(0, T ;V ),(34)
β ∈W 1,∞(0, T ;L2(Γ3)) ∩Q.(35)
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Let (u, β) be the solution of Problem PV obtained in Theorem 4.1 and denote
by σ the function given by (1). It is easy to check that

(36) σ ∈W 1,∞(0, T ;H1).

A triple of functions (u,σ, β) which satisfies (1), (24)–(26) is called a weak solution
of the frictional adhesive contact problem P. We conclude by Theorem 4.1 that,
under the assumptions (13)–(18), if ‖µ‖L∞(Γ3) < µ0 there exists a unique weak
solution of Problem P which verifies (34)–(36).

We turn now to the proof of the Theorem 4.1 which will be carried out in several
steps. To this end, we assume in the following that (13)–(18) hold; below, c is a
generic positive constant which may depend on Ω, Γ1, Γ3, pν , γν , γτ , L, and whose
value may change from place to place; and Z denotes the closed set of the space
C([0, T ];L2(Γ3)) defined by

(37) Z =
{
β ∈ C([0, T ];L2(Γ3)) ∩Q | β(0) = β0

}
.

Let β ∈ Z be given. In the first step we consider the following variational
problem.

Problem P1
β. Find a displacement field uβ : [0, T ] → V such that, for all

t ∈ [0, T ],

(Fε(uβ(t)), ε(v)− ε(uβ(t)))H + jad(β(t),uβ(t),v − uβ(t))(38)

+ jnc(uβ(t),v − uβ(t)) + jfr(uβ(t),v)− jfr(uβ(t),uβ(t))

≥ (f(t),v − uβ(t))V ∀v ∈ V.

We have the following result.

Lemma 4.2. There exists µ0 > 0 which depends on Ω,Γ1,Γ3,F and pν such
that Problem P1

β has a unique solution uβ ∈ C([0, T ];V ), if ‖µ‖L∞(Γ3) < µ0.

Proof. Let t ∈ [0, T ] and let Aβ(t) : V → V be the operator defined by
(39)

(Aβ(t)u,v)V = (Fε(u), ε(v))H + jad(β(t),u,v) + jnc(u,v) ∀u, v ∈ V.
We use (13), (27) and (29)–(32) to prove that

‖Aβ(t)u1 −Aβ(t)u2‖V ≤ c ‖u1 − u2‖V ∀u1, u2 ∈ V,(40)

(Aβ(t)u1 −Aβ(t)u2,u1 − u2)V ≥ mF‖u1 − u2‖2V ∀u1, u2 ∈ V,(41)

which shows that Aβ(t) is a strongly monotone Lipschitz continuous operator on
V . Next, using (14) we can easily check that, for a given u ∈ V , the functional
jfr(u, ·) : V → R is convex and lower semicontinuous and recall that it satisfies
(33). Let

(42) µ0 =
mF
c20Lν

and note that µ0 depends on Ω,Γ1,Γ3,F and pν . Assume that ‖µ‖L∞(Γ3) < µ0.
Then

(43) c20Lν‖µ‖L∞(Γ3) < mF
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and therefore, using (41), (33) and a standard existence and uniqueness result on
elliptic quasivariational inequalities (see, e.g. [5]), it follows that there exists a
unique element uβ(t) ∈ V which satisfies

(Aβ(t)uβ(t),v − uβ(t))V + jfr(uβ(t),v)− jfr(uβ(t),uβ(t))

≥ (f(t),v − uβ(t))V ∀v ∈ V.
(44)

We use now (39) and (44) to see that uβ(t) is the unique element which solves
(38), at any t ∈ [0, T ].

Consider now t1, t2 ∈ [0, T ] and, for simplicity, denote uβ(ti) = ui, β(ti) = βi,
f(ti) = f i for i = 1, 2. Using (38), (13), the inequalities involving the functionals
jad, jnc and jfr presented at the end of Section 3 and (43), after some algebra we
obtain

‖u1 − u2‖V ≤ c

mF − c20Lν‖µ‖L∞(Γ3)
‖β1 − β2‖L2(Γ3)(45)

+
1

mF − c20Lν‖µ‖L∞(Γ3)
‖f1 − f2‖V ,

Inequality (45) combined with the regularities of f and β in (20) and (37) implies
that the mapping t 7→ uβ(t) : [0, T ] → V is continuous, which concludes the
proof. �

We assume in following text that ‖µ‖L∞(Γ3) < µ0 and therefore (43) is valid.
In the next step, we use the displacement field uβ obtained in Lemma 4.2, and we
consider the following initial value problem.

