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THE INVERSE OF THE PASCAL LOWER TRIANGULAR MATRIX
MODULO p

A. IMANI and A. R. MOGHADDAMFAR

Abstract. Let L(n)p be the Pascal lower triangular matrix with coefficients
`i
j

´
(mod p), 0 ≤ i, j < n.

In this paper, we found the inverse of L(n)p modulo p. In fact, we generalize a result due to David
Callan [?].

1. Introduction

Consider the infinite unipotent lower triangular matrix

L(∞) =


1
1 1
1 2 1
1 3 3 1
...

. . .

 = exp


0
1 0
0 2 0

0 3 0
. . .


with coefficients L(∞)i,j =

(
i
j

)
, i, j ≥ 0, where, as usual, we use the convention

(
i
j

)
= 0 if i < j.

We denote by L(n) the n × n principal submatrix with coefficients L(n)i,j , 0 ≤ i, j < n obtained
by considering the first n rows and columns of L(∞). Given a prime p, we define L(n)p with
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coefficients (L(n)p)i,j ∈ {0, 1, . . . , p− 1} as the reduction modulo p of L(n) by setting

(L(n)p)i,j =
(

i

j

)
(mod p) ∈ {0, 1, . . . , p− 1}.

For instance, the matrices L(5)2, L(6)3 and L(7)5 are given as follows:

L(4)2 =


1
1 1
1 0 1
1 1 1 1
1 0 0 0 1

 L(5)3 =


1
1 1
1 2 1
1 0 0 1
1 1 0 1 1
1 2 1 1 2 1



L(6)5 =



1
1 1
1 2 1
1 3 3 1
1 4 1 4 1
1 0 0 0 0 1
1 1 0 0 0 1 1


.

For a prime p and a positive integer n, we denote by sp(n) the sum of the digits in the base-p
representation of the integer n, that is, sp(n) =

∑
k≥0 nk when writing n =

∑
k≥0 nkpk in base p.

The Thue-Morse sequence

t =
{

t(n) = s2(n) (mod 2)
}∞

n=0
= 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 . . . ,
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records the parity of the sum of the binary digits of n =
∑

k≥0 nk2k. It can also be defined
recursively by t(0) = 0, t(2n) = t(n), t(2n + 1) = t(n), for all n ≥ 0, where, for x ∈ {0, 1}, we
define x = 1− x. The sequence t has appeared in various fields of mathematics, see, for instance,
[?]. Replacing 0 by a and 1 by b yields the Thue-Morse sequence on the alphabet A = {a, b} (called
the ±1 Thue-Morse sequence if a = 1 and b = −1)

t(a, b) = a b b a b a a b b a a b a b b a . . .

In [?], David Callan showed that the sequence t is related to the matrix L(∞)2. In fact, the
following result is due to Callan.

Callan Theorem ([?]). The inverse matrix of L(∞)2 is a (0,±1)-matrix. It has the same
pattern of zeroes as L(∞)2 and the nonzero entries in each column form the ±1 Thue-Morse
sequence.

In order to prove his result, Callan defined the lower triangular matrix L2(x) with entries
L2(x)i,j by

L2(x)i,j =
(

i

j

)
xs2(i−j) (mod 2) for each i, j ≥ 0,

and then he showed that L2(x) + L2(y) = L2(x + y). It is worth mentioning that, Roland Bacher
and Robin Chapman have obtained the same result observing that the 2k×2k upper left submatrix

of L2(x) is the k-fold Kronecker product of
(

1 0
x 1

)
(see [?], [?]). Here, we are going to generalize

Callan Theorem. Following Callan [?], we present the following definition.
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Definition 1. Let x be an indeterminate. Define the infinite lower triangular matrix Lp(x)
with coefficients Lp(x)i,j by setting

Lp(x)i,j =
(

i

j

)
xsp(i−j) (mod p).

In particular, we have Lp(1) = L(∞)p.

Then the matrices L2(x) and L3(x), for example, are given by

L2(x) =



1
x 1
x 0 1
x2 x x 1
x 0 0 0 1
x2 x 0 0 x 1
x2 0 x 0 x 0 1
x3 x2 x2 x x2 x x 1
...

. . .


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and

L3(x) =



1
x 1
x2 2x 1
x 0 0 1
x2 x 0 x 1
x3 2x2 x x2 2x 1
x2 0 0 2x 0 0 1
x3 x2 0 2x2 2x 0 x 1
...

. . .


.

Indeed, the purpose of this paper is to prove the following theorem.

Main Theorem. Let p be a prime and let x and y be indeterminates. Then there holds

Lp(x) · Lp(y) ≡ Lp(x + y) (mod p).(1)

In particular, we conclude that Lp(1)−1 ≡ Lp(−1) (mod p).

It is worth mentioning that the idea in the proof of this Theorem follows that one of Callan [?].
As an immediate consequence of Main Theorem, we have the following.

Corollary 1. If n is a positive integer, then we have Lp(x)n ≡ Lp(nx) (mod p).

