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SOME SIMPLE EXTENSIONS OF EULERIAN LATTICES

A. VETHAMANICKAM and R. SUBBARAYAN

Abstract. Let L be a lattice. If K is a sublattice of L, then L is called an ex-

tension of K. Lattice extension concept was elaborately studied by G. Grätzer and
E. T. Schmidt in their papers [6], [7], [9], [10]. A lattice L is said to be simple if it

has no non-trivial congruences. A finite graded poset P is said to be Eulerian if its

Möbius function assumes the value µ(x, y) = (−1)l(x,y) for all x ≤ y in P , where
l(x, y) = ρ(y)−ρ(x) and ρ is the rank function on P . In this paper, we exhibit var-

ious possible Eulerian extensions which are simple for any given Eulerian lattice L

and we prove that there exists a congruence-preserving extension of an Eulerian lat-
tice. The cubic extension of a lattice was defined by G. Grätzer and E. T. Schmidt in

[11]. We show that the cubic extension becomes a congruence-preserving extension

when the lattice is Eulerian.

1. Eulerian Lattices

Introduction

The subject of combinatorial theory has its origin in the work of G. C. Rota.
In the 1960’s, G. C. Rota introduced the concept of posets and lattices within
combinatorics in his seminal paper [17]. In G. C. Rota’s work one can find a
connection between combinatorics and Möbius functions.

This led L. Solomon to introduce Möbius algebra of a poset [19] which, in
turn, was studied by C. Greene [12] who showed that it could be used to derive
many apparently unrelated properties of Möbius functions. Though, classically
the origin of Eulerian posets could be found in the work of B. Grünbaum [13] and
V. Klee [14] in 1964, it was first explicitly defined by R. P. Stanley in the paper
[20] in 1982. In the book [21] by R. P. Stanley, we find many characterizations of
Eulerian lattices.

Thereafter, several authors have made contributions to the field of Eulerian
lattices, for example, Bayer and Billera [1], V. K. Santhi [18] and A. Vethaman-
ickam [23].

In particular, a lot of basic results and properties of Eulerian posets were elab-
orately first studied by V. K. Santhi in her thesis [18]. Also, she dealt with the
product of two Eulerian posets and construction of an Eulerian poset from Eulerian
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posets of smaller ranks. In her thesis, we can find so many results in lower Euler-
ian and semi Eulerian posets. A. Vethamanickam’s subsequent work on Eulerian
lattices which resulted in many findings inspired us for further study. His work on
Eulerian lattices, strongly uniform Eulerian lattices and pleasant Eulerian posets
are of great inspiration to us.

In this section, we give the basic definition and examples of Eulerian lattices.

Definition 1.1. A finite graded poset P is said to be Eulerian if its Möbius
function assumes the value µ(x, y) = (−1)l(x,y) for all x ≤ y in P , where l(x, y) =
ρ(y)− ρ(x) and ρ is the rank function on P .

An equivalent definition for an Eulerian poset is as follows:

Lemma 1.2 ([15]). A finite graded poset P is Eulerian if and only if all in-
tervals [x, y] of length l ≥ 1 in P contain an equal number of elements of odd and
even rank.

Example. Every Boolean algebra of rank n is Eulerian and the lattice C4 of
Figure 1 is an example for a non-modular Eulerian lattice. Also, every Cn is
Eulerian for n ≥ 4.
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Figure 1. .

We note that any interval of an Eulerian lattice is Eulerian and an Eulerian
lattice cannot contain a three element chain as an interval. We give the following
basic definitions which are in [9] and [10].

Definition 1.3. An equivalence relation θ on a Lattice L is said to be a con-
gruence relation on L if it is compatible with both meet and join, that is, if for
all a, b, c, d ∈ L, a ≡ b (θ) and c ≡ d (θ) imply that a ∨ c ≡ b ∨ d (θ) and
a ∧ c ≡ b ∧ d (θ).

Definition 1.4. A lattice L is said to be simple if it has no non-trivial congru-
ences.