Problem P2
β. Find a bonding field θβ : [0, T ] → L2(Γ3) such that

θ̇β(t) = −
(
θβ(t)

(
γνRν(uβν(t))2 + γτ‖Rτ (uβτ (t))‖2

)
− εa

)
+

a.e. t ∈ (0, T ),(46)

θβ(0) = β0.(47)

We obtain the following result.

Lemma 4.3. There exists a unique solution to Problem P2
β and it satisfies

θβ ∈W 1,∞(0, T, L2(Γ3)) ∩Q.

Proof. Consider the mapping Fβ : [0, T ]× L2(Γ3) → L2(Γ3) defined by

Fβ(t, θ) = −
(
θβ(t)

(
γνRν(uβν(t))2 + γτ‖Rτ (uβτ (t))‖2

)
− εa

)
+
,

for all t ∈ [0, T ] and θ ∈ L2(Γ3). It follows from the properties of the truncation
operators Rν and Rτ that Fβ is Lipschitz continuous with respect to the second
argument, uniformly in time. Moreover, for any θ ∈ L2(Γ3), the mapping t 7→
Fβ(t, θ) belongs to L∞(0, T ;L2(Γ3)). Using now a version of Cauchy-Lipschitz
theorem (see for instance [17, p. 48]), we obtain the existence of a unique function
θβ ∈ W 1,∞(0, T, L2(Γ3)) which solves (46), (47). We note that (25) and (26)
guarantee that β(t) ≤ β0 and, therefore, assumption (18) shows that β(t) ≤ 1 for
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t ≥ 0, a.e. on Γ3. On the other hand, if β(t0) = 0 at t = t0, then it follows from
(25) and (26) that β̇(t) = 0 for all t ≥ t0 and therefore, β(t) = 0 for all t ≥ t0, a.e.
on Γ3. We conclude that 0 ≤ β(t) ≤ 1 for all t ∈ [0, T ], a.e. on Γ3. Therefore,
according to the definition of the set Q, we find that θβ ∈ Q, which concludes the
proof of the lemma. �

It follows from Lemma 4.3 that for all β ∈ Z the solution θβ of Problem P2
β

belongs to Z, see (37). Therefore, we may consider the operator Λ : Z → Z given
by

(48) Λβ = θβ .

In the last step we will prove the following result.

Lemma 4.4. There exists a unique element β∗ ∈ Z such that Λβ∗ = β∗.

Proof. Suppose that β1, β2, are two functions in Z and denote by ui, θi the
functions obtained in Lemmas 4.2 and 4.3, respectively, for β = βi, i = 1, 2. Let
t ∈ [0, T ]; we use similar arguments to those used in the proof of (45) to deduce
that

(49) ‖u1(t)− u2(t)‖V ≤ c

mF − c20Lν‖µ‖L∞(Γ3)
‖β1(t)− β2(t)‖L2(Γ3).

On the other hand, it follows from (46) and (47) that

θi(t) = β0 −
∫ t

0

(
θi(s)

(
γνRν(uiν(s))2 + γτ‖Rτ (uiτ (s))‖2

)
− εa

)
+

ds

and then

‖θ1(t)− θ2(t)‖L2(Γ3) ≤ c

∫ t

0

‖θ1(s)Rν(u1ν(s))2 − θ2(s)Rν(u2ν(s))2‖L2(Γ3) ds

+
∫ t

0

∥∥θ1(s)‖Rτ (u1τ (s))‖2−θ2(s)‖Rτ (u2τ (s))‖2
∥∥

L2(Γ3)
ds.

Using the definition of Rν and Rτ and writing θ1 = θ1 − θ2 + θ2, we get

‖θ1(t)−θ2(t)‖L2(Γ3) ≤ c

∫ t

0

‖θ1(s)−θ2(s)‖L2(Γ3) ds+c
∫ t

0

‖u1(s)−u2(s)‖L2(Γ3) ds.