Proof. By an easy induction on n. �

Corollary 2. If r is a rational number, then we have Lp(r) ≡ Lp(1)r (mod p).

Proof. Let r = m
n , with m, n positive integers. Then, by Corollary 1, we obtain

Lp(r)n ≡ Lp

(m

n

)n

≡ Lp(m) ≡ Lp(1)m (mod p).
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For negative r, it now suffices to show that Lp(1)−1 ≡ Lp(−1) (mod p), and this follows

Lp(−1)Lp(1) ≡ Lp(−1 + 1) ≡ Lp(0) ≡ I (mod p),

by Main Theorem. This completes the proof of the corollary. �

Remark 1. Note that the main result of this paper can also be obtained by the Kronecker
product method attributed to Roland Bacher: the pk × pk upper left submatrix of Lp(x) is the
k-fold Kronecker product of the upper left p× p submatrix of Lp(x).

2. Preliminaries

In this section, we collect a number of results that we will need in the proof of the Main theorem.
We start with a well-known result due to Lucas. In fact, Lucas discovered an easy method to
determine the value of

(
n
m

)
(mod p).

Lemma 1 (Lucas Theorem [?]). Let p be a prime number and m, n be non-negative integers.
Suppose

m =
∑
k≥0

mkpk and n =
∑
k≥0

nkpk,

are written in base p, that is, mk, nk ∈ {0, 1, . . . , p− 1} for all k. Then we have(
n

m

)
≡
(

n0

m0

)(
n1

m1

)
· · ·
(

nd

md

)
(mod p).

In 1852 Kummer showed that the power of prime p that divides the binomial coefficient
(

i
j

)
is

given by the number of ‘carries’ when we add j and i− j in base p.
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Lemma 2 (Kummer Theorem [?]). If p is a prime number, then its exponent in the canonical
expansion of the binomial coefficient

(
i
j

)
into prime factors is equal to the number of carries required

when adding the numbers j and i− j in base p.

Proof. Note that the identity (
i

j

)
=

i!
j!(i− j)!

implies that

ep

((
i

j

))
= ep(i!)− ep(j!)− ep((i− j)!),

where ep(k) is the exponent of p in the prime factorization of k. It is not difficult to see that

ep(k!) =
⌊

k

p

⌋
+
⌊ k

p2

⌋
+ · · · ,

because among the numbers 1, 2, . . . , k, there are exactly bk
p c numbers divisible by p, exactly b k

p2 c
numbers divisible by p2, and so on. Thus,

ep

((i

j

))
=
∑
l≥0

(⌊ i

pl

⌋
−
⌊ j

pl

⌋
−
⌊ i− j

pl

⌋)
.

Now, it suffices to note that in this sum, the lth summand is either 1 or 0 depending on whether
or not there is a carry from the (l − 1)th digit. �

Definition 2. Let p be a prime and i, j be non-negative integers. Suppose

i =
∑
k≥0

ikpk and j =
∑
k≥0

jkpk,
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are written in base p. We say i is p-free of j if

0 ≤ ik + jk ≤ p− 1, for all k.

Lemma 3. Let p be a prime number and let i and j be positive integers with i ≥ j. Suppose
that i =

∑
k≥0 ikpk and j =

∑
k≥0 jkpk are written in base p. Then, the following four statements

are equivalent:
(a) i− j is p-free of j.
(b) for every k ≥ 0, ik ≥ jk.
(c) There exists l between i and j such that i− l is p-free of l and l − j is p-free of j.
(d) 0 6≡

(
i
j

)
(mod p).

Proof. Before starting the proof we give an easy observation

(i− j)k =
{

ik − jk if ik ≥ jk

p + ik − jk if ik < jk.
(2)

(a)⇒ (b) Assume the contrary that there exists k such that ik < jk. But then, by Eq. (2), we
have

(i− j)k + jk = p + ik − jk + jk = p + ik > p− 1,

which contradicts our assumption, i.e., i− j is p-free of j.
(b)⇒ (a) We can easily see that

(i− j)k + jk = ik − jk + jk = ik ≤ p− 1,

and so by definition, we conclude the result.
(a) ⇒ (c) If i − j is p-free of j, then by part (b), we have ik ≥ jk for every k. Now, for every

k, we choose lk such that ik ≥ lk ≥ jk, and we put l =
∑

k≥0 lkpk. It is evident that j ≤ l ≤ i.
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Moreover, by Eq. (2), we observe that

(i− l)k + lk = ik − lk + lk = ik ≤ p− 1,

and also
(l − j)k + jk = lk − jk + jk = lk ≤ ik ≤ p− 1

which implies that i− l is p-free of l and l − j is p-free of j by definition.
(c) ⇒ (a) Assume that there exists j ≤ l ≤ i such that i − l is p-free of l and l − j is p-free of

j. Put l =
∑

k≥0 lkpk, where lk ∈ {0, 1, . . . , p− 1}. Then, by part (a), we obtain jk ≤ lk ≤ ik for
every k. Now, by Eq. (2), it follows that

(i− j)k + jk = ik − jk + jk = ik ≤ p− 1,

and so i− j is p-free of j by definition.
(d)⇔ (a) This follows immediately from Kummer Theorem.
This completes the proof of the lemma. �

Remark 2. Note that, if i ≥ j and i− j is p-free of j, then we have sp(i− j) = sp(i)− sp(j).

