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DIFFERENTIAL SUBORDINATION FOR MEROMORPHIC MULTIVALENT
QUASI-CONVEX FUNCTIONS

RABHA W. IBRAHIM and M. DARUS

Abstract. We introduce new classes of meromorphic multivalent quasi-convex functions and find some

sufficient differential subordination theorems for such classes in punctured unit disk with applications
in fractional calculus.

1. Introduction and preliminaries

Let Σ+
p,α be the class of functions F (z) of the form

F (z) =
1
zp

+
∞∑

n=0

anz
n+α−1, α ≥ 1, p = 1, 2, . . . ,

which are analytic in the punctured unit disk U := {z ∈ C, 0 < |z| < 1}. Let Σ−p,α be the class of
functions of the form

F (z) =
1
zp
−

∞∑
n=0

anz
n+α−1, α ≥ 1, an ≥ 0

which are analytic in the punctured unit disk U . Now let us recall the principle of subordination
between two analytic functions: Let the functions f and g be analytic in 4 := {z ∈ C, |z| < 1}.
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Then we say that the function f is subordinate to g if there exists a Schwarz function w, analytic
in 4 such that

f(z) = g(w(z)), z ∈ 4.
We denote this subordination by

f ≺ g or f(z) ≺ g(z).

If the function g is univalent in 4, the above subordination is equivalent to

f(0) = g(0) and f(4) ⊂ g(4).

Now, let φ : C3×4 → C and let h be univalent in 4. Assume that p, φ are analytic and univalent
in 4. If p satisfies the differential superordination

(1) h(z) ≺ φ(p(z)), zp′(z), z2p′′(z); z),

then p is called a solution of the differential superordination. (If f is subordinate to g, then g
is called superordinate to f .) An analytic function q is called a subordinant if q ≺ p for all p
satisfying (1). A univalent function q such that p ≺ q for all subordinants p of (1) is said to be
the best subordinant.

Let Σ+
p be the class of analytic functions of the form

f(z) =
1
zp

+
∞∑

n=0

anz
n, in U.

And let Σ−p be the class of analytic functions of the form

f(z) =
1
zp
−

∞∑
n=0

anz
n, an ≥ 0, n = 0, 1, . . . in U.
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A function f ∈ Σ+
p (Σ−p ) is meromorphic multivalent starlike if f(z) 6= 0 and

−<
{
zf ′(z)
f(z)

}
> 0, z ∈ U.

Similarly, the function f is meromorphic multivalent convex if f ′(z) 6= 0 and

−<
{

1 +
zf ′′(z)
f ′(z)

}
> 0, z ∈ U.

Moreover, a function f is a called meromorphic multivalent quasi-convex function if there is a
meromorphic multivalent convex function g such that

−<
{

(zf ′(z))′

g′(z)

}
> 0.

A function F ∈ Σ+
p,α(Σ−p,α) such that F (z) 6= 0 is called meromorphic multivalent starlike if

−<
{
zF ′(z)
F (z)

}
> 0, z ∈ U.

And the function F is meromorphic multivalent convex if F ′(z) 6= 0 and

−<
{

1 +
zF ′′(z)
F ′(z)

}
> 0, z ∈ U.

A function F ∈ Σ+
p,α(Σ−p,α) is called a meromorphic multivalent quasi-convex function if there is a

meromorphic multivalent convex function G such that G′(z) 6= 0 and

−<
{

(zF ′(z))′

G′(z)

}
> 0.
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In the present paper, we establish some sufficient conditions for functions F ∈ Σ+
p,α and F ∈ Σ−p,α

to satisfy

(2) − (zpF ′(z))′

G′(z)
≺ q(z),

where q is a given univalent function in U . Moreover, we give applications for these results in
fractional calculus. We shall need the following known results.

Lemma 1.1 ([1]). Let q be convex univalent in the unit disk 4. Let ψ be a function and number
γ ∈ C such that

<
{

1 +
zq′′(z)
q′(z)

+
ψ

γ

}
> 0.

If p is analytic in 4 and
ψp(z) + γzp′(z) ≺ ψq(z) + γzq′(z),

then p(z) ≺ q(z) and q is the best dominant.

