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THE DUAL SPACE OF THE SEQUENCE SPACE bvp (1 ≤ p <∞)

M. IMANINEZHAD and M. MIRI

Abstract. The sequence space bvp consists of all sequences (xk) such that (xk−xk−1) belongs to the
space lp. The continuous dual of the sequence space bvp has recently been introduced by Akhmedov and

Basar [Acta Math. Sin. Eng. Ser., 23(10), 2007, 1757–1768]. In this paper, we show a counterexample
for case p = 1 and introduce a new sequence space d∞ instead of d1 and show that bv1

∗ = d∞. Also
we have modified the proof for case p > 1. Our notations improve the presentation and are confirmed
by last notations l1

∗ = l∞ and lp
∗ = lq .

1. Priliminaries, background and notation

Let ω denote the space of all complex-valued sequences, i.e., ω = CN where N = {0, 1, 2, 3, . . .}.
Any vector subspace of ω which contains φ, the set of all finitely non-zero sequences, is called a
sequence space. The continuous dual of a sequence space λ which is denoted by λ∗ is the set of all
bounded linear functionals on λ. The space bvp is the set of all sequences of p-bounded variation
and is defined by

bvp =

x = (xk) ∈ ω :

( ∞∑
k=0

|xk − xk−1|p
) 1

p

<∞

 (1 ≤ p <∞)
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and

bv∞ =
{
x = (xk) ∈ ω : sup

k∈n
|xk − xk−1| <∞

}
where x−1 = 0.

Now, let

‖x‖bvp
=

( ∞∑
k=0

|xk − xk−1|p
) 1

p

and

‖x‖bv∞
= sup

k∈N
|xk − xk−1|.

Then bvp and bv∞ are Banach spaces with these norms and except the case p = 2, the space bvp

is not a Hilbert space for 1 ≤ p ≤ ∞. If we define a sequence b(k) = (b(k)
n )∞n=0 of elements of the

space bvp for every fixed k ∈ N by

b(k)
n =

{
0, if n < k
1, if n ≥ k

then the sequence (b(k))
∞
k=0 is a Schauder basis for bvp and any x ∈ bvp has a unique representation

of the form

x =
∞∑

k=0

λkb
(k)

where λk = (xk − xk−1) for all k ∈ N.
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2. A counterexample

In [1, Theorem 2.3] for case p = 1 suppose f = (3,−1, 0, 0, 0, . . .), i.e.,

f0 = f(e0) = 3, f1 = f(e1) = −1, fk = f(ek) = 0 for all k ≥ 2.

Trivially f ∈ bv∗1 and

f(x) = f

( ∞∑
k=0

(∆x)kb
(k)

)
= 2(∆x)0 − (∆x)1.

So

‖f‖ = sup
‖x‖bv1=1

|f(x)| = supP∞
i=0 |(∆x)i|=1

|2(∆x)0 − (∆x)1| = 2.(1)

Now inequality (2.5) in [1, Theorem 2.3] asserts that ‖f‖ ≥ sup
k,n∈N

|
∑n

j=k fj | = 3 which is a

contradiction.

3. The Spaces d∞ and dq (1 < q <∞)

In this section, we introduce two sequence spaces and show that they are Banach spaces and then
we give the main theorem of the paper. Let

d∞ =
{
a = (ak)∞k=0 ∈ ω : ‖a‖d∞ = sup

k∈N

∣∣∣∣ ∞∑
j=k

aj

∣∣∣∣ <∞}
and

dq =
{
a = (ak)∞k=0 ∈ ω : ‖a‖dq

=
( ∞∑

k=0

|
∞∑

j=k

aj |q
) 1

q

<∞
}
, (1 < q <∞).
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Theorem 3.1. d∞ is a sequence space with usual coordinatewise addition and scalar multipli-
cation and ‖·‖d∞ is a norm on d∞.

Proof. We only show that ‖·‖d∞ is a norm on d∞. Let

D =


1 1 1 1 1 · · ·
0 1 1 1 1 · · ·
0 0 1 1 1 · · ·
0 0 0 1 1 · · ·
...

...
...

...
...

...
. . .

 .
Then

Da =


1 1 1 1 1 · · ·
0 1 1 1 1 · · ·
0 0 1 1 1 · · ·
0 0 0 1 1 · · ·
...

...
...

...
...

...
. . .




a0

a1

a2

a3

...

 =



∑∞
j=0 aj∑∞
j=1 aj∑∞
j=2 aj∑∞
j=3 aj

...