SOME SIMPLE EXTENSIONS OF EULERIAN LATTICES 49

Definition 1.5 ([9]). Let L be a lattice. If K is a sublattice of L, we call L
an extension of K. If L is an extension of K, θ is a congruence of K and φ is
a congruence of L, then φ is said to be an extension of θ to L if and only if the
restriction of φ to K equals θ.

Definition 1.6. A sublattice K of L is said to have a congruence extension
property if and only if every congruence of K has an extension to L and if K has
zero and it is also the zero of L then L is called a 0-extension of K. If L properly
contains K then L is called a proper-extension of K. That is, L \K 6= φ.
L is said to be a congruence-preserving extension of K if and only if every

congruence of K has exactly one extension to L. In this case, the congruence
lattice of K is isomorphic to the congruence lattice of L, that is, ConK ∼= ConL.

For the undefined terms in this section we refer to [5] and [21].

2. Simple extensions of Eulerian lattices

An algebra has a number of related structures, namely, the automorphism group,
the congruence lattice, the subalgebra lattice, the endomorphism semigroups and
so on. The congruence lattice and the automorphism group are two among the
related structures of a finite lattice. We wish to state two famous characterization
theorems. First one is due to R. P. Dilworth.

Theorem 2.1. [6] Let D be a finite distributive lattice. Then there exists a
finite lattice K such that the congruence lattice of K is isomorphic to D.

The other result was due to G. Grätzer and E. T. Schmidt which is found in [6]
and which is stronger than the result of R. P. Dilworth.

Theorem 2.2. Every finite distributive lattice D can be represented as the
congruence lattice of a finite sectionally complemented lattice L.

For the finite groups, the characterization theorem was first published by G.
Birkhoff [3] and R. Frucht [2]. It is: “Let G be a finite group. Then there ex-
ists a finite lattice K such that the automorphism group of K is isomorphic to
G. The lattice K can be chosen as a simple, sectionally complemented lattice of
length three.” Since 1990, the emphasis has shifted from representation theorems
to extension theorems typified by the following important theorem of M. Tischen-
dorf [22].

“Every finite lattice has congruence-preserving embedding into a finite atomistic
lattice.”

Using the result of M. Tischendorf and their above-mentioned characterization
theorems, G. Grätzer and E. T. Schmidt proved the following theorems which
appeared in [9] and [10].

Theorem 2.3 ([9]). Every finite lattice K has a congruence-preserving embed-
ding into a finite sectionally complemented lattice L.

Theorem 2.4 ([10]). Every lattice K has a congruence-preserving embedding
into a regular lattice L.
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These results inspired us to work in the areas of lattice extension property and
congruence-preserving extension property.

In this section, we exhibit various possible Eulerian extensions which are simple,
for any given Eulerian lattice L.

The following two results are appeared in [21].

Lemma 2.5. Let P and Q be Eulerian posets. Then R = P × Q is also an
Eulerian poset.

Lemma 2.6. Let P and Q be Eulerian posets and P = P \{1} and Q = Q\{1}
and let R = P ×Q. Then R = R ∪ {(1, 1)} is Eulerian.

2.1. The Simple Extension Sg(L1, L2)

Let L1 and L2 be two Eulerian lattices of ranks d1 + 1 and d2 + 1 respectively. We
denote the least elements of both L1 and L2 by 0.

Define Sg(L1, L2) = (L1×L2)∪{(1, 1)}, where L1 = L1\{1} and L2 = L2\{1}.
By Lemma 2.6, Sg(L1, L2) is Eulerian and of rank d1 + d2 + 2. We define meet
and join in Sg(L1, L2) as follows:

(a1, a2) ∧ (b1, b2) = (a1 ∧ b1, a2 ∧ b2)

(a1, a2) ∨ (b1, b2) =

{
(a1 ∨ b1, a2 ∨ b2), if (a1 ∨ b1, a2 ∨ b2) exists
(1, 1), if either a1 ∨ b1 = 1 or a2 ∨ b2 = 1

Let us define a mapping f : L1 → Sg(L1, L2) by

f(x) =

{
(x, 0) if x 6= 1
(1, 1) if x = 1

We can easily prove that f is a one-one homomorphism which implies that L1

is isomorphic to a sublattice of Sg(L1, L2). Therefore, Sg(L1, L2) is an Eulerian
extension of L1.

