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HOMOROOT INTEGER NUMBERS

M. H. HOOSHMAND

Abstract. In this paper we first define homorooty between two integer numbers and study some of
their properties. Thereafter we state some applications of the homorooty in studying and solving some

Diophantine equations and systems, as an interesting and useful elementary method. Also by the
homorooty, we state and prove the necessary and sufficient conditions for existence of finite solutions
in a special case of the quartic equation and evaluate the bounds of its solutions.

1. Preliminaries

We first introduce a new notation and definition.

Definition 1.1. We say that two integer numbers a, b are homoroot if there exist integer
numbers r1, r2 (the root of a, b) such that a = r1 + r2 and b = r1r2. Two homoroot integer
numbers a, b will be denoted by 〈a, b〉 → Z〈r1, r2〉 or simply by 〈a, b〉 → Z.

By 〈a, b〉 → N we mean 〈a, b〉 → Z〈r1, r2〉 and {a, b, r1, r2} ⊆ N. Thus if a, b ∈ N and 〈a, b〉 →
Z, then 〈a, b〉 → N. The following properties for homoroot integers hold. We need these basic
properties for studying the homorooty and solving some indeterminate equations.
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(I)
〈a, a+ b〉 → Z⇐⇒ 〈a− 2, b+ 1〉 → Z,
〈a,−a+ b〉 → Z⇐⇒ 〈a+ 2, b+ 1〉 → Z.

(II) (The homorooty inequalities) Let b be a non-zero integer. Then
(a) 〈a, b〉 → Z =⇒ |a| ≤ |b+ 1|.
(b) If 〈a, b〉 → Z and |a| 6= | bi + i|, for i = 1, · · · , n ≤

√
|b|,

then |a| < | bn + n|.
(c) moreover if a, b ∈ N, then

〈a, b〉 → N =⇒ 2
√
b ≤ a ≤ b+ 1.

〈a, a+ b〉 → N =⇒ a ≤ b+ 4.

〈a,−a+ b〉 → Z =⇒ a ≤ b.

(III) (The homorooty lemma) For all integers a, b with b 6= 0, the following statements are
equivalent:
(a) 〈a, b〉 → Z,
(b) The equation x2 − ax+ b has an integer root,
(c) 〈λa, λ2b〉 → Z for every integer λ 6= 0,
(d) a = r + b

r for an integer r such that r|b and 1 ≤ |r| ≤
√
|b|,

(e) 〈λ0a, λ
2
0b〉 → Z for an integer λ0 6= 0,

(f) a2 − 4b is a square integer,
(g) 〈−a, b〉 → Z.

(IV) We have 〈a, a− 1〉 → Z and 〈a, 0〉 → Z, 〈0, a2〉 → Z for every a.
To explicate some of the above properties, note that if a = r1 + r2 and

b = r1r2 6= 0, then a = r2 + b
r2

and r2|b. Putting r = r2 and considering a = r + b
r = b/r + b

b/r ,
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there exists an integer r|b such that 1 ≤ |r| ≤
√
|b| and a = b

r + r. Therefore if 〈a, b〉 → Z and

b 6= 0, then |a| =
∣∣ b
i + i

∣∣ for an integer i such that 1 ≤ i ≤
√
|b| (because |a| =

∣∣ b
r + r

∣∣ =
∣∣∣ b|r| + |r|

∣∣∣).
On the other hand for all integers b 6= 0 and 1 < n ≤

√
|b| we have

|b+ 1| >
∣∣∣∣ b2 + 2

∣∣∣∣ > · · · > ∣∣∣∣ bn + n

∣∣∣∣ .
Therefore (II)-(a) and (II)-(b) are proved.

If 〈a,−a + b〉 → Z, then a = t1 + t2, and −a + b = t1t2 for some integers t1, t2. So a + 2 =
(t1 + 1) + (t2 + 1) and b+ 1 = (t1 + 1)(t2 + 1) thus 〈a+ 2, b+ 1〉 → Z. Therefore if a, b ∈ N, then
〈a,−a+ b〉 → Z implies 〈a+ 2, b+ 1〉 → N so a+ 2 ≤ (b+ 1) + 1 (by (II)-(a)) and so a ≤ b. Also
if a2 − 4b = c2 for an integer c, then 4b = (a+ c)(a− c) so 〈2a, 4b〉 → Z and so 〈a, b〉 → Z.

