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ANALYTIC EXTENSION OF A MAXIMAL SURFACE IN L3

ALONG ITS BOUNDARY

DOAN THE HIEU and NGUYEN VAN HANH

Abstract. We prove that a maximal surface in Lorentz-Minkowski space L3 can be extended analyt-
ically along its boundary if the boundary lies in a plane meeting the surface at a constant angle.

1. Introduction

A maximal surface in Lorentz-Minkowski space L3 is a spacelike surface with zero mean cur-
vature. Maximal surfaces share many interesting properties with their counterparts, minimal
surfaces, in R3. For example, they are critical points (the maxima) of area variations and also
admit Enneper-Weierstrass representations. It is well known that a minimal surface in R3 can be
extended (symmetrically) along its boundary if the boundary lies in a plane meeting the minimal
surface orthogonally. This fact also holds for maximal surfaces in L3 (see [1]), where the plane
is assumed to be timelike since spacelike and lightlike planes can not meet a maximal surface
orthogonally, except at singular points, see the Remark in Section 3.

In 1996, J. Choe ([2]) proved that a minimal surface in R3 can be extended analytically along
its boundary if the boundary lies in a plane meeting the minimal surface at a constant angle.
The main idea is based on Enneper-Weierstrass representation of a minimal surface in terms of a
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holomorphic function f and a meromorphic function g. The meromorphic function g can be viewed
as the Gauss map of the minimal surface. Since the plane meets the minimal surface at a constant
angle, the image of the boundary under the Gauss map g lies in a circle and hence we can apply
Schwartz reflection principle to extend both f and g along the boundary.

In this paper, we show that the above idea can be applied for the case of maximal surfaces in
L3. The complication in this situation is that a plane can be spacelike, timelike or lightlike.

2. Preliminaries

The Lorentz-Minkowski 3-space L3 is the 3-dimensional vector space R3 = {(x1, x2, x3, ) : xi ∈ R,
i = 1, 2, 3} endowed with the indefinite (2, 1)-metric

〈x, y〉 = x1y1 + x2y2 − x3y3,

where x = (x1, x2, x3), y = (y1, y2, y3) ∈ L3.
We say that a nonzero vector x ∈ L3 is spacelike, lightlike or timelike if 〈x, x〉 > 0, 〈x, x〉 = 0 or

〈x, x〉 < 0, respectively. The vector zero is always considered as a spacelike one.
The norm of a vector x ∈ L3, denoted by ‖x‖, is defined by

√
|〈x, x〉|. The definition of the

cross-product of two vectors a = (a1, a2, a3); b = (b1, b2, b3), denoted by a ∧ b is given as follows

a ∧ b = (a2b3 − a3b2, a3b1 − a1b3, a2b1 − a1b2).

For a nonzero vector n ∈ L3, a plane with (pseudo) normal n is the set

P (n, c) = {x ∈ L3 : 〈x, n〉 = c, c ∈ R}.
The plane P (n, c) is called spacelike, lightlike or timelike if n is timelike,lightlike or spacelike,

respectively.
It is easy to see that P (n, c) is spacelike if any vector x ∈ P (n, c) is spacelike; P (n, c) is lightlike

if P (n, 0) is tangent to the lightcone; P (n, c) is timelike if it contains timelike vectors.
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The set
H2 = {x ∈ L3 : 〈x, x〉 = −1}

is called the hyperbolic. It has two connected components H2
+ = {x ∈ H2 : x3 ≥ 1} and H2

− =
{x ∈ H2 : x3 ≤ −1}. For studying spacelike surfaces in Lorentz-Minkowski spaces, H2, H2

−, H2
+

play the same roles as the unit sphere {|x|2 = 1} in Euclidean spaces.
Let X : M −→ L3 be an immersion of a 2-dimensional connected manifold. X (or X(M)) is

called spacelike if the induced metric on M via X is a Riemannian metric. That means the tangent
plane TpM ⊂ TpL3 is spacelike, for every p ∈M. In this case, the manifold M is orientable. Now,
suppose that X : M −→ L3 is a spacelike immersion and (u, v) is a local coordinate system. The
(local) unit normal vector field is defined as follows

N(u, v) =
Xu ∧Xv

‖Xu ∧Xv‖
.

Because M is spacelike, N(u, v) is always timelike.
Since M is connected, we can define the unit normal timelike vector field N on M globally and

the image of N lies in one of components of H2. Because of that we can consider N as a map
N : M −→ H2

+. The map N is called the Gauss map of the immersion. The shape operator is the
map A := −dN defined for all vector fields on manifold M and the mean curvature H is a half of
the trace of A

H :=
1
2

tr(A).