By Gronwall’s inequality, it follows that

‖θ1(t)− θ2(t)‖L2(Γ3) ≤ c

∫ t

0

‖u1(s)− u2(s)‖L2(Γ3) ds

and using (12) we obtain

(50) ‖θ1(t)− θ2(t)‖L2(Γ3) ≤ c

∫ t

0

‖u1(s)− u2(s)‖V ds.

We use (48) in the estimate (50) to find

(51) ‖Λβ1(t)− Λβ2(t)‖L2(Γ3) ≤ c

∫ t

0

‖u1(s)− u2(s)‖V ds.
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We now combine (49) with (51) to deduce

‖Λβ1(t)− Λβ2(t)‖L2(Γ3) ≤
c

mF − c20Lν‖µ‖L∞(Γ3)

∫ t

0

‖β1(s)− β2(s)‖L2(Γ3) ds

and, reiterating this inequality n times, it yields
(52)

‖Λnβ1−Λnβ2‖C([0,T ];L2(Γ3)) ≤
cnTn

(mF − c20Lν‖µ‖L∞(Γ3))nn!
‖β1− β2‖C([0,T ];L2(Γ3)).

Recall that Z is a nonempty closed set in the Banach space C([0, T ];L2(Γ3))
and note that inequality (52) shows that for n sufficiently large Λn : Z → Z is a
contraction. We use the Banach fixed point theorem to obtain that Λ has a unique
fixed point β∗ ∈ Z, which concludes the proof. �

Now, we have all the ingredients to provide the proof of Theorem 4.1.

Proof of Theorem 4.1. Existence. Let β∗ ∈ Z be the fixed point of Λ and let
u∗ be the solution of Problem P1

β for β = β∗, i.e. u∗ = uβ∗ . Since θβ∗ = β∗,
we conclude by (38), (46), (47) that (u∗, β∗) is a solution of Problem PV and,
moreover, β∗ satisfies (35). Also, since β∗ = θβ∗ ∈W 1,∞(0, T, L2(Γ3)), inequality
(49) implies that the function u∗ belongs to W 1,∞(0, T ;V ), which shows that the
functions u∗ have the regularity expressed in (34).

Uniqueness. The uniqueness of the solution is a consequence of the uniqueness
of the fixed point of operator Λ defined by (48). Indeed, let (u, β) be a solution of
Problem PV which satisfies (34)–(35). It follows from (38) that u is a solution to
Problem P1

β and, since by Lemma 4.2 this problem has a unique solution denoted
uβ , we obtain

(53) u = uβ .

Then, we replace u = uβ in (25) and use the initial condition (26) to see that β
is a solution to Problem P2

β . Since by Lemma 4.3, this last problem has a unique
solution, denoted θβ , we find

(54) β = θβ .

We use now (48) and (54) to obtain that Λβ = β, i.e. β is a fixed point of the
operator Λ. It follows now from Lemma 4.4 that

(55) β = β∗.

The uniqueness part of the theorem is now a consequence of (53) and (55). �

5. A piezoelectric frictional contact problem with adhesion

In this section we extend our results to the case when the piezoelectric effect of
the material is taken into account. To this end we consider the physical setting
described in Section 2 and we assume that, besides the action of the forces and
tractions, the body is submitted to the action of volume charges of density q0 and
to electric constraints on the boundary. To describe them we consider a second
partition of Γ into two measurable parts Γa and Γb such that meas(Γa) > 0 and
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Γ3 ⊆ Γb. We assume that the electric potential vanishes on Γa and surface electric
charge of density q2 is prescribed on Γb. Also, we assume that the foundation is
insulator and we model the material’s behavior with an electro-elastic constitutive
law. With these assumptions, the classical model of the process is as follows.

Problem P̃. Find a displacement field u : Ω × [0, T ] → Rd, a stress field
σ : Ω×[0, T ] → Sd, an electric potential ϕ : Ω×[0, T ] → R, an electric displacement
field D : Ω× [0, T ] → Rd and a bonding field β : Ω× [0, T ] → R such that

σ = Fε(u)− E∗E(ϕ) in Ω× (0, T ),(56)

D = BE(ϕ) + Eε(u) in Ω× (0, T ),(57)

Div σ + f0 = 0 in Ω× (0, T ),(58)

div D − q0 = 0 in Ω× (0, T ),(59)

u = 0 on Γ1 × (0, T ),(60)