Now we determine all homoroot symmetric integer pairs.

Lemma 1.2 (The homoroot symmetric numbers). All integer pairs that agree in relations
〈a, b〉 → Z and 〈b, a〉 → Z are in the following forms

(a, b) ∈ {(4, 4), (6, 5), (5, 6), (r,−r − 1), (−r − 1, r), (0,−r2), (−r2, 0)},
where r ∈ Z.

Proof. Let 〈a, b〉 → Z and 〈b, a〉 → Z. If ab 6= 0, then |a| ≤ |b + 1| and |b| ≤ |a + 1| (by the
homorooty inequality). So |a| − 1 ≤ |b| ≤ |a|+ 1 and therefore b = ±a± 1 or b = ±a. Now by the
elementary properties of the homorooty, it can be shown that (a, b) has one of the above forms (if
ab = 0, then a = −r2 or b = −r2). �
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2. Application of the homorooty in solving
some Diophantine equations

In this section we introduce some applications of the homorooty for studying some quartic equations
and systems as a useful elementary method.

When we say (x0, y0) is a solution of the indeterminate equation f(x, y, z) = 0, it means that
there exists z0 such that (x0, y0, z0) is a solution of the equation. Sometimes by finding the values
x, y of this equation, the value z is easily gained by simple algebraic operations. Hence, in these
cases we refrain from finding the value z and write the solution by the form (x0, y0). We say that
the equation f(x, y, z) = 0 is symmetric relative to x, y if f(x0, y0, z0) = 0 implies f(y0, x0, z0) = 0,
in the symmetric equations, (x0, y0) is a solution if and only if (y0, x0) is so, thus we consider only
one of the cases. These notes are discussed in equations and systems with more variables similarly.

Lemma 2.1. (i) Let d be a positive integer constant. The general solution of the equation
x2 − dy = z2 (The d-homorooty equation) is (x = d1t1+d2t2

2 , y = t1t2), where d1, d2 are all
positive integers such that d1d2 = d and t1, t2 are all integers for which d1t1 + d2t2 is even.
Specially if d = p is an odd prime number, then the above form can be written as:

(r1 + pr2, 4r1r2) ,
(
r1 + pr2 +

p+ 1
2

, 4r1r2 + 2r1 + 2r2 + 1
)
,

where r1, r2 run over all integers. Also if d = 4 (the homorooty equation), then (x =
r1 + r2, y = r1r2), where r1, r2 ∈ Z.

(ii) The general solution of the system{
x2 − 4y = z2

y2 − 4x = w2 ,
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(The homorooty system) is

(x, y) = (4, 4), (6, 5), (r,−r − 1), (0,−r2),

where r ∈ Z (up to symmetry).
(iii) The only nonzero solution (xy 6= 0) of the system{

x2 − dy = z2

y2 − dx = w2 ,

(The d-homorooty system) for d = ±1,±2 is (x, y) = (d, d) and the general solution of the
system for d = −4 is

(x, y) = (−4,−4), (−6,−5), (−r, r + 1), (0, r2),

where r ∈ Z.
(iv) The general solution of the equation x2y2 − 4x− 4y − z2 = 0 is

(x, y) = (2, 2), (2, 3), (1, 5), (r,−r), (−1,−r), (0,−r2),

where r ∈ Z.

Proof. (i) It is clear, by (III)-(f) and this fact that x2
0 − dy0 = z2

0 implies 〈2x0, dy0〉 → Z.
(ii) Apply (III)-(f) and Lemma 1.2.

(iii) Multiplying the system by (4/d)2 and putting X = 4x/d , Y = 4y/d the claim (by part (ii))
can be proved.

(iv) Put X = xy and Y = x + y, since always 〈Y,X〉 → Z the equation is equivalent to the
system {

X2 − 4Y = z2

Y 2 − 4X = w2 ,

then get the result, from part (ii).
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The Diophantine equation in the following theorem is a special case of the quartic equation
2∑

r,s=0

ar,sx
rys = dz2.

There is no general solution for the quartic equation as you can see in [1]. Now as an application of
the homorooty, we state and prove the necessary and sufficient conditions for existence of finitely
many solutions in the indeterminate equation and evaluate the bounds of its solutions.