Theorem 2.7. Sg(L1, L2) is simple.

Proof. Let θ 6= ω be a congruence of Sg(L1, L2).
The atoms in Sg(L1, L2) are of the form either (0, x), where x is an atom in L2

or of the form (a, 0), where a is an atom in L1.
Since θ is a congruence of Sg(L1, L2), we can find an atom (0, a) in Sg(L1, L2)

such that (0, 0) ≡ (0, a) (θ)
Since L2 is co-atomic[21], we can find a co-atom e such that e � a, for the

atom a.
Suppose c1, c2, · · · ci are the i (i ≥ d1 + 1) distinct co-atoms in L1 then (c1, e),

(c2, e), (c3, e), · · · , (ci, e) are i co-atoms in Sg(L1, L2).
Now, (0, 0) ∨ (c1, e) ≡ (0, a) ∨ (c1, e)(θ) implies that (c1, e) ≡ (1, 1)(θ).
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Similarly,
(c2, e) ≡ (1, 1)(θ)

(c3, e) ≡ (1, 1)(θ)
· · ·

(ci, e) ≡ (1, 1)(θ).

Since c1, c2, c3, · · · , ci are i co-atoms in L1 and L1 is atomic [21], we can find i
distinct atoms b1, b2, b3, · · · , bi in L1 which are respectively not comparable with
these co-atoms.

Now, we have (c1, e) ∧ (b1, 0) ≡ (1, 1) ∧ (b1, 0)(θ) which implies that (0, 0) ≡
(b1, 0)(θ).

Similarly, we can find
(0, 0) ≡ (b2, 0)(θ)

(0, 0) ≡ (b3, 0)(θ)
· · ·

(0, 0) ≡ (bi, 0)(θ)

Taking join of these equations, we get,

(0, 0) ≡ (1, 1)(θ)

Therefore, θ = Sg(L1, L2)× Sg(L1, L2).
Therefore, the only congruences of Sg(L1, L2) are the trivial ones. So, Sg(L1, L2)

is simple. Hence, Sg(L1, L2) is a simple Eulerian extension of an Eulerian lat-
tice L1. �

In particular, if we take L1 = Bn and L2 = L then we have the following
corollary.

Corollary 2.8. If L is an Eulerian lattice and Bn is a Boolean algebra of
rank n then Sn(L) = (Bn × L) ∪ {(1, 1)} is a simple Eulerian extension of L.

2.2. The Extension D(L)

In this section, we give one more simple extension of a given Eulerian lattice.
Let L be an Eulerian lattice and let L = L \ {0, 1}. Define D(L) = (L ∪̇ L) ∪

{0, 1}, where the symbol ∪̇ stands for a disjoint union. Since L is Eulerian D(L)
is Eulerian.

Define a mapping ψ : L → D(L) by ψ(a) = a, for any a ∈ L. This mapping is
an one-one homomorphism and so is isomorphic to a sublattice of D(L).

Therefore, D(L) is an Eulerian extension of L.

Theorem 2.9. D(L) is simple.