σν = f2 on Γ2 × (0, T ),(61)

− σν = pν(uν)− γνβ
2Rν(uν) on Γ3 × (0, T ),(62) 

‖στ + γτβ
2Rτ (uτ )‖ ≤ µpν(uν),

‖στ + γτβ
2Rτ (uτ )‖ < µpν(uν) ⇒ uτ = 0,

‖στ + γτβ
2Rτ (uτ )‖ = µpν(uν) ⇒ ∃λ ≥ 0

such that στ + γτβ
2Rτ (uτ ) = −λuτ

on Γ3 × (0, T ),(63)

β̇ = −(β (γνRν(uν)2 + γτ‖Rτ (uτ )‖2)− εa)+ on Γ3 × (0, T ),(64)

ϕ = 0 on Γa × (0, T ),(65)

D · ν = q2 on Γb × (0, T ),(66)

β(0) = β0 on Γ3.(67)

Equations (56) and (57) represent the electro-elastic constitutive law in which
E(ϕ) = −∇ϕ is the electric field, F is the elasticity operator, E represents the
piezoelectric operator, E∗ is its transposed and B denotes the electric permittivity
operator. Details on the electro-elastic constitutive equations of the form (56), (57)
can be find, for instance, in [1, 2]. Next, equation (59) is the equilibrium equation
for the electric-displacement field in which “div” denote the divergence operator
for vector valued functions, whereas (65) and (66) represent the electric boundary
conditions. The rest of equations and conditions are identic to the corresponding
equations and conditions in Problem P.
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To study problem P̃ we use the notation in Section 3 and, for the electric
unknowns ϕ and D, we introduce the spaces

W = { ψ ∈ H1(Ω) | ψ = 0 on Γa },
W1 = { D = (Di) | Di ∈ L2(Ω), Di,i ∈ L2(Ω) }.

Since meas (Γa) > 0, the following Friedrichs-Poincaré inequality holds:

(68) ‖∇ψ‖L2(Ω)d ≥ cF ‖ψ‖H1(Ω) ∀ψ ∈W,

where cF > 0 is a constant which depends only on Ω and Γa and ∇ψ = (ψ,i ).
Over the space W we consider the inner product given by

(ϕ,ψ)W =
∫

Ω

∇ϕ · ∇ψ dx

and let ‖ · ‖W be the associated norm. It follows from (68) that ‖ · ‖H1(Ω) and
‖ · ‖W are equivalent norms on W and therefore (W, ‖ · ‖W ) is a real Hilbert space.
Moreover, the space W1 is real Hilbert space with the inner product

(D,E)W1 =
∫

Ω

D ·E dx+
∫

Ω

div D · div E dx,

where div D = (Di,i), and the associated norm ‖ · ‖W1 .

We assume that the piezoelectric operator E and the electric permittivity op-
erator B satisfy the following assumptions.

(a) E : Ω× Sd → Rd.

(b) E(x, τ ) = (eijk(x)τjk) ∀τ = (τ ij) ∈ Sd, a.e. x ∈ Ω.

(c) eijk = eikj ∈ L∞(Ω).

(69)



(a) B : Ω× Rd → Rd.

(b) B(x,E) = (bij(x)Ej) ∀E = (Ei) ∈ Rd, a.e. x ∈ Ω.

(c) bij = bji ∈ L∞(Ω).

(d) There exists mB > 0 such that bij(x)EiEj ≥ mB‖E‖2
∀E = (Ei) ∈ Rd, a.e. x ∈ Ω.

(70)

From the assumptions (69) and (70) we deduce that the operators E and B are
linear, have measurable bounded components denoted eijk and bij and, moreover,
B is symmetric and positive definite. Recall also that the transposed operator E∗
is given by E∗ = (e∗ijk) where e∗ijk = ekij , and the following equality holds :

(71) Eσ · v = σ · E∗v ∀σ ∈ Sd, v ∈ Rd.

We also assume that the densities of electric charges satisfy

(72) q0 ∈W 1,∞(0, T ;L2(Ω)), q2 ∈W 1,∞(0, T ;L2(Γb)),

(73) q2(t) = 0 on Γ3 ∀ t ∈ [0, T ].



