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PERTURBATION RESULTS FOR WEYL TYPE THEOREMS

M. BERKANI and H. ZARIOUH

Abstract. In [12] we introduced and studied properties (gab) and (gaw), which are extensions to the
context of B-Fredholm theory, of properties (ab) and (aw) respectively, introduced also in [12]. In this

paper we continue the study of these properties and we consider their stability under commuting finite
rank, compact and nilpotent perturbations. Among other results, we prove that if T is a bounded
linear operator acting on a Banach space X, then T possesses property (gaw) if and only if T satisfies
generalized Weyl’s theorem and E(T ) = Ea(T ).

We also prove that if T possesses property (ab) or property (aw) or property (gaw), respectively,
and N is a nilpotent operator commuting with T, then T + N possesses property (ab) or property
(aw) or property (gaw) respectively. The same result holds for property (gab) in the case of a-polaroid
operators.

1. Introduction

Throughout this paper, let L(X) denote the Banach algebra of all bounded linear operators acting
on an infinite-dimensional complex Banach space X. For T ∈ L(X), let N(T ), R(T ), σ(T ) and
σa(T ) denote the null space, the range, the spectrum and the approximate point spectrum of
T , respectively. Let α(T ) and β(T ) be the nullity and the deficiency of T defined by α(T ) =
dimN(T ) and β(T ) = codimR(T ). Recall that an operator T ∈ L(X) is called an upper semi-
Fredholm if α(T ) < ∞ and R(T ) is closed, while T ∈ L(X) is called a lower semi-Fredholm if
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β(T ) <∞. Let SF+(X) denote the class of all upper semi-Fredholm operators. If T ∈ L(X) is an
upper or lower semi-Fredholm operator, then T is called a semi-Fredholm operator, and the index
of T is defined by ind(T ) = α(T ) − β(T ). If both α(T ) and β(T ) are finite, then T is called a
Fredholm operator. An operator T ∈ L(X) is called a Weyl operator if it is a Fredholm operator
of index 0. Define

SF−+ (X) = {T ∈ SF+(X) : ind(T ) ≤ 0}.

The classes of operators defined above generate the following spectra: the Weyl spectrum σW (T )
of T ∈ L(X) is defined by

σW (T ) = {λ ∈ C : T − λI is not a Weyl operator},

while the Weyl essential approximate spectrum σSF−+
(T ) of T is defined by

σSF−+
(T ) = {λ ∈ C : T − λI 6∈ SF−+ (X)}.

For T ∈ L(X), let ∆(T ) = σ(T ) \ σW (T ) and ∆a(T ) = σa(T ) \ σSF−+ (T ). Following Coburn [16],

we say that Weyl’s theorem holds for T ∈ L(X) if ∆(T ) = E0(T ), where E0(T ) = {λ ∈ isoσ(T ) :
0 < α(T − λI) <∞}. Here and elsewhere in this paper, for A ⊂ C, isoA is the set of all isolated
points of A, and accA denote the set of all points of accumulation of A.

According to Rakočević [25], an operator T ∈ L(X) is said to satisfy a-Weyl’s theorem if
∆a(T ) = E0

a(T ), where E0
a(T ) = {λ ∈ isoσa(T ) : 0 < α(T − λI) < ∞}. It is known [25] that an

operator satisfying a-Weyl’s theorem satisfies Weyl’s theorem, but the converse does not hold in
general.

Recall that the ascent a(T ), of an operator T , is defined by

a(T ) = inf{n ∈ N : N(Tn) = N(Tn+1)}
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and the descent δ(T ) of T is defined by

δ(T ) = inf{n ∈ N : R(Tn) = R(Tn+1)}
with inf ∅ = ∞. An operator T ∈ L(X) is called Drazin invertible if it has a finite ascent and
descent. The Drazin spectrum σD(T ) of an operator T is defined by

σD(T ) = {λ ∈ C : T − λI is not Drazin invertible}.
An operator T ∈ L(X) is called Browder if it is Fredholm of finite ascent and descent and is called
upper semi-Browder if it is upper semi-Fredholm of finite ascent. The Browder spectrum σb(T ) of
T is defined by

σb(T ) = {λ ∈ C : T − λI is not Browder}
and the upper semi-Browder spectrum σub(T ) of T is defined by

σub(T ) = {λ ∈ C : T − λI is not upper semi-Browder}
(see [15] and [24]).

Define also the set LD(X) by

LD(X) = {T ∈ L(X) : a(T ) <∞ and R(T a(T )+1) is closed }
and

σLD(T ) = {λ ∈ C : T − λI 6∈ LD(X)}.
Following [10], an operator T ∈ L(X) is said to be left Drazin invertible if T ∈ LD(X). We say
that λ ∈ σa(T ) is a left pole of T if T − λI ∈ LD(X), and that λ ∈ σa(T ) is a left pole of T of
finite rank if λ is a left pole of T and α(T − λI) <∞. Let Πa(T ) denote the set of all left poles of
T and let Π0

a(T ) denotes the set of all left poles of T of finite rank.
Let Π(T ) be the set of all poles of the resolvent of T and let Π0(T ) be the set of all poles of the

resolvent of T of finite rank, that is Π0(T ) = {λ ∈ Π(T ) : α(T − λI) < ∞}. According to [19], a
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complex number λ is a pole of the resolvent of T if and only if 0 < max (a(T − λI), δ(T − λI)) <
∞. Moreover, if this is true then a(T − λI) = δ(T − λI). According also to [19], the space
R((T − λI)a(T−λI)+1) is closed for each λ ∈ Π(T ). Hence we have always Π(T ) ⊂ Πa(T ) and
Π0(T ) ⊂ Π0

a(T ).
For T ∈ L(X) and a nonnegative integer n define T[n] to be the restriction of T to R(Tn) viewed

as a map from R(Tn) into R(Tn) (in particular T[0] = T ). If for some integer n the range space
R(Tn) is closed and T[n] is an upper (resp. a lower) semi-Fredholm operator, then T is called an
upper (resp. a lower) semi-B-Fredholm operator. In this case the index of T is defined as the
index of the semi-Fredholm operator T[n], see [11]. Moreover, if T[n] is a Fredholm operator, then
T is called a B-Fredholm operator, see [5]. A semi-B-Fredholm operator is an upper or a lower
semi-B-Fredholm operator. An operator T is said to be a B-Weyl operator [6, Definition 1.1] if it
is a B-Fredholm operator of index zero. The B-Weyl spectrum σBW (T ) of T is defined by

