STARLIKE AND CONVEXITY PROPERTIES FOR p-valent hypergeometric functions

R. M. EL-ASHWAH, M. K. AOUF AND A. O. MOUSTAFA

ABSTRACT. Given the hypergeometric function $F(a,b;c;z) = \sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_n(1)_n} z^n$, we place conditions on a, b and c to guarante that $z^p F(a,b;c;z)$ will be in various subclasses of p-valent starlike and p-valent convex functions. Operators related to the hypergeometric function are also examined.

1. INTRODUCTION

Let S(p) be the class of functions of the form:

(1)
$$f(z) = z^p + \sum_{n=1}^{\infty} a_{p+n} z^{p+n} \qquad (p \in N = \{1, 2, \ldots\})$$

which are analytic and *p*-valent in the unit disc $U = \{z : |z| < 1\}$. A function $f(z) \in S(p)$ is called *p*-valent starlike of order α if f(z) satisfies

(2)
$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > \alpha$$

for $0 \leq \alpha < p, p \in N$ and $z \in U$. By $S^*(p, \alpha)$ we denote the class of all *p*-valent starlike functions of order α . By $S_p^*(\alpha)$ denote the subclass of $S^*(p, \alpha)$ consisting of functions $f(z) \in S(p)$ for which

(3)
$$\left|\frac{zf'(z)}{f(z)} - p\right|$$

for $0 \le \alpha < p, p \in N$ and $z \in U$. Also a function $f(z) \in S(p)$ is called *p*-valent convex of order α if f(z) satisfies

(4)
$$\operatorname{Re}\left\{1 + \frac{zf''(z)}{f'(z)}\right\} > \alpha$$

Received November 11, 2008.

²⁰⁰⁰ Mathematics Subject Classification. Primary 30C45.

Key words and phrases. p-valent; starlike; convex; hypergeometric function.

for $0 \leq \alpha < p, p \in N$ and $z \in U$. By $K(p, \alpha)$ we denote the class of all *p*-valent convex functions of order α . It follows from (2) and (4) that

(5)
$$f(z) \in K(p, \alpha) \Leftrightarrow \frac{zf'(z)}{p} \in S(p, \alpha).$$

Also by $K_p(\alpha)$ denote the subclass of $K(p,\alpha)$ consisting of functions $f(z)\in S(p)$ for which

(6)
$$\left| 1 + \frac{zf''(z)}{f'(z)} - p \right|$$

for $0 \le \alpha < p, p \in N$ and $z \in U$.

By T(p) we denote the subclass of S(p) consisting of functions of the form:

(7)
$$f(z) = z^p - \sum_{n=1}^{\infty} a_{p+n} z^{p+n} \qquad (a_{p+n} \ge 0; \ p \in N).$$

By $T^*(p, \alpha)$, $T^*_p(\alpha)$, $C(p, \alpha)$ and $C_p(\alpha)$ we denote the classes obtained by taking interesctions, respectively, of the classes $S^*(p, \alpha)$, $S^*_p(\alpha)$, $K(p, \alpha)$ and $K_p(\alpha)$ with the class T(p)

$$T^*(p,\alpha) = S^*(p,\alpha) \cap T(p),$$

$$T^*_p(\alpha) = S^*_p(\alpha) \cap T(p),$$

$$C(p,\alpha) = K(p,\alpha) \cap T(p),$$

and

$$C_p(\alpha) = K_p(\alpha) \cap T(p).$$

The class $S^*(p, \alpha)$ was studied by Patil and Thakare [5]. The classes $T^*(p, \alpha)$ and $C(p, \alpha)$ were studied by Owa [4].

For $a, b, c \in C$ and $c \neq 0, -1, -2, \ldots$, the (Gaussian) hypergeometric function is defined by

(8)
$$F(a,b;c;z) = \sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_n(1)_n} z^n \qquad (z \in U),$$

where $(\lambda)_n$ is the Pochhammer symbol defined, in terms of the Gamma function Γ , by

(9)
$$(\lambda)_n = \frac{\Gamma(\lambda+n)}{\Gamma(\lambda)} = \begin{cases} 1 & (n=0)\\ \lambda(\lambda+1)\cdot\ldots\cdot(\lambda+n-1) & (n\in N). \end{cases}$$

