THE INVERSE OF THE PASCAL LOWER TRIANGULAR MATRIX
MODULO p
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ABSTRACT. Let L(n), be the Pascal lower triangular matrix with coefficients (;) (mod p),0 <4,5 < n.

In this paper, we found the inverse of L(n), modulo p. In fact, we generalize a result due to David
Callan [?7].

1. INTRODUCTION

Consider the infinite unipotent lower triangular matrix
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with coefficients L(c0);; = (;), i,j > 0, where, as usual, we use the convention (;) =0ifi < j.
We denote by L(n) the n x n principal submatrix with coefficients L(n); ;, 0 < ,j < n obtained

by considering the first n rows and columns of L(co). Given a prime p, we define L(n), with
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coefficients (L(n),)i; € {0,1,...,p — 1} as the reduction modulo p of L(n) by setting

(L(n)y)is = C) (el ) & 0 1Ly — 11

For instance, the matrices L(5)s, L(6)s and L(7)5 are given as follows:

1
3 ¥
1 2 1
L(4)s = 1 0 1 L(5)3 = 100 1
SRR
1 2 1 1 2 1
1
1 1
1 2 1
LE)s=]| 1 3 3 1
1 4 1 4 1
1 0 0 0 0 1
1 1.0 0 0 1 1

For a prime p and a positive integer n, we denote by s,(n) the sum of the digits in the base-p
representation of the integer n, that is, s,(n) = >, <, nx when writing n = Y, o, nxp” in base p.
The Thue-Morse sequence - a

o

t:{t(n)ZSQ(n) (mod2)} =0110100110010110...,

n=0



records the parity of the sum of the binary digits of n = Zkzo nk2*. It can also be defined
recursively by ¢(0) = 0, t(2n) = t(n), t(2n + 1) = ¢(n), for all n > 0, where, for z € {0,1}, we
define T = 1 — x. The sequence t has appeared in various fields of mathematics, see, for instance,
[?]. Replacing 0 by a and 1 by b yields the Thue-Morse sequence on the alphabet A = {a, b} (called
the +1 Thue-Morse sequence if ¢ = 1 and b = —1)

t(a,b)=abbabaabbaababba ...

In [?], David Callan showed that the sequence t is related to the matrix L(co)2. In fact, the
following result is due to Callan.

Callan Theorem ([?]). The inverse matriz of L(c0)2 is a (0,%1)-matriz. It has the same
pattern of zeroes as L(co)s and the nonzero entries in each column form the +£1 Thue-Morse
sequence.

In order to prove his result, Callan defined the lower triangular matrix Lo(z) with entries
Lo(x)i; by

Ly ()i = (l

):c”(i_j) (mod 2) for each 4,7 > 0,
J

and then he showed that Ly(z) + La(y) = La(x + y). It is worth mentioning that, Roland Bacher
and Robin Chapman have obtained the same result observing that the 2 x 2% upper left submatrix

(1) (see [?], [?]). Here, we are going to generalize
Callan Theorem. Following Callan [?], we present the following definition.

of Ly(z) is the k-fold Kronecker product of < i



Definition 1. Let z be an indeterminate. Define the infinite lower triangular matrix L, (z)
with coefficients L,(x); ; by setting

Ly(x)i; = (;) 250 (i=9) (mod p).

In particular, we have L,(1) = L(c0)p.

Then the matrices Ly(z) and Ls(z), for example, are given by

1
x 1
z 0 1
22 oz oz 1
_ zx 0 0 0 1
LQ(x)_ 2z 0 0 =z 1
22 0 z 0 =z 0 1
2 22 22z 22 oz oz 1




and

1
z 1
2 2z 1
z 0 0 1
Ls(z) = 2 =z 0 =z 1
3 222 x 22 2z 1
z2 0 0 2z 0 0 1
22 22 0 222 2z 0 2z 1

Indeed, the purpose of this paper is to prove the following theorem.

Main Theorem. Let p be a prime and let © and y be indeterminates. Then there holds
(1) Ly(x) - Lp(y) = Ly(z +y) (mod p).
In particular, we conclude that L,(1)~* = L,(—1) (mod p).