σBW (T ) = {λ ∈ C : T − λI is not a B-Weyl operator},

and the B-Fredholm spectrum σBF (T ) of T is defined by

σBF (T ) = {λ ∈ C : T − λI is not a B-Fredholm operator}.

For T ∈ L(X), let ∆g(T ) = σ(T )\σBW (T ). According to [10], an operator T ∈ L(X) is said to
satisfy generalized Weyl’s theorem if ∆g(T ) = E(T ), where E(T ) = {λ ∈ isoσ(T ) : α(T − λI) >
0}. According also to [10] we say that generalized Browder’s theorem holds for T ∈ L(X) if
∆g(T ) = Π(T ), and that Browder’s theorem holds for T ∈ L(X) if ∆(T ) = Π0(T ). It is proved in
[4, Theorem 2.1] that generalized Browder’s theorem is equivalent to Browder’s theorem.

Let SBF+(X) be the class of all upper semi-B-Fredholm operators,

SBF−+ (X) = {T ∈ SBF+(X) : ind(T ) ≤ 0}.
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The upper B-Weyl spectrum σSBF−+
(T ) of T is defined by

σSBF−+
(T ) = {λ ∈ C : T − λI /∈ SBF−+ (X)}.

Let ∆g
a(T ) = σa(T )\σSBF−+ (T ). We say that a-Browder’s theorem holds for T ∈ L(X) if ∆a(T ) =

Π0
a(T ), and that generalized a-Browder’s theorem holds for T ∈ L(X) if ∆g

a(T ) = Πa(T ). It is
proved in [4, Theorem 2.2] that generalized a-Browder’s theorem is equivalent to a-Browder’s
theorem. According to [10], an operator T ∈ L(X) is said to satisfy generalized a-Weyl’s theorem
if ∆g

a(T ) = Ea(T ), where Ea(T ) = {λ ∈ isoσa(T ) : α(T − λI) > 0}. It is known [10] that an
operator obeying generalized a-Weyl’s theorem obeys generalized Weyl’s theorem, but the converse
is not true in general.

Definition 1.1. An operator T ∈ L(X) is called a-polaroid (resp. isoloid) if all isolated points
of the approximate point spectrum are left poles of T , i.e. isoσa(T ) = Πa(T ) (resp. all isolated
points of the spectrum are eigenvalues of T , i.e. isoσ(T ) = E(T )).

In [12], we introduced and studied the new properties (gab), (ab), (gaw) and (aw) (see Defini-
tion 2.1). Properties (gab) and (gaw) extend properties (ab) and (aw) respectively to the context
of B-Fredholm theory. In this paper we study the preservation of these properties under perturba-
tions by finite rank, compact and nilpotent operators. In the second section in a first step we give
an equivalence condition for properties (gaw) and (aw) and we prove that under the assumption
Π(T ) = Ea(T ), the two properties are equivalent. We show in Theorem 2.3 that if T ∈ L(X)
possesses property (gaw), then T obeys generalized Weyl’s theorem, but the converse does not
hold in general as shown by Example 2.4.

In the third section, in Theorem 3.1 we prove that if T ∈ L(X) possesses property (ab) and
N ∈ L(X) is a nilpotent operator commuting with T , then T +N possesses property (ab), and in
Theorem 3.2 we prove a similar result for property (gab) in the case of a-polaroid operators. We
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also prove in Theorem 3.6 that if T ∈ L(X) possesses property (gaw) and N ∈ L(X) is a nilpotent
operator commuting with T , then T +N possesses property (gaw), and in Theorem 3.5 we prove
a similar result for property (aw).

In the last part, we provide certain conditions under which the new properties are preserved
under commuting compact and finite rank perturbations. Thus, we prove in Theorem 4.5 that
if T ∈ L(X) is an operator possessing property (gab) and F ∈ L(X) is a finite rank operator
commuting with T such that Πa(T +F ) ⊂ σa(T ), then T +F possesses property (gab). Similarly,
we prove in Theorem 4.3 that if T ∈ L(X) is an operator possessing property (ab) and K ∈ L(X)
is a compact operator commuting with T such that Π0

a(T + K) ⊂ σa(T ), then T + K possesses
property (ab). We end this section by some illustrating examples.

2. Property (gaw) and generalized Weyl’s theorem

Definition 2.1. [12] Let T ∈ L(X). We will say that:
(i) T possesses property (ab) if ∆(T ) = Π0

a(T ).
(ii) T possesses property (gab) if ∆g(T ) = Πa(T ).

(iii) T possesses property (aw) if ∆(T ) = E0
a(T ).

(iv) T possesses property (gaw) if ∆g(T ) = Ea(T ).

In a first step we give an equivalence condition for properties (gaw) and (aw). In [12, Theorem
3.3], it is proved that if T ∈ L(X) possesses property (gaw) then T possesses property (aw) and
the converse is not true in general. But under the assumption Π(T ) = Ea(T ), the following result
proves that the two properties are equivalent.

