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THE INVERSE OF THE PASCAL LOWER TRIANGULAR
MATRIX MODULO p

A. IMANI anD A. R. MOGHADDAMFAR

ABSTRACT. Let L(n)p be the Pascal lower triangular matrix with coefficients (;)

(mod p),0 < 4,5 < n. In this paper, we found the inverse of L(n), modulo p. In
fact, we generalize a result due to David Callan [4].

1. INTRODUCTION
Consider the infinite unipotent lower triangular matrix
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with coefficients L(o0); ; = (;), 1,7 > 0, where, as usual, we use the convention

(;) =0if i < j. We denote by L(n) the n x n principal submatrix with coefficients
L(n);;, 0 <i,j < n obtained by considering the first n rows and columns of L(c0).
Given a prime p, we define L(n), with coefficients (L(n),); ; € {0,1,...,p—1} as

the reduction modulo p of L(n) by setting

?
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For instance, the matrices L(5)2, L(6)3 and L(7)s5 are given as follows:
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For a prime p and a positive integer n, we denote by sp(n) the sum of the
digits in the base-p representation of the integer n, that is, s,(n) = >~ nx when
writing n =3, nip® in base p. The Thue-Morse sequence

oo

tz{t(n)zsz(n) (modz)} ~0110100110010110...,

n=0

records the parity of the sum of the binary digits of n =3, ., ni2F. It can also

be defined recursively by t(0) = 0, t(2n) = t(n), t(2n + 1) = t(n), for all n > 0,
where, for 2 € {0,1}, we define T = 1 — 2. The sequence t has appeared in various
fields of mathematics, see, for instance, [1]. Replacing 0 by a and 1 by b yields
the Thue-Morse sequence on the alphabet A = {a, b} (called the 1 Thue-Morse
sequence if a =1 and b= —1)

t(a,b)=abbabaabbaababba ...

In [4], David Callan showed that the sequence t is related to the matrix L(c0)s.
In fact, the following result is due to Callan.

Callan Theorem ([4]). The inverse matriz of L(c0)2 is a (0,+1)-matriz. It
has the same pattern of zeroes as L(c0)s and the nonzero entries in each column
form the £1 Thue-Morse sequence.

In order to prove his result, Callan defined the lower triangular matrix Lo(x)
with entries Ly(z); ; by

)

La(x);; = <

RV

and then he showed that Lo(z) 4+ La(y) = Lo(x + y). It is worth mentioning
that, Roland Bacher and Robin Chapman have obtained the same result observing
that the 2% x 2% upper left submatrix of Ly(x) is the k-fold Kronecker product

of ( 313 0 ) (see [2], [3]). Here, we are going to generalize Callan Theorem.

)xsma‘) (mod 2)  for each i,j >0,

1
Following Callan [4], we present the following definition.

Definition 1. Let z be an indeterminate. Define the infinite lower triangular
matrix L,(z) with coefficients L,(x); ; by setting

Ly(z);; = (]) x5r(i=9) (mod p).

In particular, we have L,(1) = L(c0),.
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Then the matrices Lo(z) and Ls(z), for example, are given by

1
T 1
z 0 1
2 oz oz 1
_ z 0 0 0 1
La(@) 22 z 0 0 2z 1
22 0 z 0 2z 0 1
22 2?2 2?2 oz 2?2 2 oz 1
and
1
z 1
z? 2z 1
z 0 0 1
Ls(z) = 22z 0 =z 1
23 222 x 2?2 22 1
22 0 0 2 0 0 1
23 22 0 222 22z 0 =z 1

Indeed, the purpose of this paper is to prove the following theorem.

Main Theorem. Let p be a prime and let x and y be indeterminates. Then
there holds

(1) Ly(x) - Ly(y) = Ly(z +y)  (mod p).
In particular, we conclude that L,(1)™ = L,(—1) (mod p).

It is worth mentioning that the idea in the proof of this Theorem follows that

one of Callan [4].
As an immediate consequence of Main Theorem, we have the following.

