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ON THE COMPUTATION OF MULTIPLICITY BY THE REDUCTION OF
DIMENSION

E. BOĎA and D. JAŠKOVÁ

Abstract. In this short note we describe one method for the computation of the Samuel multiplicity

of the polynomial ideals and prove a formula for the multiplicity of the ideal (αix
ai
i − βi+1x

bi+1
i+1 ;

i = 1, . . . , n) · R in R (with the convention xn+1 = x1, βn+1 = β1, bn+1 = b1), where (R, m) =
k [x1, x2, . . . , xn](x1,x2,...,xn)

is a local polynomial ring over an algebraic closed field k.

Let (A,m) be a Noetherian local ring with dimA = d. For any m-primary ideal Q in A the
A-module A/Qn is of the finite length for all n ∈ N. For large n this length function becomes a
polynomial (Hilbert-Samuel polynomial) which can be written as

L(A/Qn) = e0(Q,A)
nd

d!
+ terms of lower degree.

The coefficient e0(Q, A) is called the Samuel multiplicity (or simply) multiplicity of Q in A. We
present one method how to count this multiplicity when Q is generated by a system of parameters
in a local polynomial ring.
Let P = k[x1, . . . , xn] be a polynomial ring over an algebraic closed field k. Let f1, . . . , fn−r

denote a system of polynomials in P such that algebraic variety V (f1, . . . , fn−r) is of dimension r,
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0 ≤ r < n. We say that the set of polynomials {ui(s1, . . . , sr) ∈ k[s1, . . . , sr], i = 1, . . . , n}
represents the polynomial parametrization of W if the image of the map

kr → En

given by

(a1, a2, . . . , ar) 7−→ (u1(a1, . . . , ar), . . . , un(a1, . . . , ar))

is V (f1, . . . , fn−r).
Now we can formulate the main theorem of this note.

Theorem 1. Let P = k[x1, . . . , xn] be a polynomial ring over an algebraic closed field k and
(R,m) = k[x1, . . . , xn](x1,...,xn) the localization of P with respect to maximal ideal (x1, . . . , xn) ·P .
Let f1, . . . , fn denote a system of polynomials in P such that (f1, . . . , fn) · R is an m-primary
ideal in R. Let W be an algebraic variety in En defined by the equations f1(x1, . . . , xn) = . . . =
fn−r(x1, . . . , xn) = 0 with dimW = r and the polynomial parametrization {ui(s1, . . . , sr) ∈
k[s1, . . . , sr], i = 1, . . . , n}. Suppose that the polynomial ring k [s1, . . . , sr] is a finite k[u1, . . .
. . . , un]-module. Let d denote the dimension of the field k(s1, . . . , sr) as a vector space over the
field k(u1, . . . , un). With this hypothesis we have

e0((f1, . . . , fn) ·R,R) · d = e0((Fn−r+1, . . . , Fn) · S, S)

where Fi = fi(u1(s1, . . . , sr), . . . , un(s1, . . . , sr)) for i = n − r + 1, . . . , n and
S = k [s1, . . . , sr](s1,...,sr)

.

Proof. From our construction we have the monomorphism

k[x1, . . . , xn]/(f1, . . . , fn−r) · k[x1, . . . , xn] ∼= k [u1 . . . , un] ↪→ k [s1, . . . , sr]

and hence the local monomorphism

R/(f1, . . . , fn−r) ·R ∼= k [u1, . . . , un](u1,...,un)
↪→ k [s1 . . . , sr](s1,...,sr)

.
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As the module k [s1, . . . , sr](s1,...,sr)
is finite over the ring k [u1, . . . , un](u1,...,un)

, the additivity
formula applied to the multiplicity e0((f1, . . . , fn) ·R,R) provides the equality

e0((f1, . . . , fn) ·R/(f1, . . . , fn−r) ·R,R/(f1, . . . , fn−r) ·R) · d
= e0((Fn−r+1, . . . , Fn) · S, S)

(cf. [3, Theorem 14.7]). As the ideal (f1, . . . , fn) · R is generated by a system of parameters, we
have

e0((f1, . . . , fn) ·R,R) · d = e0((Fn−r+1, . . . , Fn) · S, S),

(cf. [4, Chap.7, Theorem 18]) which completes the proof. �

Let us shift to the ideal (αix
ai
i −βi+1x

bi+1

i+1 ; i = 1, . . . , n) ·R in the local polynomial ring (R,m) =
k [x1, x2, . . . , xn](x1,x2,...,xn)

. As the mentioned ideal satisfies the condition of the above formulated
Theorem 1, we can prove the formula for its multiplicity. We start with n = 2.