A spacelike immersion X : M −→ L3 is said to be a maximal immersion if its mean curvature
(at every point) is equal to zero, that is H = 0.

In 1983, Kobayashi ([5]) showed Enneper-Weierstrass representations for maximal immersions in
L3. Such representations for maximal immersions are quite similar to that for minimal immersions
in Euclidean space R3. It is clear that we can define local isothermal coordinate systems whose
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changes of coordinates preserve the orientation for maximal immersions. The existence of such
coordinate systems is proved quite similar to that for minimal immersions. Thus, since every
spacelike immersion is orientable, M admits a structure of a Riemann surface.

Now, suppose that X = (x1, x2, x3) and z = u + i v is the local complex parameter on M . We
set

φk :=
1
2

(
∂xk

∂u
− i

∂xk

∂v

)
, k = 1, 2, 3.

Since M is maximal, xk, k = 1, 2, 3 are harmonic and hence φk, k = 1, 2, 3 are holomorphic. Direct
computation shows that

φ2
1 + φ2

2 − φ2
3 = 0,(1)

and

|φ1|2 + |φ2|2 − |φ3|2 > 0.(2)

We see that ds2 = |φ1|2+|φ2|2−|φ3|3 > 0 is the Riemannian metric onM induced by the immersion
X and φk, k = 1, 2, 3 have no real periods and hence the immersion X can be represented as

X(z) = Re
∫

(φ1, φ2, φ3)dz,(3)

where the integral is taken on an arbitrary path from a fixed point to z.
Conversely, if φ1, φ2, φ3 are holomorphic functions on M and they have no real periods and

satisfy (1) and (2), then (3) determines a maximal surface.
If φ1 − iφ2 = 0, then φ3 = 0. In this case, M is a plane. Now, suppose that φ1 − iφ2 6= 0, we

set

f = φ1 − iφ2, g =
φ3

φ1 − iφ2
.
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We have 
φ1 =

1
2
f(1 + g2)

φ2 =
i
2
f(1− g2)

φ3 = fg

,(4)

and then (3) can be writen as follows

X(z) = Re
(

1
2

∫ z

z0

f(1 + g2)dω,
i
2

∫ z

z0

f(1− g2)dω,
∫ z

z0

fgdω

)
.(5)

From (4), we have φ1 + iφ2 = fg2. Thus, we can conclude that the poles of g coincide with the
zeroes of f in such a way that a pole of order m of g corresponds to a zero of order 2m of f.
Conversely, if such g and f are given, then (5) determines a maximal immersion.

Since (Xu − iXv) = 2(φ1, φ2, φ3), we have

Xu ∧Xv = 4Im(φ2φ3, φ3φ1, φ2φ1) = |f |2(1− |g|2)
(
2Re(g), 2Im(g), 1 + |g|2

)
.

Thus, the Gauss map N can be expressed as follows

N =
(

2Re(g)
1− |g|2

,
2Im(g)
1− |g|2

,
1 + |g|2

1− |g|2

)
.

Since N(z) ∈ H2
+, we conclude that |g| < 1.

It is clear that z 7−→

(
2Re(z)
1− |z|2

,
2Im(z)
1− |z|2

,
1 + |z|2

1− |z|2

)
is a conformal isomorphism π between

D = {z ∈ C : |z| < 1} and H2
+. The map π−1 is the stereographic projection from the point
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(0, 0,−1). The formula of π−1 is

π−1(x1, x2, x3) =
x2 + ix2

1 + x3
.

We can view g as a map from M into D and π−1 ◦N = g. Because of that, we also call g the Gauss
map of M .

3. Extension of a maximal surface

Let Ω be a domain in R2. We will call a maximal immersion x : Ω −→ L3 a maximal surface and
always assume that the parameters u, v on Ω are isothermal and set z = u+ i v.

It is well known that every maximal immersion can be locally written as a maximal surface and
by Uniformization theorem a simply connected maximal immersion can be expressed as a maximal
surface globally.

Denote D = {u2 + v2 < 1}, D+ = {u2 + v2 < 1; v > 0}, D− = {u2 + v2 < 1; v < 0} and
D0 = D ∩ {v = 0}; we have the main theorem of this paper.