Corollary 1. If n is a positive integer, then we have L, (x)" = L,(nz) (mod p).
Proof. By an easy induction on n. O
Corollary 2. If r is a rational number, then we have L,(r) = L,(1)" (mod p).

Proof. Let r = * with m,n positive integers. Then, by Corollary 1, we obtain
n m " m
L,(r)" =L, (g) =L,(m)=Ly(1)™ (mod p).

For negative r, it now suffices to show that L,(1)™! = L,(—1) (mod p), and this

follows
L,(-1)L,(1)=L,(-1+1)=L,(0) =1 (mod p),
by Main Theorem. This completes the proof of the corollary. O
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Remark 1. Note that the main result of this paper can also be obtained by
the Kronecker product method attributed to Roland Bacher: the p* x p* upper
left submatrix of L,(z) is the k-fold Kronecker product of the upper left p x p
submatrix of L, (z).

2. PRELIMINARIES

In this section, we collect a number of results that we will need in the proof of the
Main theorem. We start with a well-known result due to Lucas. In fact, Lucas
discovered an easy method to determine the value of () (mod p).

Lemma 1 (Lucas Theorem [5]). Let p be a prime number and m,n be non-
negative integers. Suppose

m = Z mip® and n= Z nip”,

k>0 k>0

are written in base p, that is, mg,ng € {0,1,...,p — 1} for all k. Then we have

()= (o)) () moan

In 1852 Kummer showed that the power of prime p that divides the binomial

coefficient (;) is given by the number of ‘carries’ when we add j and i — j in base p.

Lemma 2 (Kummer Theorem [6]). If p is a prime number, then its exponent in
the canonical expansion of the binomial coefficient (;) into prime factors is equal
to the number of carries required when adding the numbers j and i — j in base p.

Proof. Note that the identity

e (1)) = entih = ep(3t) = s =0

where e, (k) is the exponent of p in the prime factorization of k. It is not difficult

to see that
k k
N = |2 B
ep(k.) \‘pJ + \‘I)QJ + )

because among the numbers 1, 2,..., k, there are exactly L%J numbers divisible by

implies that

p, exactly LP%J numbers divisible by p?, and so on. Thus,

()-S5 121- 152

Now, it suffices to note that in this sum, the /th summand is either 1 or 0 depending
on whether or not there is a carry from the (I — 1)th digit. O
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Definition 2. Let p be a prime and 4, j be non-negative integers. Suppose
i=> g and = "
k>0 E>0
are written in base p. We say i is p-free of j if

0<ipr+jr<p—1, forallk.

Lemma 3. Let p be a prime number and let ¢ and j be positive integers with
i > j. Suppose that i = > <, ikp® and j = 3,5, jkp® are written in base p.
Then, the following four statements are equivalent:

(a) i —j is p-free of j.

(b) for every k >0, ix > ji.

(¢) There exists | between i and j such that i —1 is p-free of | and 1 — j is p-free

of j.
(@) 0% (%) (mod p).

Proof. Before starting the proof we give an easy observation

o ik — Jk it iy > jk
2 71— = . e .
2) (=3 { p+ir — g i ip < k.

(a) = (b) Assume the contrary that there exists k such that iy, < j. But then,
by Eq. (2), we have

(i—Jk+ik=p+ik—Jr+ir=p+ix>p—1,

which contradicts our assumption, i.e., ¢ — j is p-free of j.
(b) = (a) We can easily see that

(i —J)k+Jk =tk —Jk+Jjx =1k <p—1,
and so by definition, we conclude the result.
(a) = (¢) If i — j is p-free of j, then by part (b), we have iy, > ji for every k.
Now, for every k, we choose [}, such that iy > I > ji, and we put [ = Zkzo lp”.
It is evident that 7 < <i. Moreover, by Eq. (2), we observe that

(i*l)k+lk:ik*lk+lk:ik <p-—1,
and also
=k +ie=lg—Jr+tik =1l <ir <p-—1
which implies that ¢ — [ is p-free of [ and | — j is p-free of j by definition.