Lemma 4. Let p be a prime and n, r be positive integers. Then we have∑
0≤t≤n
sp(t)=r

(
n

t

)
≡
(

sp(n)
r

)
(mod p).

Proof. We write n =
d∑

k=0

nkpk in base p, so that 0 ≤ nk ≤ p − 1 for each k. Now, we consider

the following equation

(1 + X)sp(n) = (1 + X)n0(1 + X)n1 · · · (1 + X)nd(3)
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and compare the coefficient of Xr modulo p in both sides of this equation. Evidently, the coefficient
of Xr on the left-hand side of Eq. (3) is equal to

(
sp(n)

r

)
(mod p). On the other hand, the coefficient

of Xr on the right-hand side of Eq. (3) is equal to∑
r0+r1+···+rd=r

(
n0

r0

)(
n1

r1

)
· · ·
(

nd

rd

)
(mod p).(4)

But, by Lucas Theorem, the sum in Eq. (4) is congruent to∑
0≤t≤n
sp(t)=r

(
n

t

)
(mod p).

This completes the proof of the lemma. �

3. Proof of the Main Theorem

Proof. For the proof of the Eq. (1) we compute the (i, j)-th entry of Lp(x) · Lp(y), that is,

(Lp(x) · Lp(y))i,j =
∑

t

Lp(x)i,tLp(y)t,j .

First of all, since the matrices Lp(x) and Lp(y) are lower triangular matrices, thus Lp(x) ·Lp(y) is
also a lower triangular matrix. Furthermore, it is easy to see the product of row i of Lp(x) with
column i of Lp(y) is always 1, since every pair of entries except entry i is either 0 in the row or
0 in the column, and the product at entry i is 1 × 1 = 1 for i ≥ 1. Now, we must show that the
product of row i of Lp(x) with column j of Lp(y) when i > j is always Lp(x + y)i,j . Therefore,
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from now on we assume that i > j. In this case, the (i, j)-th entry of Lp(x) · Lp(y) is equal to

(Lp(x) · Lp(y))i,j =
i∑

t=j

Lp(x)i,tLp(y)t,j .

We now consider two cases separately:
Case 1. i− j is not p-free of j.
In this case, by Lemma 3, there does not exist t between j and i such that i − t is p-free of t

and t − j is p-free of j. Hence for every t between j and i, we have Lp(x)i,t = 0 or Lp(y)t,j = 0,
and so

(Lp(x) · Lp(y))i,j =
i∑

t=j

0 = 0 = Lp(x + y)i,j .

Case 2. i− j is p-free of j.
In this case, by Lemma 4, we have

(
i
j

)
(mod p) 6≡ 0. First, we notice that

(
i

t

)(
t

j

)
=
(

i

j

)(
i− j

t− j

)
, for i ≥ t ≥ j.(5)
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Now, we calculate the sum in question

(Lp(x) · Lp(y))i,j ≡
i∑

t=j

(
i

t

)(
t

j

)
xsp(i−t)ysp(t−j) (mod p)

≡
i∑

t=j

(
i

j

)(
i− j

t− j

)
xsp(i−t)ysp(t−j) (mod p) (by Eq. (5))

=
i−j∑
t=0

(
i

j

)(
i− j

t

)
xsp(i−j−t)ysp(t) (mod p)

If i− j− t is not p-free of t, then, by Lemma 3, we obtain that 0 ≡
(
i−j

t

)
(mod p). Hence, we may

restrict the last sum to 0 ≤ t ≤ i− j such that i− j − t is p-free of t. But then, by Remark 2, we
have sp(i− j − t) = sp(i− j)− sp(t). Thus we obtain

(Lp(x) · Lp(y))i,j =
(

i

j

) i−j∑
t=0

(
i− j

t

)
xsp(i−j)−sp(t)ysp(t) (mod p)

=
(

i

j

) sp(i−j)∑
r=0

{( ∑
0≤t≤i−j
sp(t)=r

(
i− j

t

))
xsp(i−j)−ryr

}
(mod p)

≡
(

i

j

) sp(i−j)∑
r=0

(
sp(i− j)

r

)
p

xsp(i−j)−ryr (mod p) (by Lemma 4)

=
(

i

j

)
(x + y)sp(i−j) = Lp(x + y)i,j (mod p)



JJ J I II

Go back

Full Screen

Close

Quit

as desired. �
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3. Bacher R., La suite de Thue-Morse et la catégorie Rec, Comptes Rendues Acad. Sci. Paris, Ser. I, 342 (2006),
161–164.

4. Callan D., Sierpinski’s triangle and the Prouhet-Thue-Morse word, arXiv:math/0610932v3 [math.CO], 18 Nov.
2006.

5. Graham R. L., Knuth D. E. and Patashnik O., Concrete mathematics, second edition, Addison-Wesley, 1994.
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