The series in (8) represents an analytic function in U and has an analytic continuation throughout the finite complex plane except at most for the cut $[1, \infty)$. We note that F(a, b; c; 1) converges for $\operatorname{Re}(a - b - c) > 0$ and is related to the Gamma function by

(10)
$$F(a,b;c;1) = \frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)}.$$

Corresponding to the function F(a, b; c; z) we define

(11)
$$h_p(a,b;c;z) = z^p F(a,b;c;z).$$

We observe that for a function f(z) of the form (1), we have

(12)
$$h_p(a,b;c;z) = z^p + \sum_{n=p+1}^{\infty} \frac{(a)_{n-p}(b)_{n-p}}{(c)_{n-p}(1)_{n-p}} z^n.$$

In [7] Silverman gave necessary and sufficient conditions for zF(a, b; c; z) to be in $T^*(1, \alpha) = T^*(\alpha)$ and $C(1, \alpha) = C(\alpha)$ and has also examined a linear operator acting on hypergeometric functions. For the other interesting developments for zF(a, b; c; z) in connection with various subclasses of univalent functions, the reader can refer to the works of Carlson and Shaffer [1], Merkes and Scott [3] and Ruscheweyh and Singh [6].

In the present paper, we determine necessary and sufficient conditions for $h_p(a,b;c;z)$ to be in $T^*(p,\alpha)$ and $C(p,\alpha)$. Furthermore, we consider an integral operator related to the hypergeometric function.

2. Main Results

To establish our main results we shall need the following lemmas.

- **Lemma 1** ([4]). Let the function f(z) defined by (1).
- (i) A sufficient condition for $f(z) \in S(p)$ to be in the class $S_p^*(\alpha)$ is that

$$\sum_{n=p+1}^{\infty} (n-\alpha) |a_n| \le (p-\alpha).$$

(ii) A sufficient condition for $f(z) \in S(p)$ to be in the class $K_p(\alpha)$ is that

$$\sum_{n=p+1}^{\infty} \frac{n}{p}(n-\alpha) |a_n| \le p - \alpha.$$

Lemma 2 ([4]). Let the function f(z) be defined by (7). Then (i) $f(z) \in T(p)$ is in the class $T^*(p, \alpha)$ if and only if

$$\sum_{n=p+1}^{\infty} (n-\alpha)a_n \le p - \alpha.$$

(ii) $f(z) \in T(p)$ is in the class $C(p, \alpha)$ if and only if

$$\sum_{n=p+1}^{\infty} \frac{n}{p} (p-\alpha) a_n \le p - \alpha.$$

Lemma 3 ([2]). Let $f(z) \in T(p)$ be defined by (7). Then f(z) is p-valent in U if

$$\sum_{n=1}^{\infty} (p+n)a_{p+n} \le p.$$

In addition, $f(z) \in T_p^*(\alpha) \Leftrightarrow f(z) \in T^*(p, \alpha), f(z) \in K_p(\alpha) \Leftrightarrow f(z) \in K(p, \alpha)$ and $f(z) \in S_p^*(\alpha) \Leftrightarrow f(z) \in S^*(p, \alpha)$.

Theorem 1. If a, b > 0 and c > a + b + 1, then a sufficient condition for $h_p(a,b;c;z)$ to be in $S_p^*(\alpha)$, $0 \le \alpha < p$, is that

(13)
$$\frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)} \left[1 + \frac{ab}{(p-\alpha)(c-a-p-1)}\right] \le 2.$$

Condition (13) is necessary and sufficient for F_p defined by $F_p(a,b;c;z) =$ $z^{p}(2 - F(a, b; c; z))$ to be in $T^{*}(p, \alpha)(T^{*}_{p}(\alpha))$.

