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ON SOLUTIONS OF A SYSTEM
OF RATIONAL DIFFERENCE EQUATIONS

YU YANG, LI CHEN and YONG-GUO SHI

Abstract. In this paper we investigate the system of rational difference equations

xn =
a

yn−p
, yn =

byn−p

xn−qyn−q
, n = 1, 2, . . . ,

where q is a positive integer with p < q, p - q, p is an odd number and p ≥ 3,
both a and b are nonzero real constants and the initial values x−q+1, x−q+2, . . . ,

x0, y−q+1, y−q+2, . . . , y0 are nonzero real numbers. We show all real solutions of the
system are eventually periodic with period 2pq (resp. 4pq) when (a/b)q = 1 (resp.

(a/b)q = −1) and characterize the asymptotic behavior of the solutions when a 6= b,

which generalizes Özban’s results [Appl. Math. Comput. 188 (2007), 833–837].

1. Introduction

Consider the system of rational difference equations

xn =
a

yn−p
, yn =

byn−p

xn−qyn−q
, n = 1, 2, . . . ,(1)

where q is a positive integer with p < q, p is a positive integer, both a and
b are nonzero real constants and the initial values x−q+1, x−q+2, . . . , x0, y−q+1,
y−q+2, . . . , y0 are nonzero real numbers.

The system of equations (1) is equivalent to the single rational equation of order
p + q

xn =
cxn−pxn−p−q

xn−q
, c =

a

b
.(2)

This is obtained by eliminating the variable yn = a/xn+p as follows:

a

xn+p
=

ab/xn

xn−q(a/xxn+p−q )
=

bxn+p−q

xnxn−q
.

Taking the reciprocal and shifting all indices back p units gives (2). Equations
(1) belong to a class of “homogeneous equations of degree one” (cf. [9, 10] and
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Figure 1. A positive solution of (1) is eventually periodic with period 24 where a = b = 1,

p = 3, q = 4. This result is given in [7] .

references therein). By the substitution tn = xn/xn−p, system (1) can be written
as a “triangular vector map or system” where one equation is independent of the
other:

tn =
c

tn−q
, sn = tnsn−p.

Dynamics of triangular maps have been studied by several other people (see a nice
survey [12] and a beautiful result [1]).

In particular, Çinar in [3] proved that all positive solutions of the system of
rational difference equations

xn =
1

yn−1
, yn =

yn−1

xn−2yn−2
, n = 1, 2, . . .

with the period four. That such a nonlinear rational system has a period so
simple as 4 is surprising. Later, Yang et al in [15] generalized his result and
obtained all positive solutions of system (1) with p|q and a = b have period 2q. For
the case p|q and a 6= b, they also investigated the behavior of positive solutions.
Similar nonlinear systems of rational difference equations were investigated, for
instance, by Clark and Kulenovic [4], Özban [6], Papaschinopoulos and Schinas
[8], Camouzis and Papaschinopoulos [2], Iričanin and Stević [5], Shojaei et al [11],
and Yang [13, 14]. Recently, Özban [7] investigated the behavior of the positive
solutions of system (1) where p = 3, p - q. For the case b = a ∈ R+, p = 3,
q > 3, p - q, the author obtained all positive solutions of the system of difference
equations (1) that are eventually periodic (see the definition below and Figure 1)
with period 6q. For the case b 6= a ∈ R+, p = 3, q > 3, p - q, he also characterized
the asymptotic behavior of the positive solutions of system (1).

In this paper we study the behavior of the real solutions of system (1) where p

is odd with p < q, p - q, and so we generalize Özban’s results of [7]. Before stating
our main results, we set the following definition used in this paper.
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Definition 1 ([16]). A solution {(xn, yn)}∞n=−(q−1) of (1) is eventually periodic
if there exist an integer n0 ≥ −q + 1 and a positive integer w such that

(xn+n0+w, yn+n0+w) = (xn+n0 , yn+n0), n = 1, 2, . . . ,

and w is called a period.

