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DIFFERENTIAL SUBORDINATION FOR MEROMORPHIC
MULTIVALENT QUASI-CONVEX FUNCTIONS

RABHA W. IBRAHIM anp M. DARUS

ABSTRACT. We introduce new classes of meromorphic multivalent quasi-convex
functions and find some sufficient differential subordination theorems for such classes
in punctured unit disk with applications in fractional calculus.

1. INTRODUCTION AND PRELIMINARIES

Let ¥}, be the class of functions F(z) of the form
1 oo
— n+a—1 _
F(Z)—Z,,+§Oanz ., a>1, p=1,2,...,

which are analytic in the punctured unit disk U := {z € C, 0 < [z < 1}. Let X,
be the class of functions of the form
1 o0
F(z)= i apz" Tt a>1, a,>0
n=0
which are analytic in the punctured unit disk U. Now let us recall the principle
of subordination between two analytic functions: Let the functions f and g be
analytic in A := {z € C, |z| < 1}. Then we say that the function f is subordinate
to g if there exists a Schwarz function w, analytic in /A such that

f(z) = g(w(2)), z €A,
We denote this subordination by

f=g or [f(z) <g(2)

If the function g is univalent in A, the above subordination is equivalent to

f(0)=g(0) and  f(A) Cg(A).
Now, let ¢ : C3> x A — C and let h be univalent in A. Assume that p, ¢ are
analytic and univalent in A. If p satisfies the differential superordination

(1) h(z) < o(p(2)), 20 (2), D" (2); 2),
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then p is called a solution of the differential superordination. (If f is subordinate
to g, then g is called superordinate to f.) An analytic function ¢ is called a

subordinant if ¢ < p for all p satisfying (1). A univalent function ¢ such that
p < ¢ for all subordinants p of (1) is said to be the best subordinant.

Let E;r be the class of analytic functions of the form
1 oo
f(z)zzfp%-;anz , in U.
And let ¥ be the class of analytic functions of the form
I <, _
f(z):z—pfzoanz, a, >0, n=0,1,... in U.
n=

A function f € ¥ (%) is meromorphic multivalent starlike if f(z) # 0 and

—é)?{zf/(z)}>0, zeU.

f(z)
Similarly, the function f is meromorphic multivalent convex if f’(z) # 0 and
1
§R{1+ Z}f,(iz))} >0, zeU

Moreover, a function f is a called meromorphic multivalent quasi-convex function
if there is a meromorphic multivalent convex function g such that

A function F' € X} (¥, ) such that F(z) # 0 is called meromorphic multivalent

p,a)
starlike if

—R { Z?;S) } > 0, zeU.

And the function F' is meromorphic multivalent convex if F’(z) # 0 and
2F"(2)
—Rq1 > 0, eU.
e ’
A function F' € X} (¥, ,) is called a meromorphic multivalent quasi-convex func-
tion if there is a meromorphic multivalent convex function G such that G'(z) # 0

and

In the present paper, we establish some sufficient conditions for functions F' € Z; o
and F' € ¥, to satisty

(2P F'(z))'

(2) IO
G'(2)

where ¢ is a given univalent function in U. Moreover, we give applications for
these results in fractional calculus. We shall need the following known results.

< q(2),
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Lemma 1.1 ([1]). Let g be convex univalent in the unit disk /. Let ¢ be a
function and number v € C such that

3’%{1 + qu’/;i? + f} > 0.

If p is analytic in A\ and
Up(2) + 720 (2) < () + 724 (2),
then p(z) < q(z) and q is the best dominant.

Lemma 1.2 ([2]). Let q be univalent in the unit disk /A and let 6 be analytic
in a domain D containing q(A). If z2¢'(2)0(q) is starlike in A and

2 (2)0(¢(2)) < 2q'(2)0(q(2)),
then 1(z) < q(z) and q is the best dominant.

2. SUBORDINATION THEOREMS

In this section, we establish some sufficient conditions for subordination of analytic
functions in the classes ¥ | and X .

Theorem 2.1. Let the function q be convex univalent in U such that ¢'(z) # 0
and

1
(3) %{1+Zq,(z)+w}>o, ~#0.
7(z) v
Suppose that 7% is analytic in U. If F € E;a satisfies the subordination

R R e e N
G'(z) {¢+’Y[ (zPF'(2)) G'(2) }} < ¥q(2) + 7v2¢ (2),

e (PF'(2)
Z2PF'(2))
_T(Z) =< q(2),

and q is the best dominant.

Proof. Let the function p be defined by
_ _GEFQR)
p(z) == G zeU.

It can easily observed that

iy EF(R)) 2(2PF'(2)"  2G"(2)
Yp(2) +y2p (Z) = _W {¢ +7 |: (2P F'(2)) - G'(2) :| }

< Pq(2) + 724 (2).