Theorem 2.2. The equation x2y2−αx−βy = z2 where α, β are integer constants with αβ 6= 0
is given. If there is no integer γ satisfying the conditions, αβ = 2γ3 and 2γ|β or αβ = 2γ3 and
2γ|α, then the equation has finitely many nontrivial solutions (αx+ βy 6= 0, xy 6= 0). Moreover, if
(x0, y0) is a nontrivial solution of the equation (in this case), then

|x0| ≤ 1/4(|αβ|α2 + 2α2 + 2|α|), if |α| 6= 1,

|y0| ≤ 1/4(|αβ|β2 + 2β2 + 2|β|), if |β| 6= 1.

In case |α| = 1 we have |x0| ≤ |β|+ 1, and if |β| = 1, we have |y0| ≤ |α|+ 1. The converse of the
theorem is also valid.

Proof. Suppose (x0, y0) to be a nontrivial solution of the equation. So 〈2x0y0,
αx0 + βy0〉 → Z. Hence applying the homorooty inequality we have

|2x0y0| ≤ |αx0 + βy0 + 1| ≤ |α||x0|+ |β||y0|+ 1.

Therefore
(2|x0| − |β|)(2|y0| − |α|) ≤ |αβ|+ 2.

Consider the following cases:
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i) |x0| > |β|/2, |y0| > |α|/2. Considering the above inequality we have

2|x0| − |β| ≤ |αβ|+ 2 , 2|y0| − |α| ≤ |αβ|+ 2.

Therefore
|x0| ≤ 1/2(|αβ|+ |β|) + 1 , |y0| ≤ 1/2(|αβ|+ |α|) + 1.

ii) |x0| ≤ |β|/2. We know that there exists z0 such that

x2
0y

2
0 − αx0 − βy0 = z2

0 ,

so there is w0 ≥ 0 with

∆ = β2 + 4αx3
0 + 4x2

0z
2
0 = w2

0.

Therefore
(w0 − 2x0z0)(w0 + 2x0z0) = β2 + 4αx3

0.

But β2 + 4αx3
0 6= 0 (if it is not so, we have (αβ/2)2 = (−αx0)3, thus there exists an integer

γ such that αβ/2 = γ3, i.e, αβ = 2γ3 so β = −2γx0, i.e, 2γ|β, but it is a contradiction) so
we have

w0 ≤ max{w0 − 2x0z0, w0 + 2x0z0} ≤ |β2 + 4αx3
0|,

on the other hand from y0 =
β ± w0

2x2
0

we get

2|y0|x2
0 = |β ± w0| ≤ |β|+ |w0| ≤ |β|+ β2 + 4|α|(|β|/2)3.

Therefore
|y0| ≤ 1/4(|αβ|β2 + 2β2 + 2|β|).
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iii) |y0| ≤ |α/2|. This case is similar to the case (ii)

α2 + 4βy3
0 6= 0, |x0| ≤ 1/4(|αβ|α2 + 2α2 + 2|α|).

But for |α| 6= 1 we have

|β/2| ≤ 1/2(|αβ|+ |β|) + 1 ≤ 1/4(|αβ|α2 + 2α2 + 2|α|),
and for |β| 6= 1 we have

|α/2| ≤ 1/2(|αβ|+ |α|) + 1 ≤ 1/4(|αβ|β2 + 2β2 + 2|β|).
Therefore the theorem is proved.

Now suppose that there exists an integer γ with αβ = 2γ3 and that 2γ|α or 2γ|β. For r ∈ Z at
least one of the couples (x∗ = −β

2γ = −γ2

α , y∗ = r) or (x∗ = r, y∗ = −α
2γ = −γ2

β ), gives us infinitely
many nontrivial integer solutions, and hence the converse of the theorem is also proved. �

Note. From the proof of the above theorem it is concluded that the number of solutions of the
indeterminate equation x2y2 − αx− βy = z2, such that

β2 + 4αx3 6= 0, α2 + 4βy3 6= 0

is finite.

The following results one obtained from Theorem 2.2 and the above note.

Corollary 2.3. If α and β are positive integer numbers (resp. negative integer numbers), then
the equation has finitely many positive integer solutions (resp. negative integer solutions).

Corollary 2.4. If αβ is odd, then the equation has finitely many nontrivial integer solutions.