(¢) = (a) Assume that there exists j < < ¢ such that ¢ — [ is p-free of [ and
l—jis p-free of j. Put ] = Zkzo Ixp*, where I, € {0,1,...,p—1}. Then, by part
(a), we obtain ji <l < i for every k. Now, by Eq. (2), it follows that

(i =)k +Jk =ik — Jr +je =i <p—1,
and so i — j is p-free of j by definition.

(d) < (a) This follows immediately from Kummer Theorem.
This completes the proof of the lemma. O
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Remark 2. Note that, if ¢ > j and i — j is p-free of j, then we have s,(i —j) =
sp(1) — sp(j)-

Lemma 4. Let p be a prime and n,r be positive integers. Then we have

o;n <Ttl) (Sp(n)> (mod p).

r
sp(t)=r

Proof. We write n = Z nkp® in base p, so that 0 < n, < p — 1 for each k.
=0
Now, we consider the followmg equation
3) (14 X)) = (14 X)™(1+ X)™ o (LX)

and compare the coefficient of X" modulo p in both sides of this equation. Ev-
idently, the coefficient of X" on the left-hand side of Eq. (3) is equal to (**(")
(mod p). On the other hand, the coefficient of X" on the right-hand side of Eq. (3)
is equal to

g R ()G e

But, by Lucas Theorem, the sum in Eq. (4) is congruent to

> <7Z> (mod p).

0<t<n
sp(t)=r

This completes the proof of the lemma. O

3. PROOF OF THE MAIN THEOREM

Proof. For the proof of the Eq. (1) we compute the (7,7)-th entry of L,(z) -
L,(y), that is,

(Lp(z) - L ZL JitLyp(

First of all, since the matrices L,(x) and Lp(y) are lower triangular matrices, thus
L,(z)- Ly(y) is also a lower triangular matrix. Furthermore, it is easy to see the
product of row i of Ly(x) with column i of L,(y) is always 1, since every pair of
entries except entry ¢ is either 0 in the row or 0 in the column, and the product
at entry iis 1 x 1 =1 for ¢ > 1. Now, we must show that the product of row i of
L,(z) with column j of L,(y) when ¢ > j is always L,(x + y); j. Therefore, from
now on we assume that ¢ > j. In this case, the (¢, j)-th entry of L,(z) - L,(y) is
equal to

(Lp(x) - Lp(®))ij = > Lp(@)ie Lp(y)e.;-

We now consider two cases separately:
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CASE 1. i — j is not p-free of j.

In this case, by Lemma 3, there does not exist ¢ between j and i such that i —¢
is p-free of t and ¢t — j is p-free of j. Hence for every ¢ between j and 4, we have
Ly(z)it =0or Ly(y):; =0, and so

(Lp(2) - Lp(y))iy = Zo =0=Ly(z+y)i,

CASE 2. ¢ — j is p-free of j. 4
In this case, by Lemma 4, we have (;) (mod p) # 0. First, we notice that

o OO0 e

Now, we calculate the sum in question

(L) L)y =3 (1) (5)zre0m= - Guoa

t=j

= Z (Z) (Z B j) 2Dy (mod p)  (by Eq. (5))

t—J

Y
=0 \J t

If i — j — t is not p-free of ¢, then, by Lemma 3, we obtain that 0 = (1?) (mod p).
Hence, we may restrict the last sum to 0 < ¢ <4 — j such that i — j — ¢ is p-free
of . But then, by Remark 2, we have s,(i —j —t) = s,(i — j) — sp(t). Thus we

obtain

t t=J sp(i—7)—sp(t), s
(Lp($) . Lp(y))i7j E (]) Z ( ’ )I p(i—3) p(f)y »(t) (mod p)
t=0
. Sp(i_]) . .
_ g =7 sp(i—j)—r,r
() ZACE (Do) woan
r=0 Osgpfitg)zr]
i ) SLU(Z - j) sp(i—jg)—r, r
= . %77y (mod p) (by Lemma 4)
J r=0 T p
= (Dt modp)
= Ly(xz +y)i,

as desired. 0
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