An eventually periodic sequence such as {1, 1, 2, 3, 2, 3, 2, 3, 2, 3, . . .} that is pe-
riodic from some point onwards can serve as an example.

2. Main results

Lemma 1. Let {(xn, yn)}∞n=−(q−1) be an arbitrary solution of (1). Then

xnyn = xn+2qyn+2q, n = −q + 1,−q + 2, . . .

Proof. From (1) we have

xn+2qyn+2q =
a

yn+2q−p

byn+2q−p

xn+qyn+q
=

ab

xn+qyn+q
(3)

and

xn+qyn+q =
a

yn+q−p

byn+q−p

xnyn
=

ab

xnyn
.(4)

Then substituting (4) into (3), we get

xn+2qyn+2q = xnyn, n = −q + 1,−q + 2, . . .

�

Theorem 1. Let p be odd, c := a/b and {(xn, yn)}∞n=−(q−1) be an arbitrary
solution of (1).

(i) If |c| < 1, then for each integer l with 1 ≤ l ≤ 2pq, the subsequence
{x2pqj+l−p}∞j=0 converges to zero exponentially and the subsequence
{y2pqj+l−p}∞j=0 tends to infinity exponentially.

(ii) If cq = 1, then all solutions of the system of difference equations (1) are
eventually periodic with period 2pq; If cq = −1, then all solutions of the
system of difference equations (1) are eventually periodic with period 4pq.

(iii) If |c| > 1, then for each integer l with 1 ≤ l ≤ 2pq, the subsequence
{x2pqj+l−p}∞j=0 tends to infinity exponentially and the subsequence
{y2pqj+l−p}∞j=0 converges to zero exponentially.

Proof. For each n ≥ 1, substituting xn = a/yn−p into yn+q = byn+q−p/(xnyn),
we get

ynyn+q =
1
c
yn−pyn+q−p.(5)

Repeated application of (5) yields

yn−pyn+q−p = c2yn+pyn+q+p = c3yn+2pyn+q+2p = . . .
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or

yn−pyn+q−p = ct+1yn+ptyn+q+pt, t = 0, 1, . . . , n = 1, 2, . . .(6)

Since q > p and p - q, it follows that q = pk + m for some positive integer k where
m < p. Hence the last equation turns into

yn−pyn+(pk+m)−p = ct+1yn+ptyn+(pk+m)+pt, t = 0, 1, . . . , n = 1, 2, . . .(7)

For t = k − 1, we have

yn−pyn+(pk+m)−p = ckyn+pk−pyn+(2pk+m)−p, k = 1, 2, . . . , n = 1, 2, . . .(8)

Multiplying both sides of Eq. (8) by
∏p

i=2 yn+i(pk+m)−p, we obtain

yn−p

p∏
i=1

yn+i(pk+m)−p = ckyn+pk−pyn+(2pk+m)−p

p∏
i=2

yn+i(pk+m)−p.(9)

Then, by taking n = n + pk and t = (p− 1)k + m− 1 in (7), we get

yn+pk−pyn+(2pk+m)−p = c(p−1)k+m

p+1∏
i=p

yn+i(pk+m)−p(10)

which combined with (9), leads to

yn−p

p−1∏
i=1

yn+i(pk+m)−p = cpk+m

p+1∏
i=2

yn+i(pk+m)−p.(11)

Moreover, taking n = n + j(pk + m), j = 1, 2, . . . ,m − 1 and t = pk + m − 1 in
(7), we get

1+j∏
i=j

yn+i(pk+m)−p = cpk+m

p+j+1∏
i=p+j

yn+i(pk+m)−p.(12)

When p is odd, it follows that
p−1∏
i=1

yn+i(pk+m)−p = c
(pk+m)(p−1)

2

2p−1∏
i=p+1

yn+i(pk+m)−p,

p+1∏
i=2

yn+i(pk+m)−p = c
(pk+m)(p−1)

2

 2p∏
i=p+2

yn+i(pk+m)−p

 yn+(p+1)(pk+m)−p.