Proof. Since $h_p(a,b;c;z) = z^p + \sum_{n=p+1}^{\infty} \frac{(a)_{n-p}(b)_{n-p}}{(c)_{n-p}(1)_{n-p}} z^n$, according to Lemma 1(i),

we only need to show that

$$\sum_{n=p+1}^{\infty} (n-\alpha) \frac{(a)_{n-p}(b)_{n-p}}{(c)_{n-p}(1)_{n-p}} \le p - \alpha.$$

Now

(14)
$$\sum_{n=p+1}^{\infty} (n-\alpha) \frac{(a)_{n-p}(b)_{n-p}}{(c)_{n-p}(1)_{n-p}} = \sum_{n=1}^{\infty} \frac{(a)_n(b)_n}{(c)_n(1)_{n-1}} + (p-\alpha) \sum_{n=1}^{\infty} \frac{(a)_n(b)_n}{(c)_n(1)_n}.$$

Noting that $(\lambda)_n = \lambda(\lambda + 1)_{n-1}$ and then applying (10), we may express (14) as

$$\frac{ab}{c} \sum_{n=1}^{\infty} \frac{(a+1)_{n-1}(b+1)_{n-1}}{(c+1)_{n-1}(1)_{n-1}} + (p-\alpha) \sum_{n=1}^{\infty} \frac{(a)_n(b)_n}{(c)_n(1)_n} \\ = \frac{ab}{c} \frac{\Gamma(c+1)\Gamma(c-a-b-1)}{\Gamma(c+a)\Gamma(c-b)} + (p-\alpha) \left[\frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)} - 1 \right] \\ = \frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)} \left[\frac{ab}{c-a-b-1} + p-\alpha \right] - (p-\alpha).$$

But this last expression is bounded above by $p - \alpha$ if and only if (13) holds. Since $F_p(a, b; c; z) = z^p - \sum_{n=p+1}^{\infty} \frac{(a)_{n-p}(b)_{n-p}}{(c)_{n-p}(1)_{n-p}} z^n$, the necessity of (13) for F_p to be in $T_p^*(\alpha)$ and $T^*(p, \alpha)$ follows from Lemma 2(i).

Remark 1. Condition (13) with $\alpha = 0$ is both necessary and sufficient for F_p to be in the class T_p^* .

In the next theorem, we find constraints on a, b and c that lead to necessary and sufficient conditions for $h_p(a, b; c; z)$ to be in the class $T^*(p, \alpha)$.

Theorem 2. If a, b > -1, c > 0 and ab < 0, then a necessary and sufficient condition for $h_p(a,b;c;z)$ to be in $T^*(p,\alpha)(T^*_p(\alpha))$ is that $c \ge a+b+1-\frac{ab}{p-\alpha}$. The condition $c \ge a + b + 1 - \frac{ab}{p}$ is necessary and sufficient for $h_p(a,b;c;z)$ to be in T_p^* .

Proof. Since

(15)

$$h_{p}(a,b;c;z) = z^{p} + \sum_{n=p+1}^{\infty} \frac{(a)_{n-p}(b)_{n-p}}{(c)_{n-p}(1)_{n-p}} z^{n}$$

$$= z^{p} + \frac{ab}{c} \sum_{n=p+1}^{\infty} \frac{(a+1)_{n-p-1}(b+1)_{n-p-1}}{(c+1)_{n-p-1}(1)_{n-p}} z^{n}$$

$$= z^{p} - \left| \frac{ab}{c} \right| \sum_{n=p+1}^{\infty} \frac{(a+1)_{n-p-1}(b+1)_{n-p-1}}{(c+1)_{n-p-1}(1)_{n-p}} z^{n},$$

according to Lemma 2(i), we must show that

(16)
$$\sum_{n=p+1}^{\infty} (n-\alpha) \frac{(a+1)_{n-p-1}(b+1)_{n-p-1}}{(c+1)_{n-p-1}(1)_{n-p}} \le \left|\frac{c}{ab}\right| (p-\alpha).$$

Note that the left side of (16) diverges if $c \le a + b + 1$. Now

$$\sum_{n=0}^{\infty} (n+p+1-\alpha) \frac{(a+1)_n (b+1)_n}{(c+1)_n (1)_{n+1}}$$

=
$$\sum_{n=0}^{\infty} \frac{(a+1)_n (b+1)_n}{(c+1)_n (1)_n} + (p-\alpha) \frac{c}{ab} \sum_{n=1}^{\infty} \frac{(a)_n (b)_n}{(c)_n (1)_n}$$

=
$$\frac{\Gamma(c+1)\Gamma(c-a-b-1)}{\Gamma(c-a)\Gamma(c-b)} + (p-\alpha) \frac{c}{ab} \left[\frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)} - 1 \right]$$

Hence, (16) is equivalent to

(17)
$$\frac{\Gamma(c+1)\Gamma(c-a-b-1)}{\Gamma(c-a)\Gamma(c-b)} \left[1+(p-\alpha)\frac{(c-a-b-1)}{ab}\right] \leq (p-\alpha)\left[\frac{c}{|ab|}+\frac{c}{ab}\right] = 0.$$

Thus, (17) is valid if and only if

$$1+(p-\alpha)\frac{(c-a-b-1)}{ab}\leq 0,$$

or, equivalently,

$$c \ge a+b+1-\frac{ab}{p-\alpha}.$$

Another application of Lemma 2(i) when $\alpha = 0$ completes the proof of Theorem 2.