Theorem 2.2. Let X be a Banach space and let T ∈ L(X). Then T possesses property (gaw)
if and only if T possesses property (aw) and Π(T ) = Ea(T ).
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Proof. Assume that T possesses property (gaw), then σ(T ) \ σBW (T ) = Ea(T ). From [12,
Theorem 3.3], T possesses property (aw). By Theorem 3.5 and Corollary 2.6 of [12], T satisfies
generalized Browder’s theorem, that is σ(T ) \ σBW (T ) = Π(T ). Hence Π(T ) = Ea(T ).
Conversely, assume that T possesses property (aw) and Π(T ) = Ea(T ). If λ ∈ ∆g(T ), we can
assume without loss of generality that λ = 0. Then T is a B-Weyl operator. In particular T is an
operator of topological uniform descent [11].

We show that 0 is a pole of the resolvent of T . Since T is B-Weyl, from [11, Corollary 3.2], there
exists ε > 0 such that T − µI is Weyl for every µ such that 0 < |µ| < ε. Let |µ| < ε and µ 6∈ σ(T ),
then a(T − µI) = δ(T − µI) = 0. In the second case µ ∈ σ(T ), then µ ∈ σ(T ) \ σW (T ) = E0

a(T )
since T possesses property (aw). Therefore µ ∈ Π0(T ) and a(T − µI) = δ(T − µI) < ∞. From
[18, Corollary 4.8] we conclude that a(T ) = δ(T ) <∞. As 0 ∈ σ(T ), then 0 ∈ Π(T ) = Ea(T ).

On the other hand, if λ ∈ Ea(T ), then λ ∈ Π(T ). Therefore T − λI is a B-Fredholm operator
of index 0. Thus λ ∈ ∆g(T ). Hence ∆g(T ) = Ea(T ) and T possesses property (gaw). �

Theorem 2.3. Let X be a Banach space and let T ∈ L(X). Then T possesses property (gaw)
if and only if T satisfies generalized Weyl’s theorem and E(T ) = Ea(T ).

Proof. Assume that T possesses property (gaw), then σ(T ) \ σBW (T ) = Ea(T ). If λ ∈ σ(T ) \
σBW (T ), then λ ∈ Ea(T ). Since T possesses property (gaw), it follows that Ea(T ) = Π(T ).
Therefore λ ∈ Π(T ). As Π(T ) ⊂ E(T ) is always true, then σ(T ) \ σBW (T ) ⊂ E(T ). Now
if λ ∈ E(T ), as we have always E(T ) ⊂ Ea(T ), then λ ∈ Ea(T ) = σ(T ) \ σBW (T ). Hence
σ(T ) \ σBW (T ) = E(T ), i.e. T satisfies generalized Weyl’s theorem and E(T ) = Ea(T ).
Conversely, assume that T satisfies generalized Weyl’s theorem and E(T ) = Ea(T ). Then σ(T ) \
σBW (T ) = E(T ) and E(T ) = Ea(T ). So σ(T ) \ σBW (T ) = Ea(T ) and T possesses property
(gaw). �
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The following example shows that there is an operator obeying generalized a-Weyl’s theorem
and generalized Weyl’s theorem but not the property (gaw).

Example 2.4. Let R ∈ L(`2(N)) be the unilateral right shift and S ∈ L(`2(N)) the operator
defined by S(x1, x2, x3, . . .) = (0, x2, x3, x4, . . .).

Consider the operator T defined on the Banach space X = `2(N) ⊕ `2(N) by T = R ⊕ S,
then σ(T ) = D(0, 1) is the closed unit disc in C, isoσ(T ) = ∅ and σa(T ) = C(0, 1) ∪ {0}, where
C(0, 1) is the unit circle of C. Moreover, we have σSBF−+ (T ) = C(0, 1) and Ea(T ) = {0}. Hence
σa(T )\σSBF−+ (T ) = Ea(T ), i.e. T obeys generalized a-Weyl’s theorem and so T obeys generalized
Weyl’s theorem. On the other hand, σBW (T ) = D(0, 1). Then σ(T ) \ σBW (T ) 6= Ea(T ) and T
does not possess property (gaw).

Similarly to Theorem 2.3, we have the following result in the case of property (aw).

Theorem 2.5. Let X be a Banach space and let T ∈ L(X). Then T possesses property (aw) if
and only if T satisfies Weyl’s theorem and E0(T ) = E0

a(T ).

Proof. Suppose that T possesses property (aw), then σ(T ) \ σW (T ) = E0
a(T ). From Theorem

3.6 and Theorem 2.4 of [12], T satisfies Browder’s theorem, that is σ(T ) \ σW (T ) = Π0(T ). Since
we have always Π0(T ) ⊂ E0(T ), then σ(T ) \ σW (T ) ⊂ E0(T ). Now let us consider λ ∈ E0(T ),
then λ ∈ E0

a(T ) = σ(T ) \ σW (T ). Hence σ(T ) \ σW (T ) = E0(T ), i.e. T satisfies Weyl’s theorem
and E0(T ) = E0

a(T ). Conversely, assume that Weyl’s theorem holds for T and E0(T ) = E0
a(T ).

Then σ(T ) \ σW (T ) = E0(T ) and E0(T ) = E0
a(T ). So σ(T ) \ σW (T ) = E0

a(T ) and T possesses
property (aw). �

Generally, a-Weyl’s theorem and Weyl’s theorem do not imply property (aw). Indeed, if we
consider the operator T as in Example 2.4, then σSF−+

(T ) = C(0, 1) and E0
a(T ) = {0}. Hence

σa(T ) \ σSF−+ (T ) = E0
a(T ), i.e. T obeys a-Weyl’s theorem. So T obeys Weyl’s theorem. On the
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other hand, σW (T ) = D(0, 1). Consequently, σ(T ) \ σW (T ) 6= E0
a(T ) and T does not possess

property (aw).