Lemma 2. Let (αxa − βyb, γyc − δxd) · A be a parameter ideal in the local ring (A,m) =
k [x, y](x,y) (a, b, c, d ∈ N; α, β, γ, δ ∈ k). Then

e0 ((αxa − βyb, γyc − δxd) ·A,A) = min{ac, bd}.

Proof. After dividing the polynomials of the basis by α resp. γ, we can assume that α = γ = 1.
If gcd(a, b) = r, a = ar, b = br, then

xa − βyb =
r∏

i=1

(xa − ξiy
b)
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for certain ξi ∈ k (k being algebraically closed). As

e0 ((x
a − βyb, yc − δxd) ·A,A) =

r∑
i=1

e0 ((x
a − ξiy

b, yc − δxd) ·A,A)

(see [4, Chap.VII, Theorem 7]), we can assume that a, b are relatively prime with k · a− l · b = 1
for certain k, l ∈ N . Then the equations

x = βksb

y = βlsa

represent the polynomial parametrization of the curve V given by xa − βyb = 0. In addition,
k(βksb, βlsa) = k(s). Now Theorem 1 provides the following equalities

e0 ((x
a − βyb, yc − δxd) ·A,A) = e0((β

l·csa·c − δβk·dsb·d) · k [s](s) , k [s](s))
= min{ac, bd}

which completes the proof. �

And now we formulate the general result.

Theorem 3. Let I = (αix
ai
i − βi+1x

bi+1

i+1 ; i = 1, . . . , n) · R be a parameter ideal in R (with the
convention xn+1 = x1, βn+1 = β1, bn+1 = b1), where (R,m) = k [x1, x2, . . . , xn](x1,x2,...,xn)

is a
local polynomial ring over an algebraic closed field k. Then

e0(I,R) = min

{
n∏

i=1

ai,
n∏

i=1

bi

}
.
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Proof. We use induction on n ≥ 2. For n = 2 the assertion is the above Lemma 2. Let now

I = (αix
ai
i − βi+1x

bi+1

i+1 ; i = 1, . . . , n) · k [x1, x2, . . . , xn](x1,x2,...,xn)
, n > 2.

As in Lemma 2 we can assume that the first polynomial is of the form xa1
1 −β2x

b2
2 with a1, b1 being

relatively prime with k · a1 − l · b2 = 1 for certain k, l ∈ N. So the polynomial parametrization of
the hypersurface V (xa1

1 − β2x
b2
2 ) in En has the following form

x1 = βk
2 s

b2
1

x2 = βl
2s

a1
1

xi = si−1 for i = 3, . . . , n.

As k(βk
2 s

b2
1 , βl

2s
a1
1 , s2, . . . , sn−1) = k(s1, . . . , sn−1), the induction hypothesis and the Theorem 1

imply

e0(I,R) = e0((α2β
l·a2
2 sa1·a2

1 − β3s
b3
2 , α3s

a3
2 − β4s

b4
3 , . . . . . . , αn−1s

an−1
n−2 − βnsbn

n−1,

. . . , αnsan
n−1 − β1β

k·b1
2 sb2·b1

1 ) · k [s1 . . . , sn−1](s1,...,sn−1)
, k [s1 . . . , sn−1](s1,...,sn−1)

)

= min{a1 · a2 . . . an, b1 · b2 . . . bn},

which completes the proof. �

Finally, we illustrate the previous results by an example.

Example 4. Let I = (x3 − y4, x5 − z7, y6 − z8) · C [x, y, z] (x,y,z) be a parameter ideal in the
ring C [x, y, z](x,y,z). As gcd(3, 4) = gcd(5, 7) = 1, we can take the curve W given by the equations

x3 − y4 = x5 − z7 = 0
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and the parametrization
x = s28

y = s21

z = s20.

Then the Theorem 1 applied to our ideal I and the variety W provides the equality

e0(x
3 − y4, x5 − z7, y6 − z8) · C [x, y, z](x,y,z) , C [x, y, z](x,y,z)

= e0((s
6·21 − s8·20) · C [s](s) , C [s](s)) = 126.

On the other hand, we can take the polynomial

y6 − z8 = (y3)2 − (z4)2 = (y3 − z4)(y3 + z4)

and the surface V given by y3 − z4 = 0, resp. parametrically

x = s

y = t4

z = t3

and compute

e0((x
3 − y4, x5 − z7, y6 − z8) · C [x, y, z](x,y,z) , C [x, y, z](x,y,z))

= 2 · e0((y3 − z4, x3 − y4, x5 − z7) · C [x, y, z](x,y,z) , C [x, y, z](x,y,z))

= 2 · e0((s3 − t16, s5 − t21) · C [s, t](s,t) , C [s, t](s,t)) = 2 ·min{3 · 21, 5 · 16} = 126.

Acknowledgment. The authors would like to thank the reviewer for giving them an impulse
to formulate the n-dimensional version of the Theorem 3.
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