It is worth mentioning that the idea in the proof of this Theorem follows that one of Callan [?].
As an immediate consequence of Main Theorem, we have the following.

Corollary 1. If n is a positive integer, then we have L,(x)" = L,(nz) (mod p).

Proof. By an easy induction on n. |

r

Corollary 2. If r is a rational number, then we have L,(r) = L,(1)" (mod p).

Proof. Let r = ==, with m,n positive integers. Then, by Corollary 1, we obtain

Ly = Ly ()" = Ly(m) = Ly()™  (mod p).



For negative r, it now suffices to show that L,(1)™! = L,(—1) (mod p), and this follows
Ly(-1)L,(1) = Ly(—14+1)=L,(0) =1 (mod p),
by Main Theorem. This completes the proof of the corollary. O

Remark 1. Note that the main result of this paper can also be obtained by the Kronecker
product method attributed to Roland Bacher: the p* x p* upper left submatrix of L,(x) is the
k-fold Kronecker product of the upper left p x p submatrix of L, (z).

2. PRELIMINARIES

In this section, we collect a number of results that we will need in the proof of the Main theorem.
We start with a well-known result due to Lucas. In fact, Lucas discovered an easy method to
determine the value of (") (mod p).

Lemma 1 (Lucas Theorem [?]). Let p be a prime number and m,n be non-negative integers.

Suppose
m = Z mip® and n = Z nkp”,
k>0 k>0

are written in base p, that is, mg,ng € {0,1,...,p — 1} for all k. Then we have

() = (o) () () Cmot

In 1852 Kummer showed that the power of prime p that divides the binomial coefficient (;) is
given by the number of ‘carries’ when we add j and ¢ — j in base p.
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Lemma 2 (Kummer Theorem [?]). If p is a prime number, then its exponent in the canonical
expansion of the binomial coefficient (;) into prime factors is equal to the number of carries required
when adding the numbers j and i — j in base p.

er ((£)) = enid - eatdt) = eni =0,

where e, (k) is the exponent of p in the prime factorization of k. It is not difficult to see that

ep(kl) = LE)J e {EJ e

p2

Proof. Note that the identity

implies that

because among the numbers 1,2, ..., k, there are exactly [%J numbers divisible by p, exactly LI%J
numbers divisible by p?, and so on. Thus,

«(() -2 (5151152

Now, it suffices to note that in this sum, the Ith summand is either 1 or 0 depending on whether
or not there is a carry from the (I — 1)th digit. O

Definition 2. Let p be a prime and i, j be non-negative integers. Suppose

i=) ap® and =) gt

k>0 k>0



are written in base p. We say i is p-free of j if
0<ir+jx<p—1, forallk.

Lemma 3. Let p be a prime number and let i and j be positive integers with i > j. Suppose
that i =3 1<, inp® and j = P Jrp* are written in base p. Then, the following four statements
are equivalent: -

(a) i —j is p-free of j.

(b) for every k >0, ig > jg.

c) There exists I between i and j such that i — 1 is p-free of | and | — j is p-free of j.

(d) 0% () (mod p).

Proof. Before starting the proof we give an easy observation

S ik — Jk it ig > Jk
2 = g T ae 4 ]
@) (=) { ptik—ge i ip <Jk

(a) = (b) Assume the contrary that there exists k such that iy < ji. But then, by Eq. (2), we

have
((—Jk+ijk=p+ik—Jr+jr=p+ir>p—1,
which contradicts our assumption, i.e., i — j is p-free of j.
Go back (b) = (a) We can easily see that

Full Screen (i_j)k"i_jk:ik_jk +ik =1k <p—1,
and so by definition, we conclude the result.
Close (a) = (c) If i — j is p-free of j, then by part (b), we have iy > ji for every k. Now, for every
k, we choose [ such that i > lx > ji, and we put [ = Zkzolkpk- It is evident that j <1 < 1.