Proof. Suppose θ is a proper congruence relation on D(L). Then we can find
an atom a ∈ D(L) such that 0 ≡ a (θ). Suppose a is one of the atoms of one copy
L in D(L), we can find two atoms b and c which are not comparable with a in the
other copy L in D(L).
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Therefore, 0 ∨ b ≡ a ∨ b (θ) which implies that

b ≡ 1 (θ).(1)

Similarly, 0 ∨ c ≡ a ∨ c (θ) which implies that

c ≡ 1 (θ).(2)

From (1) and (2) we get, b ∧ c ≡ 1 ∧ 1 (θ). That is, 0 ≡ 1 (θ).
So θ = τ .
Therefore, D(L) is simple. Hence D(L) is a simple Eulerian extension of the

Eulerian lattice L. �

We can extend the above theorem to the following lattice. Define Dn(L) =
n

∪̇
r=1

Lr ∪ {0, 1}, where each Lr is an Eulerian lattice of the same rank. By using
the above theorem, we can easily prove the following corollary.

Corollary 2.10. Dn(L) is a simple Eulerian extension of each Lr, r = 1, 2, . . .
. . . , n.

In fact, we even have the following lemma.

Lemma 2.11. A disjoint union of any two atomistic lattices is simple.

Remark 2.12. Lemma 2.11 shows that any atomistic lattice can be embedded
into a simple atomistic lattice. Hence we conclude that any atomistic lattice has
a simple extension which is also atomistic.

3. Congruence-Preserving Extension

In this section, we prove that every Eulerian lattice has a congruence-preserving
Eulerian extension. To show the congruence-preserving Eulerian extension for any
Eulerian lattice we follow the Cubic extension S which was defined in [11].

Let K be an Eulerian lattice. Define S =
∏(

K/φ / φ ∈ M(ConK)
)
, where

M(ConK) is the set of all meet-irreducible elements of ConK.
For a ∈ K, D(a) =

〈
a/φ / φ ∈ M(ConK)

〉
. The mapping ψ : a → D(a) is

an natural embedding from K to S. For a congruence θ of K, let θψ denote the
corresponding congruence of Kψ. By identifying a with D(a), for a ∈ K, we can
view S as an extension of K. S is called the Cubic extension of K.

Theorem 3.1. Let K be an Eulerian lattice and S be the cubic extension of
K. Then S is a congruence-preserving Eulerian extension of K.

Proof. Every Eulerian lattice is either simple or a direct product of simple
Eulerian lattices [23].

Since K is Eulerian, K ∼= K1 ×K2 × · · · ×Kn, where Ki’s are simple Eulerian
lattices. Therefore, ConK ∼=

∏n
i=1 ConKi [16].

Since Ki is simple, ConK is a direct product of two element chains and thus
ConK is Boolean. Since ConK is Boolean, its meet irreducible elements are just
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the co-atoms of ConK. Since Con (K/φ) ∼= [φ, τ ] [16], Con (K/φ) is a two element
chain, when φ ∈M(ConK).

Since S =
∏(

K/φ / φ ∈ M(ConK)
)
, ConS ∼=

∏
φ(Con (K/φ)). Since each

Con (K/φ) is a two element chain, ConS is a product of two element chains.
Therefore, ConS is Boolean.

We have to prove that every congruence of K has exactly one extension to S.
That is, to prove that ConK ∼= ConS. Since ConK and ConS are Boolean, it is
enough to prove that they have the same number of atoms (co-atoms). Since

ConS ∼=
∏

φ∈M(ConK)

Con (K/φ), ConS ∼=
∏

φ∈M(ConK)

[φ, τ ].

A meet irreducible congruence in ConK contributes to a two element chain in the
product defining ConS. The atoms of ConS are of the form (0, 0, , · · · , 1, 0, 0),
where 1 comes in exactly one place. Therefore, there are as many atoms in ConS
as there are co-atoms (meet-irreducible congruences) in ConK. Since both are
Boolean, we get, ConK ∼= ConS. Thus, S is a congruence-preserving extension
of the Eulerian lattice K.

Next we claim that S is Eulerian: Since a homomorphic image of an Eulerian
lattice is Eulerian [23], K/φ being a homomorphic image of K, it is Eulerian for
each φ ∈ M(ConK). Hence, S being a finite product of such Eulerian lattices is
Eulerian. So, we conclude that S is a congruence-preserving Eulerian extension of
the Eulerian lattice K. Hence the theorem. �
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