3. Nilpotent perturbations

Theorem 3.1. Let X be a Banach space and let T ∈ L(X). If N ∈ L(X) is a nilpotent operator
commuting with T , then T possesses property (ab) if and only if T +N possesses property (ab).

Proof. As N is nilpotent and commutes with T , we know that σa(T ) = σa(T +N), and σ(T ) =
σ(T + N). Moreover, from [22, Lemma 2], we know that σW (T ) = σW (T + N). If λ ∈ σ(T +
N) \ σW (T + N), then λ ∈ σ(T ) \ σW (T ) = Π0

a(T ), since T possesses property (ab). Therefore
λ ∈ isoσa(T +N). As T +N − λI is an upper semi-Fredholm with ind(T +N − λI) ≤ 0, by [10,
Theorem 2.8] we have λ ∈ Π0

a(T +N). Hence σ(T +N) \ σW (T +N) ⊂ Π0
a(T +N). On the other

hand, if λ ∈ Π0
a(T+N), then T+N−λI is an upper semi-Fredholm such that ind(T+N−λI) ≤ 0.

From [17, Theorem 2.13], T − λI is an upper semi-Fredholm of index less or equal than zero. As
λ ∈ isoσa(T ), then λ ∈ Π0

a(T ) which implies that λ ∈ σ(T + N) \ σW (T + N). Finally, we have
σ(T + N) \ σW (T + N) = Π0

a(T + N) and T + N possesses property (ab). Conversely, assume
that T +N possesses property (ab). By symmetry, we have T = (T +N)−N possesses property
(ab). �

Theorem 3.2. Let X be a Banach space and let T ∈ L(X) be an a-polaroid operator. If T
possesses property (gab) and N ∈ L(X) is a nilpotent operator commuting with T , then T + N
possesses property (gab).

Proof. It is well known that σ(T ) = σ(T +N). By virtue of [12, Corollary 2.7], we know that
if T possesses property (gab), then σBW (T ) = σD(T ) and Π(T ) = Πa(T ). Let λ ∈ σ(T + N) \
σBW (T + N). There is no loss of generality if we assume that λ = 0. Then T + N is a B-Weyl
operator. We show that T + N has ascent a(T + N) finite. Since T + N is B-Weyl, there exists
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ε > 0 such that T +N−µI is Weyl for every µ such that 0 < |µ| < ε. Therefore T −µI is Weyl. Let
|µ| < ε and µ 6∈ σ(T ) = σ(T+N), then a(T+N−µI) = 0. The second possibility is that µ ∈ σ(T ),
then µ ∈ σ(T )\σW (T ). Since T possesses property (gab), then from [12, Theorem 2.2], T possesses
property (ab). So µ ∈ σ(T )\σW (T ) = Π0

a(T ). Thus µ ∈ isoσa(T ) = isoσa(T +N). As T +N −µI
is an upper semi-Fredholm operator, then by Theorem 3.23 and Theorem 3.16 of [1], we deduce
that the ascent a(T + N − µI) < ∞. From [18, Corollary 4.8] we conclude that a(T + N) < ∞.
Since T+N is B-Weyl, it is also an operator of topological uniform descent, and for n large enough,
R((T + N)n) is closed. By [21, Lemma 12], we then deduce that R((T + N)a(T+N)+1) is closed.
Clearly, 0 ∈ σa(T +N), since T +N is B-Weyl. Hence 0 ∈ Πa(T +N).

To show the opposite inclusion, let us consider λ ∈ Πa(T + N). Then λ ∈ isoσa(T + N) =
isoσa(T ). Since T is a-polaroid, then λ ∈ Πa(T ) = Π(T ). From [13, Lemma 2.2] we know
that Π(T ) = Π(T + N). Thus T + N − λI is Drazin invertible, hence B-Weyl, so that λ ∈
σ(T + N) \ σBW (T + N). Hence σ(T + N) \ σBW (T + N) = Πa(T + N) and T + N possesses
property (gab). �

In [14] the authors asked the following question: let T ∈ L(X) and let N ∈ L(X) be a nilpotent
operator commuting with T . Under which conditions Πa(T + N) = Πa(T )? The next corollary
answers positively this question, in the case of a-polaroid operators possessing property (gab).

Corollary 3.3. Let X be a Banach space and let T ∈ L(X) be an a-polaroid operator possessing
property (gab). If N ∈ L(X) is a nilpotent operator commuting with T , then Πa(T +N) = Πa(T ).

Proof. We already have that σ(T +N) = σ(T ), Π(T ) = Π(T +N). Since T possesses property
(gab), T satisfies generalized Browder’s theorem which implies by [13, Theorem 2.3] that T + N
satisfies generalized Browder’s theorem. So σ(T +N)\σBW (T +N) = Π(T +N), σ(T )\σBW (T ) =
Π(T ). Hence σBW (T + N) = σBW (T ). On the other hand, as both T and T + N possess
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property (gab), then σ(T + N) \ σBW (T + N) = Πa(T + N), σ(T ) \ σBW (T ) = Πa(T ). Hence
Πa(T +N) = Πa(T ). �

In the next theorem we consider an operator T possessing property (gab) and a nilpotent
operator N commuting with T , and we give necessary and sufficient conditions for T + N to
possess property (gab).

Theorem 3.4. Let X be a Banach space and let T ∈ L(X) and N ∈ L(X) be a nilpotent
operator commuting with T . If T possesses property (gab), then the following statements are
equivalent.

(i) T +N possesses property (gab),
(ii) Π(T ) = Πa(T +N),

(iii) Πa(T ) = Πa(T +N).