Lemma 1.2 ([2]). Let q be univalent in the unit disk 4 and let θ be analytic in a domain D
containing q(4). If zq′(z)θ(q) is starlike in 4 and

zψ′(z)θ(ψ(z)) ≺ zq′(z)θ(q(z)),

then ψ(z) ≺ q(z) and q is the best dominant.

2. Subordination theorems

In this section, we establish some sufficient conditions for subordination of analytic functions in
the classes Σ+

p,α and Σ−p,α.
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Theorem 2.1. Let the function q be convex univalent in U such that q′(z) 6= 0 and

(3) <
{

1 +
zq′′(z)
q′(z)

+
ψ

γ

}
> 0, γ 6= 0.

Suppose that − (zpF ′(z))′

G′(z) is analytic in U . If F ∈ Σ+
p,α satisfies the subordination

− (zpF ′(z))′

G′(z)

{
ψ + γ

[
z(zpF ′(z))′′

(zpF ′(z))′
− zG′′(z)

G′(z)

]}
≺ ψq(z) + γzq′(z),

then

− (zpF ′(z))′

G′(z)
≺ q(z),

and q is the best dominant.

Proof. Let the function p be defined by

p(z) := − (zpF ′(z))′

G′(z)
, z ∈ U.

It can easily observed that

ψp(z) + γzp′(z) = − (zpF ′(z))′

G′(z)

{
ψ + γ

[
z(zpF ′(z))′′

(zpF ′(z))′
− zG′′(z)

G′(z)

]}
≺ ψq(z) + γzq′(z).

Then, using the assumption of the theorem the assertion of the theorem follows by an application
of Lemma 1.1. �
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Corollary 2.1. Assume that (3) holds. Let the function q be univalent in U . Let n = 1, if q
satisfies

− (zF ′(z))′

G′(z)

{
ψ + γ

[
z(zF ′(z))′′

(zF ′(z))′
− zG′′(z)

G′(z)

]}
≺ ψq(z) + γzq′(z),

then

− (zF ′(z))′

G′(z)
≺ q(z),

and q is the best dominant.

Theorem 2.2. Let the function q be univalent in Usuch that q(z) 6= 0, z ∈ U, zq′(z)
q(z) is starlike

univalent in U. If F ∈ Σ−p,α satisfies the subordination

a

[
z(zpF ′(z))′′

(zpF ′(z))′
− zG′′(z)

G′(z)

]
≺ a

zq′(z)
q(z)

,

then

− (zpF ′(z))′

G′(z)
≺ q(z)

and q is the best dominant.

Proof. Let the function ψ be defined by

ψ(z) := − (zpF ′(z))′

G′(z)
, z ∈ U.

By setting

θ(ω) :=
a

ω
, a 6= 0,
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it can be easily observed that θ is analytic in C− {0}. By straightforward computation we have

a
zψ′(z)
ψ(z)

= a

[
z(zpF ′(z))′′

(zpF ′(z))′
− zG′′(z)

G′(z)

]
≺ a

zq′(z)
q(z)

.

Then, by using the assumption of the theorem, the assertion of the theorem follows by an appli-
cation of Lemma 1.2. �

Corollary 2.2. Assume that q is convex univalent in U . Let p = 1, if F ∈ Σ−p,α and

a

[
z(zF ′(z))′′

(zF ′(z))′
− zG′′(z)

G′(z)

]
} ≺ a

zq′(z)
q(z)

,

then

− (zF ′(z))′

G′(z)
≺ q(z)

and q is the best dominant.

3. Applications.

In this section, we introduce some applications of section (2) containing fractional integral opera-
tors. Assume that f(z) =

∑∞
n=0 ϕnz

n and let us begin with the following definition.

Definition 3.1 ([3]). For a function f , the fractional integral of order α is defined by

Iα
z f(z) :=

1
Γ(α)

∫ z

0

f(ζ)(z − ζ)α−1dζ; α > 0,
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where the function f is analytic in simply-connected region of the complex z-plane (C) containing
the origin, and the multiplicity of (z−ζ)α−1 is removed by requiring log(z−ζ) to be real when(z−
ζ) > 0. Note that Iα

z f(z) = f(z)× zα−1

Γ(α) , for z > 0 and 0 for z ≤ 0 (see [4]).

