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A MULTI-STEP ITERATIVE METHOD FOR APPROXIMATING
FIXED POINTS OF PRESIĆ-KANNAN OPERATORS

M. PĂCURAR

Abstract. The convergence of a Presić type k-step iterative method for a new class
of operators f : Xk → X satisfying a general Presić type contraction condition is

proved. Our result is completing an existing list of Presić type iteration methods,

see [Rus I. A., An iterative method for the solution of the equation x = f(x, . . . , x),

Rev. Anal. Numer. Theor. Approx., 10(1) (1981), 95–100] and the recent [Ćirić

L. B., Presić S. B., On Presić type generalization of the Banach contraction map-
ping principle, Acta Math. Univ. Comenianae, 76(2) (2007), 143–147], having

significant potential applications in the study of nonlinear difference equations.

1. Introduction

A dynamic field of research is today devoted to the study of nonlinear difference
equations, as proved by a great number of very recent papers on related topics,
with applications in economics, biology, ecology, genetics, psychology, sociology,
probability theory and others (see for example [4], [5], [7], [8], [10], [11], [12], [13],
[18], [21], [22] and the references therein). Beside some equations present in the
titles of the cited papers, we could also mention some known difference equations,
to be found for example in [18], [21] and the papers referred there:
• the generalized Beddington-Holt stock recruitment model:

xn+1 = axn +
bxn−1

1 + cxn−1 + dxn
, x0, x1 > 0, n ∈ N,

where a ∈ (0, 1), b ∈ R∗+ and c, d ∈ R+ with c+ d > 0;
• the delay model of a perennial grass:

xn+1 = axn + (b+ cxn−1)exn , n ∈ N,

where a, c ∈ (0, 1) and b ∈ R+;
• the flour beetle population model:

xn+3 = axn+2 + bxne
−(cxn+2+dxn), n ∈ N,

where a, b, c, d ≥ 0 and c+ d > 0.
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These suggest considering the k-th order nonlinear difference equation

(1.1) xn+k = f(xn, . . . , xn+k−1), n ∈ N,
with the initial values x0, . . . , xk ∈ X, where (X, d) is a metric space, k ∈ N, k ≥ 1
and f : Xk → X.

Equation (1.1) can be studied by means of a fixed point theory in view of the
fact that x∗ ∈ X is a solution of (1.1) if and only if x∗ is a fixed point of f , that is

x∗ = f(x∗, . . . , x∗).

One of the most important results on this direction has been obtained by
S. Presić in [14]:

Theorem 1 (S. Presić [14], 1965). Let (X, d) be a complete metric space, k
a positive integer, α1, α2, . . . , αk ∈ R+,

∑k
i=1 αi = α < 1 and f : Xk → X a

mapping satisfying

d(f(x0, . . . , xk−1), f(x1, . . . , xk)) ≤ α1d(x0, x1) + · · ·+ αkd(xk−1, xk),(P)

for all x0, . . . , xk ∈ X.
Then:
1) f has a unique fixed point x∗ ∈ X;
2) the sequence {xn}n≥0 defined by

(1.2) xn+1 = f(xn−k+1, . . . , xn) , n = k − 1, k, k + 1, . . .

converges to x∗ for any x0, . . . , xk−1 ∈ X.

Notice that Theorem 1 is an inspired generalization of the Contraction Mapping
Principle of Banach, which can be derived for k = 1.

An important generalization of Theorem 1, probably not yet sufficiently ex-
ploited in applications, was proved in I. A. Rus [17], see also [18], for operators f
fulfilling

d(f(x0, . . . , xk−1), f(x1, . . . , xk)) ≤ ϕ(d(x0, x1), . . . , d(xk−1, xk)),(PR)

for any x0, . . . , xk ∈ X, where ϕ : Rk
+ → R+ satisfies:

a) if r, s ∈ Rk
+, r ≤ s, then ϕ(r) ≤ ϕ(s);

b) if t ∈ R+, t > 0, then ϕ(t, . . . , t) < t;
c) ϕ is continuous;

d)
∞∑

i=0

ϕi(r) <∞ for any r ∈ Rk
+;

e) ϕ(t, 0, . . . , 0) + ϕ(0, t, 0, . . . , 0) + · · · + ϕ(0, . . . , 0, t) ≤ ϕ(t, . . . , t) for any
t ∈ R+.