Proof. (i) ⇐⇒ (ii) If T + N possesses property (gab), then from [12, Corollary 2.7] we have
Π(T+N) = Πa(T+N). So Π(T ) = Πa(T+N). Conversely, if Π(T ) = Πa(T+N), since T possesses
property (gab), then from [12, Corollary 2.6], T satisfies generalized Browder’s theorem. From [13,
Theorem 2.3], T +N satisfies generalized Browder’s theorem, that is σ(T +N) \ σBW (T +N) =
Π(T +N). As by hypothesis Π(T ) = Πa(T +N), then σ(T +N) \ σBW (T +N) = Πa(T +N) and
T +N possesses property (gab).

Since T possesses property (gab), then Π(T )=Πa(T ). This makes (ii)⇐⇒ (iii). �

Theorem 3.5. Let X be a Banach space and let T ∈ L(X). If N ∈ L(X) is a nilpotent operator
commuting with T , then T possesses property (aw) if and only if T +N possesses property (aw).

Proof. We already have that σ(T + N) = σ(T ) and σW (T + N) = σW (T ). We prove that
E0
a(T + N) = E0

a(T ). Let λ ∈ Ea(T ) be arbitrary. We may assume that λ = 0. As σa(T + N) =
σa(T ), then 0 ∈ isoσa(T +N). Let m ∈ N be such that Nm = 0. If x ∈ N(T ), then (T +N)m(x) =
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∑m
k=0 C k

mT kN m−k (x ) = 0. So N(T ) ⊂ N(T+N)m. As α(T ) > 0, it follows that α((T+N)m) > 0
and this implies that α(T + N) > 0. Hence 0 ∈ Ea(T + N). Therefore Ea(T ) ⊂ Ea(T + N). By
symmetry, we have Ea(T ) ⊃ Ea(T + N). Hence Ea(T + N) = Ea(T ). It remains only to show
that α(T ) < ∞ if and only if α(T +N) < ∞. If α(T +N) < ∞, then from [26, Lemma 3.3, (a)]
we have α((T +N)m) <∞. As N(T ) ⊂ N(T +N)m, then α(T ) <∞. By symmetry, we prove the
reverse implication. Hence ∆(T ) = E0

a(T ) if and only if ∆(T +N) = E0
a(T +N), as desired. �

In the next theorem, we prove a similar perturbation result for property (gaw).

Theorem 3.6. Let X be a Banach space and let T ∈ L(X). If N ∈ L(X) is a nilpotent operator
commuting with T , then T possesses property (gaw) if and only if T +N possesses property (gaw).

Proof. If T possesses property (gaw), then from Theorem 2.2, Π(T ) = Ea(T ). Let λ ∈ σ(T +
N) \ σBW (T + N). We may assume that λ = 0. Then T + N is B-Weyl. Therefore there
exists an ε > 0 such that T + N − µI is Weyl for any µ such that 0 < |µ| < ε. From classical
Fredholm theory we know that T − µI is Weyl. Let |µ| < ε and µ 6∈ σ(T ) = σ(T + N). Then
a(T +N−µI) = δ(T +N−µI) = 0. In the second case µ ∈ σ(T ), then µ ∈ σ(T )\σW (T ) = E0

a(T )
since T possesses property (aw). Hence µ ∈ Π0(T ) which implies that µ ∈ isoσ(T ) = isoσ(T +N).
By [1, Theorem 3.77], it then follows that a(T + N − µI) = δ(T + N − µI) < ∞. In the two
cases, we have a(T +N − µI) = δ(T +N − µI) <∞. By [18, Corollary 4.8] we then deduce that
a(T + N) = δ(T + N) < ∞. As 0 ∈ σ(T + N), then 0 is a pole of the resolvent of T + N , in
particular an isolated point of the approximate point spectrum of T +N . Clearly, α(T +N) > 0,
since T + N is B-Weyl, so that 0 ∈ Ea(T + N). To prove the opposite inclusion, let us consider
λ ∈ Ea(T + N). Then λ ∈ Ea(T ) = Π(T ) = Π(T + N). Hence T + N − λI is B-Weyl, so that
λ ∈ σ(T +N) \ σBW (T +N). Finally, we have σ(T +N) \ σBW (T +N) = Ea(T +N) and T +N
possesses property (gaw). Conversely, if T + N possesses property (gaw), then by symmetry we
have T = (T +N)−N possesses property (gaw). �
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Remark 3.7. (1) The following example shows that Theorem 3.5 and Theorem 3.6 do not hold
if we do not assume that the nilpotent operator N commutes with T . Let X = `2(N), and let T
and N be defined by

T (x1, x2, x3, . . .) = (0, x1/2, x2/3, . . .) , N(x1, x2, x3, . . .) = (0,−x1/2, 0, 0, . . .).

Clearly N is a nilpotent operator which does not commute with T . Moreover, we have σ(T ) = {0},
σBW (T ) = {0} and Ea(T ) = ∅. So σ(T ) \ σBW (T ) = Ea(T ) and T possesses property (gaw).
Hence T possesses also property (aw). On the other hand, σ(T + N) = {0}, σW (T + N) = {0},
σBW (T+N) = {0}, Ea(T+N) = {0} and E0

a(T+N) = {0}. Consequently, σ(T+N)\σW (T+N) 6=
E0
a(T +N) and σ(T +N) \ σBW (T +N) 6= Ea(T +N). So T +N does not possess property (aw)

and property (gaw).
(2) Generally, Theorem 3.5 and Theorem 3.6 do not extend to commuting quasinilpotent per-

turbations. Indeed, on the Hilbert space `2(N) let T and the quasinilpotent operator Q be defined
by

T = 0 and Q(x1, x2, x3, . . .) = (x2/2, x3/3, x4/4, . . .).