Then, using the assumption of the theorem the assertion of the theorem follows
by an application of Lemma 1.1. O
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Corollary 2.1. Assume that (3) holds. Let the function q be univalent in U.
Let n =1, if q satisfies

(=F'(2)) 22F'(2))" 2G"(2) e
G'(2) {¢+7[ (F'(z))  G'(2) ” < q(z) +v24'(2),

e (F(2)
2F'(2))
_G’7(2) < q(2),

and q 1is the best dominant.

Theorem 2.2. Let the function q be univalent in Usuch that q(z) #0, z € U,

zg;S) is starlike univalent in U. If F € X, satisfies the subordination

z(2PF'(2))"  2G"(2) - 2q'(2)

LEreEy T eE T e
then
(2"F'(2))
o 1
and q is the best dominant.
Proof. Let the function ¢ be defined by
TS P e ) )

G'(2)
By setting
a
0 = —
(UJ) W’ a 7é 0,

it can be easily observed that 6 is analytic in C — {0}. By straightforward com-
putation we have
azw/(z) — 2(2PF(2))"  2G"(2)
U(z) L @PF() G(2)
2q'(2)
q(2)
Then, by using the assumption of the theorem, the assertion of the theorem follows
by an application of Lemma 1.2. O

Corollary 2.2. Assume that q is convex univalent inU. Letp =1, if F € ¥,
and
2(zF'(2))"  2G"(z) ) Cqu’(z)

(zF'(2))  G'(2) q(2)

a

e (F'(2)
2F'(2))
_G’7(2) =<q(z)

and q is the best dominant.
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3. APPLICATIONS.

In this section, we introduce some applications of section (2) containing fractional
integral operators. Assume that f(z) = Y .- ¢,2™ and let us begin with the
following definition.

Definition 3.1 ([3]). For a function f, the fractional integral of order « is
defined by

Eﬁ@%=FéOA<NOQ—CP”dQ >0

where the function f is analytic in simply-connected region of the complex z-plane
(C) containing the origin, and the multiplicity of (z—¢)*~! is removed by requiring
log(z — () to be real when(z — ¢) > 0. Note that I?f(z) = f(z) x %’ for z >0
and 0 for z < 0 (see [4]).

From Definition 3.1, we have

Zafl Zafl o N o0 o
I?f(z):f(z)xmzmgwnz an:%anZJr !

where a,, := F?Z)’ foralln=0,1,2,3,..., thus
1 1
i «@ + g« -
e +I9f(2) €8, and por I7f(z) € B, ,(on > 0).

Then we have the following results:
Theorem 3.1. Let the assumptions of Theorem 2.1 hold, then
2P(L 4+ 12F(2)))
Sy <)
where F(z) = & + 12 f(2), G(2) = & +12g(2) and q is the best dominant.
Theorem 3.2. Let the assumptions of Theorem 2.2 hold, then

(P(L — 2 ()Y
L Ieg)y 1P

where F(z) = 5 —I2f(2), G(z) =% — I?g(z) and q is the best dominant.

Let F'(a, b; ¢; z) be the Gauss hypergeometric function (see [5]) defined for z € U
by

F(a,b;c;2z) = Z L)n(b)nz",

n=0

where the Pochhammer symbol is defined by
(@, = Hatn _ { L (n=0);
! ala+1)(a+2)...(a+n—-1), (neN).

I'(a)
We need the following definitions of fractional operators in the Saigo type of frac-
tional calculus (see [6],[7]).
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Definition 3.2. For @ > 0 and 3,7 € R, the fractional integral operator I&’f’"
is defined by

L,—a—p
9" f(2) =

— ol —ma;l S d
o | G om P (e pman = £) foac
where the function f is analytic in a simply-connected region of the z-plane con-
taining the origin with the order
f(2) =0(z)(z = 0),  e>max{0,8-n} -1

and the multiplicity of (z — ¢)®~! is removed by requiring log(z — ¢) to be real
when z — ¢ > 0.

From Definition 3.2 with § < 0, we have

zma B
15071(2) =

F(a)/oz(z — Q)R (a + B, =51 — g) fF(Q)d¢

_ S (O[+/8)n(*7])n Zﬁa*ﬁ Z . a1 _g n
_7;) (@)n(1 () /0( <) (1 Z) F(Qd¢

)n

0 —a—pB—n z
=Y B [ -0 o
n=0
n=0

_ E - n—pG—1

where B := Y > | B,. Denote a, := ?{p)
thus

,...,and let a = —0,

- +10 DR eSy, and S -7 €8, (en 20).
Then we have the following results:

Theorem 3.3. Let the assumptions of Theorem 2.1 hold, then

(P(L + ISP ()
— z),U
iy

where F(z) = & +I&’f’"f(z), G(z) =24 fI('i’f’ng(z) and q is the best dominant.

Theorem 3.4. Let the assumptions of Theorem 2.2 hold, then

RCAER el (CID
(&~ 55 9)) |

where F(z) = & —Igf‘f’”f(z), G(z) = L — 18P

zp 0,z

g(2) and q is the best dominant.
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