Significant related results can be found in [20].
Another important generalization of Presić’ result was recently obtained by

L. Ćirić and S. Presić in [6], where the following contraction condition is consid-
ered:

d(f(x0, . . . , xk−1), f(x1, . . . , xk)) ≤ λmax{d(x0, x1), . . . , d(xk−1, xk)}(PC)
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for any x0, . . . , xk ∈ X, where λ ∈ (0, 1). It is not difficult to notice that ϕ : Rk
+ →

R+, ϕ(t1, . . . , tk) = λmax{t1, . . . , tk}, corresponding to condition (PC), does not
satisfy condition e) in the theorem of I. A. Rus.

The applicability of the result due to L. Ćirić and S. Presić to the study of
global asymptotic stability of the equilibrium for the nonlinear difference equation
(1.1) is revealed, for example, in the very recent paper [5].

Motivated by this background and also by the importance of the convergence
of k-step iteration methods in the study of nonlinear equations (see, for example,
the famous monograph [13] of J. M. Ortega and W. C. Rheinboldt), in this paper
we prove the convergence of the k-step iteration method defined by (1.1) for a new
class of Presić type operators, also providing an estimate of its rate of convergence.

Unlike the theorems mentioned above, our result does not generalize the Con-
traction Principle of Banach, but the independent (see [15]) one due to R. Kannan
[9] who considers the condition:

d(f(x), f(y)) ≤ k[d(x, f(x)) + d(y, f(y))]

for any x, y ∈ X, where f : X → X and k ∈ [0, 1
2 ).

In order to certify the validity of the main result, we shall also include a very
simple example of operator f : [0, 1]× [0, 1]→ [0, 1] which satisfies the new Presić-
-Kannan condition, but does not satisfy any of the previously mentioned Presić
type conditions (P), (PR) or (PC).

In other words, a new class of Presić type operators, which cannot be ap-
proached by means of other Presić type theorems, is outlined. Therefore the
convergence result proved in this paper has a significant potential applicability in
the study of nonlinear difference equations.

2. The main result

In order to prove our main result, we need the following lemma given by S. Presić
[14].

Lemma 1 (Presić, [14]). Let k ∈ N, k 6= 0 and α1, α2, . . . , αk ∈ R+ such that
k∑

i=1

αi = α < 1. If {∆n}n≥1 is a sequence of positive numbers satisfying

(2.1) ∆n+k ≤ α1∆n + α2∆n+1 + . . .+ αk∆n+k−1, n ≥ 1.

Then there exist L > 0 and θ ∈ (0, 1) such that

(2.2) ∆n ≤ L · θn, for all n ≥ 1.

The main result of this paper is the following theorem.
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Theorem 2. Let (X, d) be a complete metric space, k a positive integer, a ∈ R
a constant such that 0 < ak(k + 1) < 1 and f : Xk → X a mapping satisfying the
following contractive type condition:

d(f(x0, . . . , xk−1), f(x1, . . . , xk)) ≤ a
k∑

i=0

d(xi, f(xi, . . . , xi))(PK)

for any x0, x1, . . . , xk ∈ X.
Then:

1) f has a unique fixed point x∗, that is, there exists a unique x∗ ∈ X such
that f(x∗, . . . , x∗) = x∗;

2) the sequence {yn}n≥0,

(2.3) yn+1 = f(yn, yn, . . . , yn), n ≥ 0,

converges to x∗;
3) the sequence {xn}n≥0 with x0, . . . , xk−1 ∈ X and

(2.4) xn = f(xn−k, xn−k+1, . . . , xn−1), n ≥ k,
also converges to x∗ with a rate estimated by:

(2.5) d(xn+1, x
∗) ≤ aL

1−A
Mθn, n ≥ 0,

where M = θ1−k + 2θ2−k + · · ·+ k, A =
ak(k + 1)

2
, L > 0 and θ ∈ (0, 1).