Then TQ = QT = 0, σ(T ) = {0}, σW (T ) = {0}, σBW (T ) = ∅ and E0
a(T ) = ∅. Moreover,

we have Ea(T ) = {0}. Thus σ(T ) \ σW (T ) = E0
a(T ) and σ(T ) \ σBW (T ) = Ea(T ). So T

possesses property (gaw) and property (aw). But, since σ(T + Q) = {0}, σBW (T + Q) = {0},
Ea(T+Q) = {0}, E0

a(T +Q) = {0} and σW (T+Q) = {0}, then σ(T+Q)\σW (T+Q) 6= E0
a(T+Q)

and σ(T +Q)\σBW (T +Q) 6= Ea(T +Q). So T +Q does not possess property (gaw) and property
(aw).

Recall that an operator T ∈ L(X) is said to possess property (gw) [3, Definition 2.1] if ∆g
a(T ) =

E(T ). In the next theorem we consider an operator T possessing property (gw) and a nilpotent
operator N commuting with T , and we give necessary and sufficient conditions for T+N to possess
property (gw).
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Theorem 3.8. Let X be a Banach space and let T ∈ L(X) and N ∈ L(X) be a nilpotent
operators commuting with T . If T possesses property (gw), then the following statements are
equivalent.

(i) T +N possesses property (gw);
(ii) σSBF−+

(T ) = σSBF−+
(T +N);

(iii) E(T ) = Πa(T +N).

Proof. (i) ⇐⇒ (iii) If T + N possesses property (gw), then from [3, Theorem 2.6], we have
E(T+N) = Πa(T+N). As we know that E(T ) = E(T+N), then E(T ) = Πa(T+N). Conversely,
assume that E(T ) = Πa(T + N), since T possesses property (gw), again by [3, Theorem 2.6], T
satisfies generalized a-Browder’s theorem. As we know that generalized a-Browder’s theorem is
equivalent to a-Browder’s theorem, then T satisfies a-Browder’s theorem. So σSF−+ (T ) = σub(T ).
As N is nilpotent and commutes with T , we know from [1, Theorem 3.65] that σub(T ) = σub(T+N)
and as it had already been mentioned we have σSF−+ (T ) = σSF−+

(T+N). Therefore σSF−+ (T+N) =
σub(T + N). Hence T + N satisfies a-Browder’s theorem, so it satisfies generalized a-Browder’s
theorem, that is σa(T + N) \ σSBF−+ (T + N) = Πa(T + N). Since E(T ) = Πa(T + N), then
σa(T +N) \ σSBF−+ (T +N) = E(T ) = E(T +N) and T +N possesses property (gw).
(i)⇐⇒ (ii) If T+N possesses property (gw), then σa(T+N)\σSBF−+ (T+N) = E(T+N). Since T
possesses property (gw), σa(T )\σSBF−+ (T ) = E(T ). As σa(T ) = σa(T+N) and E(T ) = E(T+N),
it then follows that σSBF−+ (T ) = σSBF−+

(T +N). Conversely, if σSBF−+ (T ) = σSBF−+
(T +N), then

σa(T+N)\σSBF−+ (T+N) = σa(T )\σSBF−+ (T ) = E(T ) = E(T+N) and T+N possesses property
(gw). �

Remark 3.9. The hypothesis of commutativity in the previous theorem is crucial. The fol-
lowing example shows that if we do not assume that N commutes with T , then the result may
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fail. Let X = `2(N) and let T and N be as in part (1) of Remark 3.7. Clearly, σa(T ) = {0},
σSBF−+

(T ) = {0} and E(T ) = ∅. So σa(T ) \ σSBF−+ (T ) = E(T ) and T possesses property (gw).
On the other hand, we have σa(T + N) = {0}, σSBF−+ (T + N) = {0} and E(T + N) = {0}. So
σa(T +N) \ σSBF−+ (T +N) 6= E(T +N) and T +N does not possess property (gw). Though we
have E(T ) = Πa(T +N) = ∅.

We finish this section by posing the following two questions.
Open questions: The proof of Corollary 3.3 suggests the following questions:
1. Let T ∈ L(X), and let N ∈ L(X) be a nilpotent operator commuting with T . Do we always

have σBW (T +N) = σBW (T )?
2. Let T ∈ L(X), and let N ∈ L(X) be a nilpotent operator commuting with T . Under which

conditions σBF (T +N) = σBF (T )?

4. Finite rank and compact perturbations

Theorem 4.1. Let X be a Banach space and let T ∈ L(X). If K ∈ L(X) is a compact operator
commuting with T and if T possesses property (ab), then T +K possesses property (ab) if and only
if Π0(T +K) = Π0

a(T +K).

Proof. Assume that T + K possesses property (ab), then from [12, Corollary 2.6], we have
Π0(T + K) = Π0

a(T + K). Conversely, assume that Π0(T + K) = Π0
a(T + K). Since T possesses

property (ab), then from [12, Theorem 2.4], T satisfies Browder’s theorem. So σb(T ) = σW (T ).
Since K commutes with T , then from [1, Corollary 3.49], we have σb(T ) = σb(T + K), and by
[1, Corollary 3.41], we have σW (T ) = σW (T + K). Therefore σb(T + K) = σW (T + K) which
implies that T +K satisfies Browder’s theorem, that is σ(T +K)\σW (T +K) = Π0(T +K). Since
Π0(T +K) = Π0

a(T +K), then ∆(T +K) = Π0
a(T +K) and T +K possesses property (ab). �
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Theorem 4.2. Let X be a Banach space and let T ∈ L(X). If K ∈ L(X) is a compact operator
commuting with T and if T possesses property (gab), then T + K possesses property (gab) if and
only if Π(T +K) = Πa(T +K).