ANALYSIS OF A CONTACT PROBLEM WITH ADHESION 195

Note that assumption (73) represents a compatibility condition; indeed, the foun-
dation is supposed to be insulator, like the gap, which is filled with air; therefore,
the normal component of the electric displacement field vanishes both on the
contact and the separation zone, which implies that D · ν = 0 on Γ3 × (0, T ).
Combining this condition with (66) and using assumption Γ3 ⊆ Γb we obtain (73).

We define the function q : [0, T ] →W by

(q(t), ψ)W =
∫

Ω

q0(t)ψ dx−
∫

Γb

q2(t)ψ da,(74)

for all u, v ∈ V, ψ ∈W and t ∈ [0, T ], and note that conditions (72) imply that

(75) q ∈W 1,∞(0, T ;W ).

Using arguments similar to those used to derive Problem PV , we obtain the
following variational formulation of the piezoelectric contact problem P̃.

Problem P̃V . Find a displacement field u : [0, T ] → V , an electric potential
field ϕ : [0, T ] →W and a bonding field β : [0, T ] → L∞(Γ3) such that

(Fε(u(t)), ε(v − u(t)))H + (E∗∇ϕ(t), ε(v − u(t))H + jad(β(t),u(t),v − u(t))(76)

+jnc(u(t),v − u(t)) + jfr(u(t),v)− jfr(u(t),u(t))

≥ (f(t),v − u(t))V ∀v ∈ V, t ∈ [0, T ],

(B∇ϕ(t),∇ψ)L2(Ω)d − (Eε(u(t)),∇ψ)L2(Ω)d(77)

= (q(t), ψ)W ∀ψ ∈W, t ∈ [0, T ],

β̇(t) = −
(
β(t)

(
γνRν(uν(t))2 + γτ‖Rτ (uτ (t))‖2

)
− εa

)
+

a.e. t ∈ (0, T ),(78)

β(0) = β0.(79)

In the study of Problem P̃V we have the following existence and uniqueness
result.

Theorem 5.1. Assume that (13)–(18) and (69), (70), (72) and (73) hold.
Then, there exists µ̃0 > 0 which depends on Ω, Γ1, Γ3, F , B and pν such that
Problem P̃V has a unique solution (u, β), if ‖µ‖L∞(Γ3) < µ̃0. Moreover, the solu-
tion has the regularity expressed in (34), (35) and

(80) ϕ ∈W 1,∞(0, T ;W ).

Let (u, β, ϕ) be the solution of Problem P̃V obtained in Theorem 5.1 and denote
by σ, D the function given by (56), (57), respectively. It is easy to check that σ
satisfies (36) and

(81) D ∈W 1,∞(0, T ;W1).

A quintuple of functions (u, σ, ϕ, D, β) which satisfy (56), (57), (76)–(79) is
called a weak solution of the contact problem P̃V . We conclude by Theorem 5.1
that, under the stated assumptions, Problem P̃V has a unique weak solution which
satisfies (34)–(36), (80) and (81).
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The proof of Theorem 5.1 is similar to the proof of Theorem 4.1 and it is
carried out in several steps. Since the modifications are straightforward, we omit
the details. In the first step we fix β ∈ Z and we consider the following variational
problem.

Problem P̃1
β. Find a displacement field uβ : [0, T ] → V and an electric poten-

tial field ϕβ : [0, T ] →W such that, for all t ∈ [0, T ],

(F(ε(uβ(t))), ε(v)− uβ(t))H + (E∗∇ϕβ(t), ε(v − uβ(t)))H(82)
+jad(β(t),uβ(t),v − uβ(t)) + jnc(uβ(t),v − uβ(t))
+jfr(uβ(t),v)− jfr(uβ(t),uβ(t))

≥ (f(t),v − uβ(t))V ∀v ∈ V,

(B∇ϕβ(t),∇ψ)L2(Ω)d − (Eε(uβ(t)),∇ψ)L2(Ω)d = (q(t), ψ)W ∀ψ ∈W.(83)

We have the following result.

Lemma 5.2. There exists µ̃0 > 0 which depends on Ω, Γ1, Γ3, F , B and
pν such that Problem P̃1

β has a unique solution (uβ , ϕβ) ∈ C([0, T ];V ×W ), if
‖µ‖L∞(Γ3) < µ̃0.