Proof. Let F : X → X, F (x) = f(x, x, . . . , x), x ∈ X. For any x, y ∈ X, one
has:

d(F (x), F (y)) = d(f(x, x, . . . , x), f(y, y, . . . , y))

≤ d(f(x, . . . , x), f(x, . . . , x, y))

+ d(f(x, . . . , x, y), f(x, . . . , x, y, y)) + . . .

+ d(f(x, y, . . . , y), f(y, . . . , y)).
By (PK) it follows that

d(F (x), F (y)) ≤ a

d(x, f(x, . . . , x)) + . . .+ d(x, f(x, . . . , x))︸ ︷︷ ︸
k times

+d(y, f(y, . . . , y))



+ a

d(x, f(x, . . . , x)) + . . .+ d(x, f(x, . . . , x))︸ ︷︷ ︸
k−1 times

+

+ d(y, f(y, . . . , y)) + d(y, f(y, . . . , y))︸ ︷︷ ︸
2 times

+ . . .

+ a

d(x, f(x, . . . , x))+d(y, f(y, . . . , y))+. . .+d(y, f(y, . . . , y))︸ ︷︷ ︸
k times

 ,
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so
d(F (x), F (y)) ≤ ad(x, f(x, . . . , x))[k + (k − 1) + . . .+ 1]

+ ad(y, f(y, . . . , y))[1 + 2 + . . .+ k]

and finally

d(F (x), F (y)) ≤ ak(k + 1)
2

[d(x, f(x, . . . , x)) + d(y, f(y, . . . , y))] .

Thus

(2.6) d(F (x), F (y)) ≤ ak(k + 1)
2

[d(x, F (x)) + d(y, F (y))]

for any x, y ∈ X.
As a was assumed to satisfy 0 < ak(k+ 1) < 1, it follows that 0 < ak(k+1)

2 < 1
2 ,

so F is a Kannan operator. According to the fixed point theorem due to Kannan
[9], there exists a unique x∗ ∈ X such that F (x∗) = x∗, namely

x∗ = f(x∗, . . . , x∗),

and this can be obtained as a limit of the sequence of successive approximations
of F . We mean exactly the sequence {yn}n≥0 defined by (2.3).

Now we shall prove the convergence of the k-step method given by the above
sequence {xn}n≥0 defined by relation (2.4). As we already know that f has a
unique fixed point x∗ ∈ X, we may write:

d(xn+1, x
∗) = d(f(xn−k+1, xn−k+2, . . . , xn), f(x∗, x∗, . . . , x∗))

≤ d(f(xn−k+1, . . . , xn), f(xn−k+2, . . . , xn, x
∗))

+ d(f(xn−k+2, . . . , xn, x
∗), f(xn−k+3, . . . , xn, x

∗, x∗)) + . . .

+ d(f(xn, x
∗, . . . , x∗), f(x∗, x∗, . . . , x∗)),

(2.7)

which yields

d(xn+1, x
∗) ≤ a [d(xn−k+1, F (xn−k+1)) + . . .+ d(xn, F (xn)) + d(x∗, F (x∗))]

+ a [d(xn−k+2, F (xn−k+2)) + . . .+ d(xn, F (xn))

+ d(x∗, F (x∗)) + d(x∗, F (x∗))] + . . .

+ a [d(xn, F (xn)) + d(x∗, F (x∗)) + . . .+ d(x∗, F (x∗))] .

Since d(x∗, F (x∗)) = 0, this implies

(2.8)
d(xn+1, x

∗) ≤ a [1 · d(xn−k+1, F (xn−k+1) + 2 · d(xn−k+2, F (xn−k+2))

+ . . .+ k · d(xn, F (xn))] .