Proof. If T + K possesses property (gab), then from [12, Corollary 2.7], we have Π(T + K) =
Πa(T +K). Conversely, if Π(T +K) = Πa(T +K), as T possesses property (gab), by virtue of [12,
Corollary 2.6], T satisfies generalized Browder’s theorem. Since we know that Browder’s theorem
is equivalent to generalized Browder’s theorem, it follows that σ(T+K)\σBW (T+K) = Π(T+K).
As Π(T + K) = Πa(T + K), then σ(T + K) \ σBW (T + K) = Πa(T + K) and T + K possesses
property (gab). �

Theorem 4.3. Let X be a Banach space and let T ∈ L(X) and K ∈ L(X) be a compact
operator commuting with T . If T possesses property (ab), and if Π0

a(T +K) ⊂ σa(T ), then T +K
possesses property (ab).

Proof. We only have to show, by Theorem 4.1, that Π0
a(T+K) = Π0(T+K). Let λ ∈ Π0

a(T+K),
then λ 6∈ σub(T +K). Since K commutes with T , then from [1, Corollary 3.45], we have σub(T +
K) = σub(T ). So λ 6∈ σub(T ), and since by hypothesis λ ∈ σa(T ), then λ ∈ σa(T )\σub(T ) = Π0

a(T ).
Since T possesses property (ab), then λ 6∈ σW (T ). As σW (T +K) = σW (T ), then λ 6∈ σW (T +K)
and ind(T+K−λI) = 0. Since T+K−λI has ascent a(T+K−λI) finite, then δ(T+K−λI) <∞
and T +K−λI is Drazin invertible. Since λ ∈ σ(T +K), then λ is a pole of the resolvent of T +K.
Therefore λ ∈ Π0(T +K). Hence Π0

a(T +K) ⊂ Π0(T +K) and since the opposite inclusion holds
for every operator, it then follows that Π0

a(T +K) = Π0(T +K), as desired. �

Corollary 4.4. Let X be a Banach space and let T ∈ L(X) and F ∈ L(X) be a finite rank
operator commuting with T . If iso σa(T ) = ∅, then T possesses property (ab) if and only if T + F
possesses property (ab).
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Proof. Assume that T possesses property (ab). Since F is a finite rank operator commuting
with T , and since isoσa(T ) = ∅, then from [2, Lemma 2.6], we have σa(T ) = σa(T + F ). Hence
Π0
a(T + F ) ⊂ σa(T ). As T possesses property (ab), then from Theorem 4.3, T + F possesses

property (ab). Conversely, assume that T +F possesses property (ab). As isoσa(T +F ) = ∅, then
by symmetry, T = (T + F )− F possesses property (ab). �

Theorem 4.5. Let X be a Banach space and let T ∈ L(X) and F ∈ L(X) be a finite rank
operator commuting with T . If T possesses property (gab), and if Πa(T +F ) ⊂ σa(T ), then T +F
possesses property (gab).

Proof. We only have to show, by Theorem 4.2, that Π(T +F ) = Πa(T +F ). If λ ∈ Πa(T +F ),
then λ 6∈ σLD(T +F ). Since F commutes with T , then from [14, Theorem 2.1], we have σLD(T +
F ) = σLD(T ), and so λ 6∈ σLD(T ). Since by the assumption λ ∈ σa(T ), then λ ∈ σa(T )\σLD(T ) =
Πa(T ). Since T possesses property (gab), then T − λI is a B-Weyl operator. As F is a finite rank
operator, then from [7, Theorem 4.3] it follows that T + F − λI is also a B-Fredholm operator
and ind(T + F − λI) = 0. As a(T + F − λI) is finite and λ ∈ σ(T + F ), then λ is a pole of
the resolvent of T + F and λ ∈ Π(T + F ). Hence Πa(T + F ) ⊂ Π(T + F ). As we always have
Πa(T + F ) ⊃ Π(T + F ), then Π(T + F ) = Πa(T + F ). Hence T + F possesses property (gab). �

Corollary 4.6. Let X be a Banach space and let T ∈ L(X) and F ∈ L(X) be a finite rank
operator commuting with T . If iso σa(T ) = ∅, then T possesses property (gab) if and only if T +F
possesses property (gab).

Proof. Since F is a finite rank operator commuting with T and since isoσa(T )=∅, then from
[2, Lemma 2.6], we have isoσa(T + F ) = ∅. Hence Πa(T + F ) = Π(T + F ) = ∅. As T possesses
property (gab), then from Theorem 4.2, T + F possesses property (gab). Conversely, assume that
T + F possesses property (gab). Since isoσa(T + F ) = ∅, then by symmetry we have T possesses
property (gab). �
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Theorem 4.7. Let T ∈ L(X) and let K ∈ L(X) be a compact operator commuting with T . If T
possesses property (aw), then T+K possesses property (aw) if and only if Π0(T+K) = E0

a(T+K).

Proof. If T +K possesses property (aw), then from [12, Theorem 3.6], T +K possesses property
(ab). So σ(T + K) \ σW (T + K) = E0

a(T + K) and σ(T + K) \ σW (T + K) = Π0
a(T + K). Thus

Π0
a(T + K) = E0

a(T + K). On the other hand, since T + K possesses property (ab), by Theorem
4.1 we have Π0(T +K) = Π0

a(T +K). Hence Π0(T +K) = E0
a(T +K). Conversely, assume that

Π0(T + K) = E0
a(T + K). Since T possesses property (aw), then T satisfies Browder’s theorem.