Theorem 1. Let X+ : D+ −→ L3 be a maximal surface with isothermal parameters u, v and Π
be a plane. Suppose that γ is an analytic curve in Π, X+(u, v) tends to γ(u) whenever v → 0, and

lim
v→0

〈N(z), n〉 = c 6= 0,

where N is the Gauss map of X+ and n is the unit normal vector of Π. Then X+ can be analytically
extended along γ to a maximal surface X : D −→ L3 such that X|D+ = X+ and X(D0) = γ.

Proof. The main idea for the proof is showing that both g and f can be extended analytically
on D and hence by (5) we get the extended maximal surface. We will consider three cases: Π
is spacelike, Π is timelike and Π is lightlike. In each case we will use the following fact: if g
can be continuously extended to D+ ∪ D0 and g(D0) lies in a circle, then after using a Möbius
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transformation that maps g(D0) to the real axis, Schwartz reflection principle can be applied to
extend g on D.

1. Π is spacelike. By using a suitable Lorentzian transformation, we can assume that Π is
the plane x3 = 0. Let n be a timelike vector (0, 0, 1), then

lim
v→0

〈−N(z), n〉 = lim
v→0

1 + |g|2

1− |g|2
= −c.

Setting c = cosh θ we conclude that

lim
v→0

|g(z)| = coth
θ

2
.

Then the meromorphic function g can be continuously extended on D+ ∪D0 such that

|g(z)| = coth
θ

2
, ∀z ∈ D0.

That means g maps D0 into the circle with the center O and radius r = coth
θ

2
, and

therefore, g can be extended analytically on D. The extension of g also denoted as g is
expressed as follows:

g(z) = coth2

(
θ

2

)
(g(z))−1, z ∈ D−.

Next, we extend f on D. First we observe that x3 is extended to a harmonic function, also
denoted as x3, on D by setting

x3(z) = −x3(z), z ∈ D−.
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Then φ3 can be extended to a holomorphic function, also denoted as φ3, on D by setting

φ3(z) = −φ3(z), z ∈ D−.

Finally, f is extended analytically on D by setting

f(z)=
−f(z)g2(z)

coth2

(
θ

2

) =
−φ3(z)g(z)

coth2

(
θ

2

) =
−φ3(z)

coth2

(
θ

2

)
(g(z))−1

=
φ3(z)
g(z)

, ∀z ∈ D−.

2. Π is timelike. We can assume that Π is the plane x2 = 0. Set c =
1
λ

,λ 6= 0 and choose

n = (0, 1, 0). The assumption lim
v→0

〈N(z), n〉 =
1
λ

implies that

lim
v→0

2Im(g)
1− |g|2

=
1
λ
.

Thus, g is extended continuously on D+ ∪D0 such that the following is satisfied

2Im(g)
1− |g|2

=
1
λ
.(6)

Equation (6) gives
[Re(g)]2 + [Im(g) + λ]2 = 1 + λ2.

Therefore, g maps D0 into the circle with the center at (0,−λ) and radius r =
√

1 + λ2 and
then the meromorphic function g is extended as follows

g(z) = − iλ+ (1 + λ2)
(
g(z)− iλ

)−1

, ∀z ∈ D−.
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Because X+ = (x1, x2, x3) is maximal and u, v are isothermal parameters, x2 is harmonic
on D+. The assumption

lim
v→0

X+(z) = γ(u) ∈ Π,

implies that x2 can be continuously extended on D+ ∪D0 by setting

x2(z) = 0, ∀z ∈ D0.

Schwartz reflection principle says that x2 can be extended on D as follows

x2(z) = −x2(z), ∀z ∈ D−.

Therefore, φ2 is extended on D by setting

φ2(z) = −φ2(z), z ∈ D−.

Since g2(z) 6= 1, the holomorphic f is extended analytically on D by setting

f(z) =
2φ2(z)

i(1− g2(z))
, z ∈ D.

3. Π is lightlike.
Assume that the equation of Π is x1 − x3 = 0. We set c = 1 + λ and choose n = (1, 0, 1).
If λ = 0, then by the assumption

lim
v→0

〈N(z), n〉 = 1,

we have

lim
v→0

[
2Re(g)
1− |g|2

− 1 + |g|2

1− |g|2

]
= 1
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or equivalently, Re(g) tends to 1 whenever v tends to 0. The meromorphic function g
can be extended continuously on D ∪ D0 such that Reg(z) = 1, ∀z ∈ D0. That means
g(D0) ⊂ {Re(z) = 1}. In this case g is extended analytically on D by setting

g(z) = 2− g(z),∀z ∈ D−.
If λ 6= 0, by the assumption

lim
v→0

〈N(z), n〉 = lim
v→0

[
2Re(g)
1− |g|2

− 1 + |g|2

1− |g|2

]
= 1 + λ,

we conclude that g can be continuously extended on D ∪D0 in such a way that(
Re(g) +

1
λ

)2

+ (Im(g))2 =
(

1 +
1
λ

)2

, ∀z ∈ D0.