From Definition 3.1, we have

Iα
z f(z) = f(z)× zα−1

Γ(α)
=
zα−1

Γ(α)

∞∑
n=0

ϕnz
n =

∞∑
n=0

anz
n+α−1

where an := ϕn

Γ(α) , for all n = 0, 1, 2, 3, . . . , thus

1
zp

+ Iα
z f(z) ∈ Σ+

p,α and
1
zp
− Iα

z f(z) ∈ Σ−p,α(ϕn ≥ 0).

Then we have the following results:

Theorem 3.1. Let the assumptions of Theorem 2.1 hold, then

−
(zp( 1

zp + Iα
z f(z))′)′

( 1
zp + Iα

z g(z))′
≺ q(z),

where F (z) = 1
zp + Iα

z f(z), G(z) = 1
zp + Iα

z g(z) and q is the best dominant.

Theorem 3.2. Let the assumptions of Theorem 2.2 hold, then

−
(zp( 1

zp − Iα
z f(z))′)′

( 1
zp − Iα

z g(z))′
≺ q(z),

where F (z) = 1
zp − Iα

z f(z), G(z) = 1
zp − Iα

z g(z) and q is the best dominant.
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Let F (a, b; c; z) be the Gauss hypergeometric function (see [5]) defined for z ∈ U by

F (a, b; c; z) =
∞∑

n=0

(a)n(b)n

(c)n(1)n
zn,

where the Pochhammer symbol is defined by

(a)n :=
Γ(a+ n)

Γ(a)
=

{
1, (n = 0);

a(a+ 1)(a+ 2) . . . (a+ n− 1), (n ∈ N).

We need the following definitions of fractional operators in the Saigo type of fractional calculus
(see [6],[7]).

Definition 3.2. For α > 0 and β, η ∈ R, the fractional integral operator Iα,β,η
0,z is defined by

Iα,β,η
0,z f(z) =

z−α−β

Γ(α)

∫ z

0

(z − ζ)α−1F

(
α+ β,−η;α; 1− ζ

z

)
f(ζ)dζ,

where the function f is analytic in a simply-connected region of the z-plane containing the origin
with the order

f(z) = O(|z|ε)(z → 0), ε > max{0, β − η} − 1

and the multiplicity of (z − ζ)α−1 is removed by requiring log(z − ζ) to be real when z − ζ > 0.
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From Definition 3.2 with β < 0, we have

Iα,β,η
0,z f(z) =

z−α−β

Γ(α)

∫ z

0

(z − ζ)α−1F

(
α+ β,−η;α; 1− ζ

z

)
f(ζ)dζ

=
∞∑

n=0

(α+ β)n(−η)n

(α)n(1)n

z−α−β

Γ(α)

∫ z

0

(z − ζ)α−1

(
1− ζ

z

)n

f(ζ)dζ

:=
∞∑

n=0

Bn
z−α−β−n

Γ(α)

∫ z

0

(z − ζ)n+α−1f(ζ)dζ

=
∞∑

n=0

Bn
z−β−1

Γ(α)
f(ζ)

:=
B

Γ(α)

∞∑
n=0

ϕnz
n−β−1

where B :=
∑∞

n=0Bn. Denote an := Bϕn

Γ(α) , for all n = 2, 3, . . . , and let α = −β, thus

1
zp

+ Iα,β,η
0,z f(z) ∈ Σ+

p,α and
1
zp
− Iα,β,η

0,z f(z) ∈ Σ−p,α, (ϕn ≥ 0).

Then we have the following results:

Theorem 3.3. Let the assumptions of Theorem 2.1 hold, then

−
(zp( 1

zp + Iα,β,η
0,z f(z))′)′

( 1
zp + Iα,β,η

0,z g(z))′
≺ q(z), U

where F (z) = 1
zp + Iα,β,η

0,z f(z), G(z) = 1
zp − Iα,β,η

0,z g(z) and q is the best dominant.
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Theorem 3.4. Let the assumptions of Theorem 2.2 hold, then

−
(zp( 1

zp − Iα,β,η
0,z f(z))′)′

( 1
zp − Iα,β,η

0,z g(z))′
≺ q(z),

where F (z) = 1
zp − Iα,β,η

0,z f(z), G(z) = 1
zp − Iα,β,η

0,z g(z) and q is the best dominant.
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