These together with (11) imply that

yn−p = cpk+myn+2p(pk+m)−p,

or

yn−p = cqyn+2pq−p, n = 1, 2, . . .(13)

since q = pk + m. It is clear that repeated application of (13) yields

yn+2pqj−p = cqjyn−p, j = 1, 2, . . . , n = 1, 2, . . .(14)
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Moreover from xn = a/yn−p and yn−p = cqyn+2pq−p, it follows that

xn = cqa/yn+2pq−p or xn = cqxn+2pq,

or

xn+2pq−p = cqxn−p, n = 1, 2, . . .(15)

Again repeated application of (15) leads to

xn+2pqj−p = cqjxn−p, j = 1, 2, . . . , n = 1, 2, . . .(16)

Consequently: (i) follows from Eqs.(14) and (16) and the fact that |c| < 1. (iii)
follows from equations Eqs.(14) and (16), and the fact that |c| > 1.

It remains to show (ii). If cq = 1 (resp. cq = −1), it follows from (15) and (13)
that

xn = xn+2pq, yn = yn+2pq, n = 1, 2, . . .(17)

(resp. xn = xn+4pq, yn = yn+4pq, n = 1, 2, . . .).(18)

A short computation reveals that

x2pqj−p = x−py−p
x0

a
6= x−p,

j = 1, 2, . . . for arbitrary initial values. In fact, from (17) (resp. (18)), it suffices to
show that x2pq−p = x−py−px0/b (resp. x4pq−p = x−py−px0/b). From Lemma 1,
we have xnyn = xn+2qyn+2q = · · · = xn+2pqyn+2pq. Thus by taking n = −p, we
have

x−py−p = x2pq−py2pq−p, (resp. x−py−p = x4pq−py4pq−p).(19)

From (5), we have
yn−p

yn
=

yn+q

yn+q−p
= · · · =

yn+(2p−1)q

yn+(2p−1)q−p
.(20)

By taking n = q in (20), we get
yq−p

yq
=

y2pq

y2pq−p
, (resp.

yq−p

yq
=

y4pq

y4pq−p
).(21)

Folloing from (19), (21) and y2pq = y0, we obtain

x2pq−p =
x−py−p

y2pq−p
= x−py−p

yq−p

yqy2pq
= x−py−p

yq−p

yqy0
,(22)

(resp. x4pq−p = x−py−p
yq−p

yqy0
).

By taking n = q in the second equation of system (1), we have
yq−p

yqy0
=

x0

b
.

This together with (22) imply that

x2pq−p =
x−py−px0

b
, (resp. x4pq−p =

x−py−px0

b
).

�
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Figure 2. cq = 1, w = 24.
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Figure 3. cq = −1, w = 60.
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Figure 4. p is even, c = −1.
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Figure 5. p is even, c = 1.
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Figure 6. p, q are even, c = −1.5.
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Figure 7. p is even, q is odd, c = 0.5.
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Remark 1. Some numerical experiments are carried out by MATLAB software.
Choosing a = −b = 2, p = 3, q = 4, and random initial data, we see that cq = 1
and the solutions of (1) are eventually periodic with period 24 in Fig. 2. Choosing
a = −b = 2, p = 3, q = 5 and random initial data, we see that cq = −1 and the
solutions of (1) are eventually periodic with period 60 in Fig. 3.

A natural question is what the solutions look like if p is even. We plot
Figs. 4–7 with different c and different q. None of them can tell that the cor-
responding solution of (1) is eventually periodic even if c = 1.
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3. Çinar C., On the positive solutions of the difference equation system xn+1 = 1/yn,
yn+1 = yn/xn−1yn−1, Appl. Math. Comput. 158 (2004), 303–305.

4. Clark D. and Kulenovic M.R., A coupled system of rational difference equations, Comput.

Math. Appl. 43 (2002), 849–867.
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