Our next theorems will parallel Theorems 1 and 2 for the p-valent convex case.

Theorem 3. If a, b > 0 and c > a + b + 2, then a sufficient condition for $h_p(a, b; c; z)$ to be in $K_p(\alpha)$, $0 \le \alpha < p$, is that

(18)
$$\frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)} \left[1 + \frac{(2p+1-\alpha)}{p(p-\alpha)} \left(\frac{ab}{c-a-b-1}\right) + \frac{(a)_2(b)_2}{p(p-\alpha)(c-a-b-2)_2}\right] \le 2.$$

Condition (18) is necessary and sufficient for $F_p(a,b;c;z) = z^p(2 - F(a,b;c;z))$ to be in $C(p,\alpha)(C_p(\alpha))$.

Proof. In view of Lemma 1(ii), we only need to show that

$$\sum_{n=p+1}^{\infty} (n-\alpha) \frac{(a)_{n-p}(b)_{n-p}}{(c)_{n-p}(1)_{n-p}} \le p(p-\alpha).$$

Now

$$\begin{split} \sum_{n=0}^{\infty} (n+p+1)(n+p+1-\alpha) \frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_{n+1}} \\ &= \sum_{n=0}^{\infty} (n+1)^2 \frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_{n+1}} + (2p-\alpha) \sum_{n=0}^{\infty} (n+1) \frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_{n+1}} \\ &+ p(p-\alpha) \sum_{n=0}^{\infty} \frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_{n+1}} \\ &= \sum_{n=0}^{\infty} (n+1) \frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_n} + (2p-\alpha) \sum_{n=0}^{\infty} \frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_{n+1}} \\ &+ p(p-\alpha) \sum_{n=0}^{\infty} \frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_{n+1}} \\ &= \sum_{n=1}^{\infty} \frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_{n-1}} + (2p+1-\alpha) \sum_{n=0}^{\infty} \frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_{n+1}} \\ &+ p(p-\alpha) \sum_{n=0}^{\infty} \frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_{n+1}} \\ \end{split}$$
(19)

Since $(a)_{n+k} = (a)_k (a+k)_n$, we may write (19) as

$$\begin{array}{l} \displaystyle \frac{(a)_2(b)_2}{(c)_2} \frac{\Gamma(c+2)\Gamma(c-a-b-2)}{\Gamma(c+a)\Gamma(c-b)} + (2p+1-\alpha)\frac{ab}{c} \\ \cdot \ \displaystyle \frac{\Gamma(c+1)\Gamma(c-a-b-1)}{\Gamma(c-a)\Gamma(c-b)} + p(p-\alpha) \left[\frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)} - 1\right]. \end{array}$$

Upon simplification, we see that this last expression is bounded above by $p(p-\alpha)$ if and only if (18) holds. That (18) is also necessary for F_p to be in $C(p,\alpha)(C_p(\alpha))$ follows from Lemma 2(ii).

Theorem 4. If a, b > -1, ab < 0 and c > a + b + 2, then a necessary and sufficient condition for $h_p(a, b; c; z)$ to be in $C(p, \alpha)(C_p(\alpha))$ is that

(20)
$$(a)_2(b)_2 + (2p+1-\alpha)ab(c-a-b-2) + p(p-\alpha)(c-a-b-2)_2 \ge 0.$$

Proof. Since $h_p(a, b; c; z)$ has the form (15), we see from Lemma 2(ii) that our conclusion is equivalent to

(21)
$$\sum_{n=p+1}^{\infty} n(n-\alpha) \frac{(a+1)_{n-p-1}(b+1)_{n-p-1}}{(c+1)_{n-p-1}(1)_{n-p}} \le \left| \frac{c}{ab} \right| p(p-\alpha).$$