For each j ∈ N, the following holds

(2.9) d(xj , F (xj)) ≤ d(xj , x
∗) + d(x∗, F (xj)).



82 M. PĂCURAR

Also, by (2.6), one has

(2.10)

d(x∗, F (xj)) = d(F (x∗), F (xj))

≤ ak(k + 1)
2

[d(x∗, F (x∗)) + d(xj , F (xj))]

= a
k(k + 1)

2
d(xj , F (xj)).

Thus (2.9) becomes

d(xj , F (xj)) ≤ d(xj , x
∗) + a

k(k + 1)
2

d(xj , F (xj)).

By denoting A = ak(k+1)
2 , now we get

(2.11) d(xj , F (xj)) ≤ 1
1−A

d(xj , x
∗),

for each j ∈ N.
Using (2.11) in inequality (2.8), we obtain

(2.12)
d(xn+1, x

∗) ≤ a

1−A
d(xn−k+1, x

∗) +
2a

1−A
d(xn−k+2, x

∗) + . . .

+
ka

1−A
d(xn, x

∗).

Now, by denoting
∆n = d(xn, x

∗), n ≥ 0,

αi =
i · a

1−A
, i = 1, k,

the above inequality (2.12) becomes

(2.13) ∆n+1 ≤ α1∆n−k+1 + α2∆n−k+2 + . . .+ αk∆n, n ≥ k.

The coefficients α1, α2, . . . , αk are all positive, as 0 < a < 1
k(k+1) . Besides,

k∑
i=1

αi =
k∑

i=1

ia

1−A
=

a

1−A

k∑
i=1

i =
a

1−A
· k(k + 1)

2
=

A

1−A
,

so, considering the conditions on a and implicitely on A, it is easy to prove that
k∑

i=1

αi < 1.

Now the conditions required in Lemma 1 are fulfilled. Consequently, there exist
L > 0 and θ ∈ (0, 1) such that ∆n ≤ Lθn, n ≥ 1, namely such that

(2.14) d(xn, x
∗) ≤ Lθn, n ≥ 1.

It follows immediately that d(xn, x
∗) → 0 as n → ∞, so the sequence {xn}n≥0

converges to x∗, the unique fixed point of the operator f .
The estimation (2.5) is easily obtained from (2.12), by repeatedly using inequality
(2.14).

Now the proof is complete. �
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Remark 1. In the particular case k = 1, from Theorem 2 we obtain Kannan’s
fixed point theorem for discontinuous mappings in [9].

A corresponding data dependence result can also be proved:

Theorem 3. Let (X, d) be a complete metric space, k a positive integer, f :
Xk → X as in Theorem 2 and g : Xk → X satisfying:

ι) g has at least one fixed point x∗g ∈ X;
ιι) there exists η > 0 such that for any x ∈ X

d(f(x, . . . , x), g(x, . . . , x)) ≤ η.

Then

(2.15) d(x∗f , x
∗
g) ≤

[
1 + a · k(k + 1)

2

]
η,

where Ff = {x∗f}.

Proof. By Theorem 2, condition ι) above guarantees the existence and unique-
ness of the fixed point x∗f for f . Thus we may write

d(x∗f , x
∗
g) = d(f(x∗f , . . . , x

∗
f ), g(x∗g, . . . , x

∗
g))

≤ d(f(x∗f , . . . , x
∗
f ), f(x∗g, . . . , x

∗
g)) + d(f(x∗g, . . . , x

∗
g), g(x∗g, . . . , x

∗
g)).

By ιι) we can write

d(x∗f , x
∗
g) ≤ η + d(f(x∗f , . . . , x

∗
f ), f(x∗f , . . . , x

∗
f , x
∗
g))

+ . . .+ d(f(x∗f , x
∗
g, . . . , x

∗
g), f(x∗g, . . . , x

∗
g))

and further on

d(x∗f , x
∗
g) ≤ η + a

[
d(x∗f , f(x∗f , . . . , x

∗
f )) + . . .