 .
So ‖a‖d∞ = supk∈N

∣∣∑∞
j=k aj

∣∣ = supk∈N
∣∣(Da)k

∣∣ =
∥∥Da∥∥

l∞
. Now, if a ∈ d∞ then ‖Da‖l∞ =

‖a‖d∞ < ∞ hence Da ∈ l∞. Also if Da ∈ l∞, then ‖a‖d∞ = ‖Da‖l∞ < ∞ hence a ∈ d∞. So
a ∈ d∞ if and only if Da ∈ l∞. Now since

(I) 0 ≤ ‖Da‖l∞ = ‖a‖d∞ <∞
(II) ‖a+ b‖d∞ = ‖Da+Db‖l∞ ≤ ‖Da‖l∞ + ‖Db‖l∞ = ‖a‖d∞ + ‖b‖d∞

(III) ‖α · a‖d∞ = ‖α ·Da‖l∞ = |α| · ‖Da‖l∞ = |α| · ‖a‖d∞
‖·‖d∞ is a norm on d∞. �
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Theorem 3.2. d∞ is a Banach space.

Proof. Let (a(n))∞n=0 is a Cauchy sequence in d∞. So for each ε > 0 there exists N ∈ N, such
that for all n,m ≥ N

‖a(n) − a(m)‖d∞ < ε.

So

‖Da(n) −Da(m)‖l∞ = ‖a(n) − a(m)‖d∞ < ε.

So the sequence (Da(n))∞n=0 is Cauchy in l∞. So there exists a ∈ l∞ such that Da(n) → a in l∞.
So ‖Da(n) −DD−1a‖l∞ → 0 and ‖a(n) −D−1a‖d∞ → 0

Furthermore, D−1a ∈ d∞ since DD−1a = a ∈ l∞. �

Theorem 3.3. bv∗1 is isometrically isomorphic to d∞.

Proof. Define T : bv∗1 → d∞ and Tf = (f(e(0)), f(e(1)), f(e(2)), . . . ) where

e(k) = (0, . . . , 0, 1︸︷︷︸
kthterm

, 0, . . .).

Trivially, T is linear and injective since

Tf = 0⇒ f = 0.

T is surjective since if g̃ = (g0, g1, g2, g3, . . .) ∈ d∞ then if we define f : bv1 → C by

f(x) =
∞∑

k=0

(∆x)k

∞∑
j=k

gj .
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Then f ∈ bv∗1 . Trivially, since f is linear and

|f(x)| =
∣∣∣∣ ∞∑
k=0

(∆x)k

∞∑
j=k

gj

∣∣∣∣ ≤ ∞∑
k=0

|(∆x)k| ·
∣∣∣∣ ∞∑
j=k

gj

∣∣∣∣
≤
∞∑

k=0

|(∆x)k| sup
k∈N

∣∣∣∣ ∞∑
j=k

gj

∣∣∣∣ =
∞∑

k=0

|(∆x)k|.‖g̃‖d∞

= ‖g̃‖d∞ .‖x‖bv1

and Tf = g̃, so T is surjective. Now we show that T is norm preserving, we have

|f(x)| =
∣∣∣∣f( ∞∑

k=0

(∆x)k

∞∑
j=k

e(j)

)∣∣∣∣ =
∣∣∣∣ ∞∑
k=0

(∆x)k

∞∑
j=k

f(e(j))
∣∣∣∣

≤
∞∑

k=0

|(∆x)k|
∣∣∣∣ ∞∑
j=k

f(e(j))
∣∣∣∣ ≤ ∞∑

k=0

|(∆x)k| · sup
k∈N

∣∣∣∣ ∞∑
j=k

f(e(j))
∣∣∣∣

≤ ‖x‖bv1 · ‖Tf‖d∞ .
So

‖f‖ ≤ ‖Tf‖d∞(∗)

On the other hand,
∣∣∑∞

j=k f(e(j))
∣∣ =

∣∣f(b(k))
∣∣ ≤ ‖f‖ · ‖b(k)‖bv1 = ‖f‖. So

∣∣∣∣∑∞j=k f(e(j))
∣∣∣∣≤ ‖f‖ for

all k ∈ N.
So

sup
k∈N
|
∞∑

j=k

f(e(j))| ≤ ‖f‖,
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i.e.,

‖Tf‖d∞ ≤ ‖f‖(†)

by (∗) and (†) we are done. �

Theorem 3.4. dq (1 ≤ q < ∞) is a sequence space with usual coordinatewise addition and
scalar multiplication and ‖.‖dq

is a norm on dq.

Proof. With notations of Theorem 3.1 , ‖a‖dq
= ‖Da‖lq and a ∈ dq ⇔ Da ∈ lq. The continua-

tion of the proof is similar to Theorem 3.1. �

Theorem 3.5. dq (1 ≤ q <∞) is a Banach space.

Proof. The proof is similar to proof of Theorem 3.2 and we omit it. �

Theorem 3.6. Let 1 < p <∞ and 1
p + 1

q = 1, then bv∗p is isometrically isomorphic to dq.