Now we want to study a more general system of equations than the homorooty system (which
we call (α, β)-homorooty system).
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Lemma 2.5. The pair (x0, y0) is a solution of the system{
x2 − αy = z2

y2 − βx = w2 ,

(α, β are integer constants with αβ 6= 0) if and only if there exists a solution of the form (X =
2X0, Y = 2Y0) for the equation

X2Y 2 − 4βα2(X + Y ) = Z2 with 2x0 = X0 + Y0, αy0 = X0Y0.

Proof. Assume (x0, y0) to be a solution of the system. Then 〈2x0, αy0〉 → Z, i.e, there exist
X0, Y0 such that 2x0 = X0 + Y0 and αy0 = X0Y0. Now replacing x0, y0 in the system, it gives(

X0Y0

α

)2

− β
(
X0 + Y0

2

)
= w2

0 ⇐⇒ (2X0)2(2Y0)2 − 4βα2(2X0 + 2Y0) = (4αw0)2.

Now, suppose (2X0, 2Y0) to be a solution of the equation with 2|X0 + Y0, α|X0Y0 (X0 + Y0 =
2x0, X0Y0 = αy0). So there exists z0 such that

(2X0)2(2Y0)2 − 4βα2(2X0 + 2Y0) = z2
0 .

Therefore (4α)2|z2
0 thus z0 = 4αw0 (for some w0). So we have x2

0−αy0 = (X0−Y0
2 )2 and y2

0−βx0 =
w2

0. �

Theorem 2.6. The system {
x2 − αy = z2

y2 − βx = w2 ,

where αβ 6= 0, has finitely many nonzero solutions (x0y0 6= 0) if and only if there is no integer γ
with

βα2 = (2γ)3, 4γ|αβ, gcd(2γ, α)|γ2.
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Proof. Assume that the system has infinitely many nonzero solutions. Considering the
Lemma 2.5, the equation X2Y 2− 4βα2(X + Y ) = Z2 has infinitely many nonzero solutions of the
form (2X∗, 2Y∗), where 2|X∗ + Y∗ and α|X∗Y∗. Therefore there exists at least one integer couple
(2X∗, 2Y∗) = (2X0, 2Y0) such that

(4βα2)2 + 4(4βα2)(2X0)3 = 0 or (4βα2)2 + 4(4βα2)(2Y0)3 = 0,

(by considering the previous note). So we have
i) (2X0)2(2Y0)2 − 4βα2(2X0 + 2Y0) = (4αr0)2,
ii) 2|X0 + Y0 and α|X0Y0,

iii) βα2 = (−2X0)3 or βα2 = (−2Y0)3.
Now considering (ii) we infer that

X0 + Y0 = 2v0; , X0Y0 = αu0 =⇒ αu0 − 2X0v0 = −X2
0 ,

so
gcd(α,−2X0)|X2

0 .

If βα2 = (−2X0)3, then according to (i), we get (4X0Y0 +8X2
0 )2 = (4αr0)2, hence 4α|4X0Y0 +8X2

0

and so (ii) guarantees that α|2X2
0 and so −4X0|αβ (because, αβ

−4X0
= 2X2

0
α ). Therefore putting

γ = −X0, we get
βα2 = (2γ)3, 4γ|αβ, gcd(2γ, α)|γ2.

In case βα2 = (−2Y0)3, we can reach the above result likewise.
Conversely, suppose that there exists an integer γ which satisfies the above conditions, therefore

we can see that the pairs (x∗ = γ2−αr∗
2γ , y∗ = r∗ − αβ

4γ = r∗ − 2γ2

α ), where r∗ runs over the set of
all solutions of the linear indeterminate equation 2γt + αr = γ2 (r = r∗), give us infinitely many
nonzero solutions for the system. �
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Note. According to the above theorem we have βα2 = (2γ)3, 4γ|αβ and gcd(2γ, α)|γ2 if and
only if β2α = (2λ)3, 4λ|αβ and gcd(2λ, β)|λ2 (for some γ, λ).

Corollary 2.7. If α and β are positive (negative) integer numbers, then the αβ-homorooty
system has finitely many integer solutions on N (negative integers).

Corollary 2.8. If 4 - αβ, then the αβ-homorooty system has finitely many nonzero integer
solutions.

Here we study another generalization of the homorooty system.