Quit




Moreover, by Eq. (2), we observe that

(=D +tlh=ir -+l =i <p-—1,
and also

=k +ik =l —Jk+je =l <ipr <p-—1
which implies that 7 — [ is p-free of [ and [ — j is p-free of j by definition.
(¢) = (a) Assume that there exists j <[ < i such that ¢ — [ is p-free of [ and | — j is p-free of

J- Put I =350 lkp¥, where I, € {0,1,...,p — 1}. Then, by part (a), we obtain j, < I, < iy for
every k. Now, by Eq. (2), it follows that

(6 =Gk +Jk =1k —Jk + ik =1k <p—1,

and so ¢ — j is p-free of j by definition.
(d) & (a) This follows immediately from Kummer Theorem.
This completes the proof of the lemma. O

Remark 2. Note that, if i > j and i — j is p-free of j, then we have s,(i — j) = s,(2) — sp(J).

Lemma 4. Let p be a prime and n,r be positive integers. Then we have

= ()=(4)

0<t<n
sp(t)=r
d
Proof. We write n = >_ np* in base p, so that 0 < ny < p — 1 for each k. Now, we consider
k=0

the following equation
(3) (1+X)*™ = (14 X)™(L+ X)™ - (14 X)™



and compare the coefficient of X” modulo p in both sides of this equation. Evidently, the coefficient
of X" on the left-hand side of Eq. (3) is equal to (31"(”)) (mod p). On the other hand, the coefficient

T

of X" on the right-hand side of Eq. (3) is equal to

g 2 () () mean

But, by Lucas Theorem, the sum in Eq. (4) is congruent to

> (Z) (mod p).

0<t<n
sp(t)=r

This completes the proof of the lemma. O

3. PROOF OF THE MAIN THEOREM

Proof. For the proof of the Eq. (1) we compute the (i, j)-th entry of L,(z) - L,(y), that is,

(Lp(@) - Lp(®))i = Y Lp(@)itLp(y)e5-

First of all, since the matrices L,(x) and L,(y) are lower triangular matrices, thus Ly(z) - L,(y) is
also a lower triangular matrix. Furthermore, it is easy to see the product of row i of L,(z) with
column ¢ of Ly(y) is always 1, since every pair of entries except entry i is either 0 in the row or
0 in the column, and the product at entry ¢ is 1 x 1 = 1 for ¢ > 1. Now, we must show that the
product of row i of L,(x) with column j of L,(y) when i > j is always Ly,(x + y); j. Therefore,
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from now on we assume that ¢ > j. In this case, the (4, j)-th entry of L,(x) - L,(y) is equal to

(Lp(@) - Lp@))is = 3 Lp(@)ieLpW)es:

We now consider two cases separately:

CASE 1. i — j is not p-free of j.

In this case, by Lemma 3, there does not exist ¢ between j and ¢ such that i — ¢ is p-free of ¢
and ¢t — j is p-free of j. Hence for every t between j and i, we have L,(z);: = 0 or L,(y):,; = 0,
and so

(Lp(2) - Lp(y))iy = Zo =0=Ly(z+y)i,

CASE 2. i — j is p-free of j. _
In this case, by Lemma 4, we have (;) (mod p) # 0. First, we notice that

(O -O6) were
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Now, we calculate the sum in question

L) L@y = 3 (1) (§)zre0me= - (uoa

t=j

t=j 4 =

i=J 4. ; 1
(e

=0 t

If 4 — j —t is not p-free of ¢, then, by Lemma 3, we obtain that 0 = (*}7) (mod p). Hence, we may
restrict the last sum to 0 < ¢ < i — j such that i — j — t is p-free of t. But then, by Remark 2, we
have s,(i —j —t) = sp(i — j) — sp(t). Thus we obtain

i—j

(Lp(x) - Lp(y))i,; = (Z) > (Z ; J ) =)=y ®  (mod p)

J/ =

()% (T (VP man
Z S

2

J r= 0<t<i—j
sP(t)=r

=0
y)0=) = L,(z+y)i; (mod p)

(e

sp(i—3) . .
(;) ( p(zr— J)> 220D~y (mod p) (by Lemma 4)
r=0 P



as desired. 0
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