Proof. Define A : bv∗p → dq by f 7→ Af = (f(e(0)), f(e(1)), f(e(2)), . . .). Trivially A is linear.
Additionally, since Af = 0 = (0, 0, 0, . . .) implies f = 0, A is injective. A is surjective since if
a = (ak) ∈ dq and define f on the space bvp such that

f(x) =
∞∑

k=0

(∆x)k

∞∑
j=k

aj .
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Then f is linear. Since

|f(x)| ≤
∞∑

k=0

∣∣∣∣(∆x)k

∞∑
j=k

aj

∣∣∣∣
≤

[ ∞∑
k=0

∣∣(∆x)k

∣∣p] 1
p

·

 ∞∑
k=0

∣∣∣∣ ∞∑
j=k

aj

∣∣∣∣q
 1

q

= ‖x‖bvp
· ‖a‖dq

,

it yields to ‖f‖ ≤ ‖a‖dq
<∞. So f ∈ bv∗p and Af = a.

Now, we show that A is norm preserving. Let f ∈ bv∗p and x = (xk)∞k=0 ∈ bvp, then

|f(x)| =
∣∣∣∣ ∞∑
k=0

(∆x)k

∞∑
j=k

f(e(j))
∣∣∣∣ ≤ ∞∑

k=0

∣∣∣∣(∆x)k

∞∑
j=k

f(e(j))
∣∣∣∣

≤

[ ∞∑
k=0

∣∣(∆x)k

∣∣p] 1
p

·

 ∞∑
k=0

∣∣∣∣ ∞∑
j=k

f(e(j))
∣∣∣∣q
 1

q

= ‖x‖bvp · ‖Af‖dq .

So

‖f‖ ≤ ‖Af‖dq
.(∗)

On the other hand, suppose f ∈ bv∗p and x(n) =
(
x

(n)
k

)∞
k=0

are such that

(∆x(n))k =


∣∣∣∣ ∞∑
j=k

f(e(j))
∣∣∣∣q−1

sgn
( ∞∑

j=k

f(e(j))
)
, if (0 ≤ k ≤ n)

0, if k > n.
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We note that
∑∞

j=k f(e(j)) = f(b(k)). So x(n) ∈ bvp since ∆x(n) ∈ lp.
Then it is clear that

∆x(n) =∣∣∣∣ ∞∑
j=0

f(e(j))
∣∣∣∣q−1

sgn
( ∞∑

j=0

f(e(j))
)
, . . . ,

∣∣∣∣ ∞∑
j=n

f(e(j))
∣∣∣∣q−1

sgn
( ∞∑

j=n

f(e(j))
)
, 0, 0, . . .

 .

So

x(n) =


∣∣∣∣ ∞∑
j=0

f(e(j))
∣∣∣∣q−1

sgn
( ∞∑

j=0

f(e(j))
)

︸ ︷︷ ︸
b0

, b0 +
∣∣∣∣ ∞∑
j=1

f(e(j))
∣∣∣∣q−1

sgn
( ∞∑

j=1

f(e(j))
)

︸ ︷︷ ︸
b1

,

, . . . ,

n∑
k=0

bk︸ ︷︷ ︸
t=n+1thterm

, t, t, t, . . .

 .

So if we let fk = f(e(k)), then
f(x(n)) = b0f0 +

b0f1 + b1f1+
b0f2 + b1f2 + b2f2+
b0f3 + b1f3 + b2f3 + b3f3+

...
...

...
...
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b0fn + b1fn + b2fn + b3fn + . . .+ bnfn+
b0fn+1 + b1fn+1 + b2fn+1 + b3fn+1 + . . .+ bnfn+1+
b0fn+2 + b1fn+2 + b2fn+2 + b3fn+2 + . . .+ bnfn+2+
b0fn+3 + b1fn+3 + b2fn+3 + b3fn+3 + . . .+ bnfn+3+

...
...

...
...

...
...

=
n∑

k=0

∣∣∣∣ ∞∑
j=k

fj

∣∣∣∣q.
So

n∑
k=0

∣∣∣∣ ∞∑
j=k

fj

∣∣∣∣q = f(x(n)) = |f(x(n))| ≤ ‖f‖ · ‖x(n)‖bvp
= ‖f‖ ·

 n∑
k=0

∣∣∣∣ ∞∑
j=k

fj

∣∣∣∣q
 1

p

.

Since

‖x(n)‖bvp
= ‖∆x(n)‖lp =

[ ∞∑
k=0

|∆x(n)
k |

p

] 1
p

=

[
n∑

k=0

|∆x(n)
k |

p

] 1
p

=

 n∑
k=0

∣∣∣∣∣∣∣∣ ∞∑
j=k

fj

∣∣∣∣q−1

sgn

 ∞∑
j=k

fj

∣∣∣∣p
 1

p

=

 n∑
k=0

∣∣∣∣ ∞∑
j=k

fj

∣∣∣∣q
 1

p

.
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So  n∑
k=0

∣∣∣∣ ∞∑
j=k

fj

∣∣∣∣q
1

≤ ‖f‖ ·

 n∑
k=0

|
∞∑

j=k

fj |q
 1

p

.

So

‖f‖ ≥

 n∑
k=0

∣∣∣∣ ∞∑
j=k

fj

∣∣∣∣q
 1

q

= ‖Af‖dq
.(†)

Therefore, by combinig the results (∗) and (†), A is norm preserving. Hence bv∗p is isometrically
isomorphic to dq. �
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