+d(x∗f , f(x∗f , . . . , x
∗
f )) + d(x∗g, f(x∗g, . . . , x

∗
g))
]
. . .

+ a
[
d(x∗f , f(x∗f , . . . , x

∗
f )) + d(x∗g, f(x∗g, . . . , x

∗
g)) + . . .

+ d(x∗g, f(x∗g, . . . , x
∗
g))
]
.

After some elementary calculations

d(x∗f , x
∗
g) ≤ η + ad(x∗g, f(x∗g, . . . , x

∗
g))[1 + 2 + . . .+ k]

= η + a
k(k + 1)

2
d(x∗g, f(x∗g, . . . , x

∗
g))

= η + a
k(k + 1)

2
d(g(x∗g, . . . , x

∗
g), f(x∗g, . . . , x

∗
g)),

we finally get to

d(x∗f , x
∗
g) ≤

[
1 + a

k(k + 1)
2

]
η.

�
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Remark 2. Note that if we consider the conditions on a in Theorem 3, esti-
mation (2.15) actually implies that

d(x∗f , x
∗
g) ≤ 3

2
η.

Obviously,
[
1 + a

k(k + 1)
2

]
η as well as

3
2
η tends to zero as η → 0.

3. Conclusions

Before formulating a conclusion, let us present an elementary example of operator
that can be approached by means of Theorem 2, whereas other known Presić type
theorems cannot be applied.

Example 1. Let f : [0, 1]× [0, 1]→ [0, 1] be defined by

(3.1) f(x, y) =


1
6
, x <

3
4
, y ∈ [0, 1]

1
15
, x ≥ 3

4
, y ∈ [0, 1].

Then:
1) f is a Presić-Kannan operator, i.e., it satisfies condition (PK);
2) f is not a Presić operator, i.e., it does not satisfy condition (P);
3) f is not a Ćirić-Presić operator, i.e., it does not satisfy condition (PC);
4) f is not a Presić-Rus operator, i.e., it does not satisfy condition (PR).

Proof. 1) In the first part of the proof we will show that f is a Presić-Kannan
operator. In this particular case condition (PK) becomes

|f(x0, x1)− f(x1, x2)| ≤ a[|x0 − f(x0, x0)|+ |x1 − f(x1, x1)|
+ |x2 − f(x2, x2)|],

(Ex.P-K)

for any x0, x1, x2 ∈ [0, 1], where a ∈ [0, 1
6 ) is constant.

Considering the way of defining f , we may divide the domain [0, 1] × [0, 1] in
four regions:

D1 =
{

(x, y) | 0 ≤ x, y < 3
4

}
D2 =

{
(x, y) | 3

4
≤ x ≤ 1; 0 ≤ y < 3

4

}
D3 =

{
(x, y) | 3

4
≤ x, y ≤ 1

}
D4 =

{
(x, y) | 0 ≤ x < 3

4
;

3
4
≤ y ≤ 1

}
.

Indeed, [0, 1]× [0, 1] = D1 ∪D2 ∪D3 ∪D4.
With these notations, due to the way of defining f , we have to discuss 5 cases:

I. (x0, x1) ∈ D1 or (x0, x1) ∈ D3, while x2 ∈ [0, 1].
Then f(x0, x1) = f(x1, x2) and the left-hand side of (Ex.P-K) is equal to 0.
Consequently, (Ex.P-K) holds for any x0, x1, x2 in the specified domains
and any a ∈

[
0, 1

6

)
.
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II. (x0, x1) ∈ D2, x2 <
3
4

.

Then f(x0, x1) =
1
15

, f(x1, x2) =
1
6

,

and f(x0, x0) =
1
15

, f(x1, x1) =
1
6

, f(x2, x2) =
1
6

.