Note that c > a + b + 2 if the left-hand side of (21) converges. Writing

$$(n+p+1)(n+p+1-\alpha) = (n+1)^2 + (2p-\alpha)(n+1) + p(p-\alpha),$$

we see that

$$\begin{split} &\sum_{n=p+1}^{\infty} n(n-\alpha) \frac{(a+1)_{n-p-1}(b+1)_{n-p-1}}{(c+1)_{n-p-1}(1)_{n-p}} \\ &= \sum_{n=0}^{\infty} (n+p+1)(n+p+1-\alpha) \frac{(a+1)_n(b+1)_n}{(c+1)_n(1)_{n+1}} \\ &= \sum_{n=0}^{\infty} (n+1) \frac{(a+1)_n(b+1)_n}{(c+1)_n(1)_n} + (2p-\alpha) \sum_{n=0}^{\infty} \frac{(a+1)_n(b+1)_n}{(c+1)_n(1)_n} \\ &+ p(p-\alpha) \sum_{n=0}^{\infty} \frac{(a+1)_n(b+1)_n}{(c+1)_n(1)_{n+1}} \\ &= \frac{(a+1)(b+1)}{(c+1)} \sum_{n=0}^{\infty} \frac{(a+2)_n(b+2)_n}{(c+2)_n(1)_n} + (2p+1-\alpha) \sum_{n=0}^{\infty} \frac{(a+1)_n(b+1)_n}{(c+1)_n(1)_n} \\ &+ p(p-\alpha) \frac{c}{ab} \sum_{n=1}^{\infty} \frac{(a)_n(b)_n}{(c)_n(1)_n} \\ &= \frac{\Gamma(c+1)\Gamma(c-a-b-2)}{\Gamma(c-a)\Gamma(c-b)} \left[(a+1)(b+1) + (2p+1-\alpha)(c-a-b-2) \right] \\ &+ \frac{p(p-\alpha)}{ab} (c-a-b-2)_2 \right] - \frac{p(p-\alpha)c}{ab}. \end{split}$$

R. M. EL-ASHWAH, M. K. AOUF AND A. O. MOUSTAFA

This last expression is bounded above by $\left|\frac{c}{ab}\right| p(p-\alpha)$ if and only if

$$(a+1)(b+1) + (2p+1-\alpha)(c-a-b-2) + \frac{p(p-\alpha)}{ab}(c-a-b-2)_2 \le 0,$$

nich is equivalent to (20).

which is equivalent to (20).

Putting p = 1 in Theorem 4, we obtain the following corollary.

Corollary 1. If a, b > -1, ab < 0 and c > a + b + 2, then a necessary and sufficient condition for $h_1(a,b;c;z)$ to be in $C(1,\alpha)(C(\alpha))$ is that

$$(a)_2(b)_2 + (3-\alpha)ab(c-a-b-2) + (1-\alpha)(c-a-b-2)_2 \ge 0.$$

Remark 2. We note that Corollary 1 corrects the result obtained by Silverman [**7**, Theorem 4].

3. INTEGRAL OPERATOR

In this section, we obtain similar results in connection with a particular integral operator $G_p(a, b; c; z)$ acting on F(a, b; c; z) as follows

(22)
$$G_{p}(a,b;c;z) = p \int_{0}^{z} t^{p-1} F(a,b;c;z) dt$$
$$= z^{p} + \sum_{n=1}^{\infty} \left(\frac{p}{n+p}\right) \frac{(a)_{n}(b)_{n}}{(c)_{n}(1)_{n}} z^{n+p}.$$

We note that $\frac{zG'_p}{p} = h_p$.

Theorem 5.

(i) If a, b > 0 and c > a + b, then a sufficient condition for $G_p(a, b; c; z)$ defined by (22) to be in $S^*(p)$ is that

(23)
$$\frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c)\Gamma(c-b)} \le 2.$$

(ii) If a, b > -1, c > 0, and ab < 0, then $G_p(a, b; c; z)$ defined by (22) is in T(p)or S(p) if only if $c > \max\{a, b\}$.