Hence T + K satisfies Browder’s theorem, that is σ(T + K) \ σW (T + K) = Π0(T + K). As
Π0(T +K) = E0

a(T +K), then σ(T +K)\σW (T +K) = E0
a(T +K) and T +K possesses property

(aw). �

Theorem 4.8. Let T ∈ L(X) and let K ∈ L(X) be a compact operator commuting with T . If T
possesses property (gaw), then T+K possesses property (gaw) if and only if Π(T+K) = Ea(T+K).

Proof. If T +K possesses property (gaw), then from Theorem 2.2, we have Π(T +K) = Ea(T +
K). Conversely, assume that Π(T +K) = Ea(T +K). Since T possesses property (gaw), then from
[12, Theorem 3.5], T possesses property (gab). Therefore T satisfies generalized Browder’s theorem.
Hence T +K satisfies generalized Browder’s theorem, that is σ(T +K)\σBW (T +K) = Π(T +K).
As Π(T + K) = Ea(T + K), then σ(T + K) \ σBW (T + K) = Ea(T + K) and T + K possesses
property (gaw). �

There exist quasinilpotent operators which do not possess property (gaw). For example, if we
consider the operator T defined on `2(N) by T (x1, x2, x3, . . .) = (x3/3, x4/4, x5/5 . . .), then T is
quasinilpotent, but property (gaw) fails for T , since σ(T ) = σBW (T ) = {0} and Ea(T ) = {0}.
But if a quasinilpotent operator possesses property (gaw), then the following perturbation result
holds.
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Theorem 4.9. Let T ∈ L(X) be a quasinilpotent operator and let F ∈ L(X) be a finite rank
operator commuting with T . If T possesses property (gaw), then T + F possesses property (gaw).

Proof. As isoσ(T ) = σ(T ) = {0}, then accσ(T ) = ∅. By [20, Lemma 2.1] it then follows that
accσ(T + F ) = ∅.

If 0 is an eigenvalue of T , then T is isoloid. If λ ∈ Ea(T + F ), then λ ∈ isoσ(T + F ). Thus
λ ∈ E(T + F ). As T possesses property (gaw), then from Theorem 2.3, T satisfies generalized
Weyl’s theorem and since T is isoloid, it then follows from [8, Theorem 2.6] that T + F satisfies
generalized Weyl’s theorem. From [9, Theorem 3.2], we conclude that E(T + F ) = Π(T + F ).
Hence Ea(T + F ) ⊂ Π(T + F ) and since the opposite inclusion holds for every operator, it then
follows that Ea(T + F ) = Π(T + F ). By Theorem 4.8, T + F possesses property (gaw).
If 0 is not an eigenvalue of T , this means that T is injective. Since F commutes with a quasinilpotent
operator T , TF is a finite rank quasinilpotent operator. Hence TF is nilpotent. As T is injective,
then F is nilpotent. From Theorem 3.6, T + F possesses property (gaw). �

Remark 4.10. The hypothesis of commutativity in Theorem 4.9 is crucial. Indeed, if we
consider the Hilbert space H = `2(N), and the operators T and F defined on H by:

T (x1, x2, x3, . . .) = (0, x1/2, x2/3, . . .), F (x1, x2, x3, . . .) = (0,−x1/2, 0, 0, . . .).

Then T is quasinilpotent, F is a finite rank operator which does not commute with T. Moreover,
we have σ(T ) = σBW (T ) = {0} and Ea(T ) = ∅. Hence T possesses property (gaw). But T + F
does not possess property (gaw) because σ(T + F ) = σBW (T + F ) = {0} and Ea(T + F ) = {0}.

We conclude this section by some examples:

Examples 4.11. 1. Let R be the unilateral right shift operator defined on the Hilbert space
`2(N). It is well known from [23, Theorem 3.1] that σ(R) = D(0, 1) is the closed unit disc in C,
σa(R) = C(0, 1) is the unit circle of C and R has an empty eigenvalues set. Moreover, σW (R) =
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D(0, 1) and Π0
a(R) = ∅. Define T on the Banach space X = `2(N) ⊕ `2(N) by T = 0 ⊕ R. Then

σ(T ) = D(0, 1), N(T ) = `2(N)⊕{0}, σa(T ) = {0}∪C(0, 1), σW (T ) = D(0, 1), σBW (T ) = D(0, 1),
Πa(T ) = {0} and Π0

a(T ) = ∅. Hence σ(T ) \ σW (T ) = Π0
a(T ) and σ(T ) \ σBW (T ) 6= Πa(T ).

Consequently, T possesses property (ab), but it does not possess property (gab).

2. Let T be the operator defined on the Banach space X = `2(N) ⊕ `2(N) by T (x1, x2, x3, ...) =
0 ⊕ (0, x1/2, x2/3, x3/4, ...). Then σ(T ) = {0}, σW (T ) = {0}, σBW (T ) = {0}, E0

a(T ) = ∅ and
Ea(T ) = {0}. Therefore σ(T ) \ σW (T ) = E0

a(T ) and σ(T ) \ σBW (T ) 6= Ea(T ). So T possesses
property (aw), but it does not possess property (gaw).

3. Let R the unilateral right shift operator defined on the Hilbert space `2(N), then σ(R) = D(0, 1),
σBW (R) = D(0, 1) and Ea(R) = ∅. Therefore σ(R) \ σBW (R) = Ea(R) and R possesses property
(gaw). Moreover, we have isoσa(R) = ∅. Hence if F ∈ L(X) is a finite rank operator commuting
with R, then R+ F possesses property (gaw).

4. Let T ∈L(X) be an injective quasinilpotent operator. Then σ(T )=σBW (T )={0} and Ea(T ) =
Πa(T ) = ∅. Hence T possesses property (gaw). If F ∈ L(X) is a finite rank operator commuting
with T , then TF is a finite rank quasinilpotent operator, therefore TF is a nilpotent operator. As
T is injective, then F is nilpotent. Hence T + F possesses property (gaw).
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