Thus condition (Ex.P-K) becomes

(3.2)
1
10
≤ a

[∣∣∣∣x0 −
1
15

∣∣∣∣+
∣∣∣∣x1 −

1
6

∣∣∣∣+
∣∣∣∣x2 −

1
6

∣∣∣∣] ,
but:

3
4
≤ x0 ≤ 1⇒ 41

60
≤ x0 −

1
15
≤ 14

15
⇒
∣∣∣∣x0 −

1
15

∣∣∣∣ ≥ 41
60

;

0 ≤ x1 <
3
4
⇒ −1

6
≤ x1 −

1
6
<

7
12
⇒
∣∣∣∣x1 −

1
6

∣∣∣∣ ≥ 0;

0 ≤ x2 <
3
4
⇒ −1

6
≤ x2 −

1
6
<

7
12
⇒
∣∣∣∣x2 −

1
6

∣∣∣∣ ≥ 0,

so
∣∣∣∣x0 −

1
15

∣∣∣∣+
∣∣∣∣x1 −

1
6

∣∣∣∣+
∣∣∣∣x2 −

1
6

∣∣∣∣ ≥ 41
60

and by (3.2) it follows that

1
10
≤ a41

60
.

Consequently, for (3.2) to hold, it is necessary that a ≥ 6
41

.

III. (x0, x1) ∈ D2, x2 ≥
3
4

.

Then f(x0, x1) =
1
15

, f(x1, x2) =
1
6

,

and f(x0, x0) =
1
15

, f(x1, x1) =
1
6

, f(x2, x2) =
1
15

.

Thus condition (Ex.P-K) becomes

(3.3)
1
10
≤ a

[∣∣∣∣x0 −
1
15

∣∣∣∣+
∣∣∣∣x1 −

1
6

∣∣∣∣+
∣∣∣∣x2 −

1
15

∣∣∣∣] .
But: ∣∣∣∣x0 −

1
15

∣∣∣∣ ≥ 41
60
,

∣∣∣∣x1 −
1
6

∣∣∣∣ ≥ 0,
∣∣∣∣x2 −

1
15

∣∣∣∣ ≥ 41
60
,

so
∣∣∣∣x0 −

1
15

∣∣∣∣+
∣∣∣∣x1 −

1
6

∣∣∣∣+
∣∣∣∣x2 −

1
6

∣∣∣∣ ≥ 41
30

,

and by (3.3) it follows that

1
10
≤ a41

30
.

Consequently, for (3.3) to hold, it is necessary that a ≥ 3
41

.



86 M. PĂCURAR

IV. (x0, x1) ∈ D4, x2 <
3
4

.

Similarly to case II, it follows that a ≥ 6
41

.

V. (x0, x1) ∈ D4, x2 ≥
3
4

.

Similarly to case III, it follows that a ≥ 3
41

.

The conclusion after analyzing these 5 cases is that f given by (3.1) is a Presić-
Kannan operator, that is, it satisfies (PK) for any x0, x1, x2 ∈ [0, 1], with constant

a ∈
[

6
41
,

1
6

)
.

2) Now, we shall prove that f is not a Presić operator. In our particular case
inequality (P) becomes

|f(x0, x1)− f(x1, x2)| ≤ α1 |x0 − x1|+ α2 |x1 − x2| ,(Ex.P)

where α1, α2 ∈ R+, α1 + α2 < 1.

It suffices to take, for example, x0 =
3
4

and x1 = x2 =
7
10

. Then f(x0, x1) =
1
15

,

while f(x1, x2) =
1
6

and inequality (Ex.P) becomes∣∣∣∣ 1
15
− 1

6

∣∣∣∣ ≤ α1

∣∣∣∣34 − 7
10

∣∣∣∣+ α2

∣∣∣∣ 7
10
− 7

10

∣∣∣∣ ,
which is equivalent to

(3.4)
1
10
≤ α1

1
20
.

Since α1 < 1, it is obvious that (3.4) will never hold. Thus f is not a Presić
operator.