Proof. Since

$$G_p(a,b;c;z) = z^p + \sum_{n=1}^{\infty} \left(\frac{p}{n+p}\right) \frac{(a)_n(b)_n}{(c)_n(1)_n} z^{n+p},$$

we note that

$$\sum_{n=1}^{\infty} (n+p) \left(\frac{p}{n+p}\right) \frac{(a)_n(b)_n}{(c)_n(1)_n} = p \sum_{n=1}^{\infty} \frac{(a)_n(b)_n}{(c)_n(1)_n}$$
$$= p \left[\sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_n(1)_n} - 1\right]$$

is bounded above by p if and only if (23) holds.

To prove (ii), we apply Lemma 3 to

$$G_p(a,b;c;z) = z^p - \frac{|ab|}{c} \sum_{n=p+1}^{\infty} \left(\frac{p}{n}\right) \frac{(a+1)_{n-p-1}(b+1)_{n-p-1}}{(c+1)_{n-p-1}(1)_{n-p}} z^n.$$

It suffices to show that

$$\sum_{n=p+1}^{\infty} \frac{(a+1)_{n-p-1}(b+1)_{n-p-1}}{(c+1)_{n-p-1}(1)_{n-p}} \le \frac{c}{|ab|}$$

or, equivalently,

$$\sum_{n=0}^{\infty} \frac{(a+1)_n (b+1)_n}{(c+1)_n (1)_{n+1}} = \frac{c}{ab} \sum_{n=1}^{\infty} \frac{(a)_n (b)_n}{(c)_n (1)_n} \le \frac{c}{|ab|}$$

But this is equivalent to

$$\frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)}-1\geq -1,$$

which is true if and only if $c > \max\{a, b\}$. This completes the proof of Theorem 5.

Now
$$G_p(a, b; c; z) \in K_p(\alpha)(K(p, \alpha))$$
 if and only if

$$\frac{z}{p}G'_p(a, b; c; z) = h_p(a, b; c; z) \in S^*_p(\alpha)(S^*(p, \alpha)).$$

This follows upon observing that $\frac{zG'_p}{p} = h_p$, $\frac{z}{p}G''_p = h'_p - \frac{1}{p}G'_p$, and so $1 + \frac{zG''_p}{G_p} = \frac{zh'_p}{h_p}$.

Thus any *p*-valent starlike about h_p leads to a *p*-valent convex about G_p . Thus from Theorems 1 and 2, we have

Theorem 6.

(i) If a, b > 0 and c > a + b + 1, then a sufficient condition for G_p(a, b; c; z) defined in Theorem 5 to be in K_p(α)(0 ≤ α < p) is that

$$\frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)} \left[1 + \frac{ab}{(p-\alpha)(c-a-b-1)} \right] \le 2$$

(ii) If a, b > -1, ab < 0, and c > a + b + 2, then a necessary and sufficient condition for $G_p(a, b; c; z)$ to be in $C(p, \alpha)(C_p(\alpha))$ is that

$$c \ge a+b+1-\frac{ab}{(p-\alpha)}.$$

Remark 3. Putting p = 1 in all the above results, we obtain the results obtained by Silverman [7].

Acknowledgment. The authors thank the referees for their valuable suggestions to improve the paper.

References

- Carlson B. C. and Shaffer D. B., Starlike and prestarlike hypergeometric functions, J. Math. Anal. Appl. 15 (1984), 737–745.
- Chen M.-P., Multivalent functions with negative coefficients in the unit disc, Tamkang J. Math. 17(3) (1986), 127–137.
- 3. Merkes E. and Scott B. T., *Starlike hypergeometric functions*, Proc. Amer. Math. Soc. 12 (1961), 885–888.
- Owa S., On certain classes of p-valent functions with negative coefficients, Simon Stevin, 59 (1985), 385–402.
- Patil D. A. and Thakare N. K., On convex hulls and extreme points of p-valent starlike and convex classes with applications, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.), 27(75) (1983), 145–160.
- Ruscheweyh St. and Singh V., On the order of starlikeness of hypergeometric functions, J. Math. Anal. Appl. 113 (1986), 1–11.
- Silverman H., Starlike and convexity properties for hypergeometric functions, J. Math. Anal. Appl. 172 (1993), 574–581.

R. M. El-Ashwah, Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt, *e-mail*: r_elashwah@yahoo.com

M. K. Aouf, Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt, *e-mail:* mkaouf127@yahoo.com

A. O. Moustafa, Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt, *e-mail*: adelaeg254@yahoo.com