Theorem 2.9. The following system (d-homorooty n-cyclic system)
i) for d = 1, 2, 4 has only finitely many positive integer solutions and does not have any negative

integer solution and (in this case) d ≤ xk ≤ n+1
2 d for 1 ≤ k ≤ n.

ii) for d = −1,−2,−4 has only finitely many negative integer solutions and does not have any
positive integer solution and (in this case) n+1

2 d ≤ xk ≤ d for 1 ≤ k ≤ n.
x2

1 − dx2 = y2
1

x2
2 − dx3 = y2

2

· · ·
x2
n−1 − dxn = y2

n−1

x2
n − dx1 = y2

n

Proof. Suppose d = 4 (for d = 4 the system is called “homorooty n-cyclic system”), if n = 2,
then it is clear, by Lemma . Let n > 2 and (a1, · · · , an) be a positive integer solution of the
homorooty n-cyclic system, therefore 〈ak−1, ak〉 → N, 〈an, a1〉 → N, for all 2 ≤ k ≤ n, thus
ak−1 ≤ ak + 1, an ≤ a1 + 1 and so

a1 − k + 1 ≤ ak ≤ a1 + n− k + 1,
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for all 2 ≤ k ≤ n, i.e.,

a1 − 1 ≤ a2 ≤ a1 + n− 1, a1 − 2 ≤ a3 ≤ a1 + n− 2, · · · ,

a1 − n+ 1 ≤ an ≤ a1 + 1.(∗)

By (∗) we consider two cases:
Case 1. a2 = a1 − 1. If ak = a1 − k + 1, for all 2 ≤ k ≤ n, then

〈an = a1 − n+ 1, (a1 − n+ 1) + n− 1〉 → N,

thus a1−n+1 ≤ n+3 (by (II)-(c) of Section 1), i.e., a1 ≤ 2n+4, and if there exist a (least) natural
k0 such that ak0 6= a1−k0 +1 (clearly k0 ≥ 2), then (by (∗)) there exist an i such that 2 ≤ i ≤ n+1
and ak0 = a1 − k0 + i. Since ak0−1 = a1 − k0 + 2 we have 〈a1 − k0 + 2, a1 − k0 + i〉 → N, i.e.,
〈a1−k0 +2, (a1−k0 +2)+ i−2〉 → N, so a1−k0 +2 ≤ i+2 ≤ n+3 thus a1 ≤ n+k0 +1 ≤ 2n+1.

Case 2. a2 6= a1− 1. By (∗) we have a2 = a1 + i where 0 ≤ i ≤ n− 1 so < a1, a1 + i >→ N thus
a1 ≤ i+ 4 ≤ n+ 3.

On the other hand since a2
1 − 4a2 ≥ 0, a2

2 − 4a3 ≥ 0, · · · , a2
n−1 − 4an ≥ 0 and a2

n − 4a1 ≥ 0,
then combining them we get

2
√
a1 < an <

1
22n−2

a2n−1

1 .

So a1 ≥ 4. Therefore we have proved that 4 ≤ a1 ≤ 2n + 2 but since this system is symmetric
(circle symmetric with respect to x1, · · · , xn), we have 4 ≤ ak ≤ 2n+ 2, for all 1 ≤ k ≤ n.

Now let (a1, · · · , an) be a negative solution of the system so we have −ak−1 ≤ −ak − 1 and
−an ≤ −a1 − 1, for all 2 ≤ k ≤ n, thus −a1 ≤ −an − n + 1 ≤ −a1 − n so n ≤ 0, that is a
contradiction.

For d = ±1,±2,−4, multiplying the system by (4/d)2 and putting Xk = 4xk/d, Yk = 4yk/d,
prove the claims (by the previous part). �



JJ J I II

Go back

Full Screen

Close

Quit

Note. Since (2n + 2, 2n + 1, · · · , n + 3) and (4, · · · , 4) are positive solutions of the homorooty
n-cyclic system, then the bounds of the solutions in the above theorem are their best bounds.

Remark 2.1. We discussed a lot of equations. In case thet constant (d, n, α, β, · · · ) are determined,
equations can be solvable very well by the procedure of the proofs of their related theorems. For
example, all solutions of the homorooty 3-cyclic system are

(4, 4, 4), (8, 7, 6), (4,−5, 4), (3,−4, 4), (0,−r21,−r2r21 − r22),

and the general solution of the equation x2y2 − x− y − z2 = 0 is

(1, 2), (−r, r), (0,−r2).

It is worth noting that the Homorooty is conducive to study some indeterminate equations re-
formable into f2 − 4g = p2, where f, g, p are polynomials.
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