3) We shall prove that f is neither a Ćirić-Presić operator. In our particular
case inequality (PC) becomes:

|f(x0, x1)− f(x1, x2)| ≤ λmax{|x0 − x1| , |x1 − x2|},(Ex.PC)

where λ ∈ (0, 1).

For the same values as above, namely x0 =
3
4

and x1 = x2 =
7
10

, (Ex.PC) is:

1
10
≤ λmax

{
1
20
, 0
}
,

which again never holds since λ ∈ (0, 1).

4) At last we shall prove that f does not satisfy the condition (PR) mentioned
above. In our particular case this would imply the existence of a function ϕ :
R2

+ → R+ with the following properties:
a) r = (r1, r2), s = (s1, s2) ∈ R2

+, r ≤ s, ϕ(r1, r2) ≤ ϕ(s1, s2);
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b) ϕ(t, t) < t, for any t ∈ R+, t > 0;
c) ϕ is continuous;

d)
∞∑

i=0

ϕ(r) <∞, for any r ∈ R2
+;

e) ϕ(t, 0) + ϕ(0, t) ≤ ϕ(t, t), for any t ∈ R+,

such that the following also holds

(3.5) |f(x0, x1)− f(x1, x2)| ≤ ϕ(|x0 − x1| , |x1 − x2|)

for any x0, x1, x2 ∈ [0, 1].

Letting ε > 0, x0 =
3
4
− ε < 3

4
, x1 =

3
4
≥ 3

4
and x2 =

3
4
∈ [0, 1], we have

f(x0, x1) =
1
6

, f(x1, x2) =
1
15

. Then (3.5) becomes

(3.6)
1
10
≤ ϕ(|x0 − x1| , |x1 − x2|).

Since |x0 − x1| = ε and |x1 − x2| = 0, (3.6) becomes

1
10
≤ ϕ(ε, 0).

Using the properties of ϕ, this implies

1
10
≤ ϕ(ε, ε) < ε

which obviously does not hold for any ε > 0, so f cannot be a Presić-Rus operator.
�

As shown by this simple example, there are operators (not necessarily con-
tinuous) and corresponding difference equations which cannot be approached by
means of the Presić type results mentioned in the introductory section, but to
which Theorem 2 can be applied.

Therefore, for example, in view of the study in [5] based on the theorem of L.
Ćirić and S. Presić, Theorem 2 proposed in the present paper appears to have
potential applicability in the study of nonlinear difference equations, targeting
special classes of operators that cannot be approached by means of other known
Presić type theorems.
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6. Cirić L. B. and Presić S. B., On Presić type generalization of the Banach contraction mapping

principle, Acta Math. Univ. Comenianae, 76(2) (2007), 143-147.

7. Devault R., Dial G., Kocic V. L. and Ladas G., Global behavior of solutions of xn+1 =
axn + f(xn, xn−1), J. Difference Eq. Appl., 3 (1998), 311–330.

8. El-Metwally H., Grove E. A., Ladas G., Levins R. and Radin, M., On the difference equation
xn+1 = α+ βxn−1e−xn , Nonlinear Anal., 47(7) (2001), 4623–4634.

9. Kannan R., Some results on fixed points, Bull. Calcutta Math. Soc. 10 (1968) 71–76.

10. Kocic V. L., A note on the non-autonomous Beverton-Holt model, J. Difference Equ. Appl.,
11(4-5) (2005), 415–422.

11. Kocic V. L. and Ladas, G., Global asymptotic behavior of nonlinear difference equations of

higher order with applications, Kluwer Academic Publishers, Dordrecht, 1993.
12. Kuruklis S. A., The asymptotic stability of xn+1 − axn + bxn−k = 0, J. Math. Anal. Appl.,

188 (1994), 719–731.

13. Ortega J. M. and Rheinboldt W. C., Iterative solution of nonlinear equations in several
variables, Academic Press, New York, 1970.
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