Proof. In order to solve (82)–(83) we consider the product space X = V ×W
endowed with the inner product

(x, y)X = (u,v)V + (ϕ,ψ)W ∀x = (u, ψ), y = (v, ψ) ∈ X

and the associated norm ‖ · ‖X . We define the operator Ãβ(t) : X ×X → R, the
function j : X → R and the element f(t) ∈ X by equalities:

(Ãβ(t)x, y)X = (Aβ(t)u,v)V + (B∇ϕ,∇ψ)L2(Ω)d + (E∗∇ϕ, ε(v))H(84)

−(Eε(u),∇ψ)L2(Ω)d ∀x = (u, ϕ), y = (v, ψ) ∈ X,

j(x, y) = jfr(u,v) ∀x = (u, ϕ), y = (v, ψ) ∈ X,(85)

f(t) = (f(t),−q(t)),(86)

for all t ∈ [0, T ], where Aβ(t) is given by (39). It is easy to see that xβ = (uβ , ϕβ)
is a solution to problem (82)–(83) with regularity (uβ , ϕβ) ∈ C([0, T ];V ×W ) if
and only if xβ ∈ C([0, T ];X) and

(Aβ(t)xβ(t), y − xβ(t))X + j(xβ(t), y)− j(xβ(t), xβ(t))X(87)
≥ (f(t), y − xη(t))X ∀ y ∈ X, t ∈ [0, T ].

Next, we use (40), (41), (69)–(71) to see that Aβ(t) is a Lipschitz continuous
operator on X and satisfies

(88) (Aβ(t)x1−Aβ(t)x2, x1−x2)X ≥ min {mF ,mB}‖x1−x2‖2X ∀x1, x2 ∈ X.
Also, using (85) and (33), we can easily check that, for a given x ∈ X, the func-
tional j(x, ·) : X → R is convex and lower semicontinuous and satisfies

j(x1, y2)− j(x1, x1) + j(x2, x1)− j(x2, x2)(89)
≤ c20Lν ‖µ‖L∞(Γ3)‖x1 − x2‖X‖y1 − y2‖X ∀x1 x2, y1, y2 ∈ X.
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Finally, (86) and the regularity (20) and (75) show that f ∈W 1,∞(0, T ;V ). Let

(90) µ̃0 =
min {mF ,mB}

c20Lν

and assume that ‖µ‖L∞(Γ3) < µ̃0; we proceed like in the proof of Lemma 4.2 to
see that problem (87) has a unique solution xβ ∈ C([0, T ];X) which concludes the
proof. �

The rest of the steps in the proof of Theorem 5.1 are as follows.

Proof of Theorem 5.1. We assume in what follows that ‖µ‖L∞(Γ3) < µ̃0 and,
for a given β ∈ Z we denote by (uβ , ϕβ) the solution of the Problem P̃1

β obtained
in Lemma 5.2. We use Lemma 4.3 to prove that, for a given β ∈ Z there exists a
unique element θβ such that

θβ ∈W 1,∞(0, T ;L2(Γ3)) ∩Q,(91)

θ̇β(t) = −
(
γνθβ(t)

(
Rν(uβν(t))2 + γτ‖Rτ (uβτ (t))‖2

)
− εa

)
+

a.e. t ∈ (0, T ),(92)

θβ(0) = β0.(93)

Also, it follows from Lemma 4.4 that the operator Λ : Z → Z given by

(94) Λβ = θβ

has unique fixed point β∗ ∈ Z. Denote u∗ = uβ∗ , ϕ∗ = ϕβ∗ , where (uβ∗ , ϕβ∗) is
the couple of functions obtained in Lemma 5.2 for β = β∗. Then, we use (82)–(83)
and (91)–(94) to see that (u∗, ϕ∗, β∗) is a solution of Problem P̃V . The uniqueness
of the solution as well as the regularity (34), (35) and (80) follows from arguments
similar to those used in the proof of Theorem 4.1. �
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9. Frémond M., Non-Smooth Thermomechanics, Springer, Berlin, 2002.

10. Ikeda, T. Fundamentals of Piezoelectricity, Oxford University Press, Oxford, 1990.



198 Z. LERGUET, M. SOFONEA and S. DRABLA

11. Maceri F. and Bisegna P., The unilateral frictionless contact of a piezoelectric body with a

rigid support, Math. Comp. Modelling 28 (1998), 19–28.
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