That means the image of D0 under g lies in the circle with the center (− 1
λ , 0) and the radius

r =
∣∣1 + 1

λ

∣∣ . Then g is extended analytically on D by setting

g(z) = − 1
λ

+ (1 +
1
λ

)2
(
g(z) +

1
λ

)−1

, ∀z ∈ D−.

In order to extend f we first observe that ψ = x1 − x3 is a harmonic function on D+ and
by the assumption

lim
v→0

X+(z) → γ(u) ∈ Π,

it can be extended to a continuous function on D+∪D0 by setting ψ(z) = 0, ∀z ∈ D0. Then
by Schwartz reflection principle for harmonic function, ψ can be extended to a harmonic
function on D by setting

ψ(z) = −ψ(z),∀z ∈ D−.
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Let ψ∗ be the harmonic conjugation of ψ, then
d(ψ + iψ∗)

dz
is a holomorphic function on D.

It is clear that
d(ψ + iψ∗)

dz

∣∣∣
D+

= φ1−φ3. So
d(ψ + iψ∗)

dz
is the extension of φ1−φ3 and we

can write φ1 − φ3 instead of
d(ψ + iψ∗)

dz
. Then, the analytic extension of f can be writen

as follows

f(z) =
2(φ1 − φ3)
(1− g(z))2

, ∀z ∈ D−.

�Remarks.
1. It is clear that if z = u+ i v is a pole of order m of g then z = u+ i v is a zero of order 2m

of f.
2. If 〈N(z), n〉 = 0 along S ∩ Π, then we say that the plane Π meets the maximal surface S

orthogonally. Suppose that Π is spacelike, then we can conclude that 1 + |g|2 = 0, is a
contradiction. Thus, a spacelike plane can not meet a maximal surface orthogonally. If Π
is lightlike, we can suppose that the equation of Π is x1 − x3 = 0. Then we can conclude
that g = −1 along S ∩ Π. Therefore, Xu ∧Xv = 0. Thus a lightlike plane can not meet a
maximal surface orthogonally, except at singular points.

3. We can see the extension clearly on Lorentzian Catenoid. Let

X(u, v) = (sinhu cos v, sinhu sin v, u); (u, v) ∈ U = {(u, v) ∈ R+ × (−π, π)

be the Lorentzian Catenoid with only conelike sigularity at the origin. Let Π1 be spacelike
plane x3 = a > 0, Π2 be spacelike plane x3 = b > a and Π3 be spacelike plane x3 = 2b− a.
The extension about Π2 as in proof of Theorem 1 maps X(U) ∩Π1 to X(U) ∩Π3 and also
maps the component bounded by Π1 and Π2 to the component bounded by Π2 and Π3.

4. (Extension about a conelike singularity) Nevertheless, there are important differences
between maximal surfaces and minimal surfaces. The fact that the only complete maximal
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surfaces in L3 are spacelike planes is an example in global theory. On the other hand,
maximal surfaces may have isolated singularities that never happen for minimal surfaces
(see [6]).

Let S be a maximal surface and p ∈ S is a conelike singularity. For more detail about
conelike singularities, we refer readers to [6]. Now, let X : D −→ L3 be a neighbourhood
of a conelike singularity where X(0, 0) is the conelike singularity and suppose that X(∂D)
meets spacelike plane x3 = a at a constant angle. In this situation, the image of g is an
annulus bounded by circles {|z| = 1} and {|z| = r < 1} and hence conformally identified
with D − {(0, 0)}. Obviously, we can extend both φ3 and g analitycally to the whole C by
using the inversion about circle {|z| = 1}. The result is a complete maximal surface with
one conelike singular point and one end and therefore there is an embedding entire graph
(see [4, Proposition 2.1]). It must be the Lorentzian catenoid according to the a result of
Ecker (see [3]).

5. (Extension about an end) The same argument as in item 4 also holds for X : D −
{(0, 0)} −→ L3 being a neighbourhood of an end of a maximal surface, and X(∂D) meets
spacelike plane x3 = a at a constant angle. In this case, the image of Gauss map g is the
disk {0 < |x| < r; r < 1} and also can be extended analitycally to D − {(0, 0)}.
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