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PRESERVATION OF TENSOR SUM AND TENSOR PRODUCT

C. S. KUBRUSLY aAnD N. LEVAN

ABSTRACT. This note deals with preservation of tensor sum and tensor product
of Hilbert space operators. Basic operations with tensor sum are presented. The
main result addresses to the problem of transferring properties from a pair of op-
erators to their tensor sum and to their tensor product. Sufficient conditions are
given to ensure that properties preserved by ordinary sum and ordinary product are
preserved by tensor sum and tensor product, which are equally relevant for both
finite-dimensional and infinite-dimensional spaces.

1. INTRODUCTION

Tensor sum and tensor product of Hilbert space operators can be thought of as
an extension to infinite-dimensional spaces of the traditional Kronecker sum and
Kronecker product of matrices on finite-dimensional spaces. For example, see [2,
p. 238] and [3] where several finite-dimensional applications of both Kronecker
sum and Kronecker product can be found. Let A and B be operators on Hilbert
spaces. If A ® B denotes their tensor product, then their tensor sum is given by

(A I)+ (I ® B),

where I stands for the identity operator. Theoretical aspects of tensor sums have
been considered in current literature. For instance, essential spectrum, as well as
Weyl and Browder spectra, of tensor sums were investigated in [10]. Applications
involving tensor sums have also been considered recently in [5, 6, 7, 8].

In this paper we are concerned with the problem of preserving properties by
tensor sum and product. That is, properties of A and B that can be transferred
to the tensor sum (A® I)+ (I ® B) and to the tensor product A ® B. After con-
sidering some basic operations with tensor sum in Proposition 2 the main result
is established in Theorem 1, where preservation by both tensor sum and tensor
product is investigated. The compact case is treated in Theorem 2. Applica-
tions of Theorem 1 are considered in Corollaries 1 and 2 where, in particular, it
is shown how proper contractiveness and strict positivity are both preserved by
tensor product and tensor sum, respectively.
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2. PRELIMINARIES

Let H and K be nonzero complex Hilbert spaces. We shall consider the concept of
tensor product space in terms of the single tensor product of vectors as a conju-
gate bilinear functional on the Cartesian product of H and K. (See, e.g., [9], [18]
and [19] — for an abstract approach see, e.g., [1], [4] and [21].) The single tensor
product of z € H and y € K is a conjugate bilinear functional x ® y: H x K — C
defined by (z ® y) (u,v) = {(x;u) (y;v) for every (u,v) € H x K. The tensor prod-
uct space is the completion of the inner product space consisting of all (finite) sums
of single tensors, which is a Hilbert space with respect to the inner product

<in®yi;zwg‘®%> :ZZ%;U@) (yi;2;5)

for every >, z; ® y; and ), w; ® z; in H® K. (The norm on H ® K is the one
generated by the above inner product.) By an operator on a normed space X we
mean a bounded linear transformation of X into itself. Let B[X] be the normed
algebra (equipped with the induced uniform norm) of all operators on X. The
tensor product of two operators A in B[H] and B in B[K] is the transformation
AR B: H® K — H ® K defined by

(A®B)Zx,-®yi :ZAzi(X)Byi for every in@)yi EH®K,

which is an operator in B[H ® K]. Although the tensor product is not a binary
operation, it somehow deserves its name since it is distributive with respect to
(ordinary) addition. Indeed, the proposition below states some of the basic opera-
tions with tensor product of Hilbert space operators (where A* denotes the adjoint
of A and ||A|| the norm of A).

Proposition 1. For every o, € C, A, Ay, Ay € B[H] and B, By, By € BIK],
(a) af(A® B)=aA® (B,
(b) (A1 + A2)®@ (B1+ Bs) = A1 ® By + Ay ® By + A1 ® By + Ay @ B,
c) A1A;® B1By = (A1 ® By) (A2 ® By),
(d) (A® B)* = A* ® B,
(&) l4® Bl = [A][B].
If A and B are invertible, then so is A® B and
f) AB)'=A"1®BL
For an expository paper on tensor product (including a proof of Proposition 1),
the reader is referred to [12].

3. TENSOR SuM

Let A and B be arbitrary operators on H and on K, respectively. An immediate
consequence of Proposition 1(c) reads as follows.

1) A@B=(AeN)(I®B)=(I®B)(AcI),



PRESERVATION OF TENSOR SUM AND TENSOR PRODUCT 135

where the identity on K makes the tensor product with A and the identity on H
makes the tensor product with B. Recall from Proposition 1(a) that

al @a ' T=1®1I,
which is the identity operator on H ® K for every nonzero scalar «, and
AR0=0®B=0®O0,

which is the null operator on ‘H ® KC, where the null operator on I makes the
tensor product with A and the null operator on H makes the tensor product with
B. The tensor sum of A and B is the transformation AHB: HRIK - HQK
defined by

(2) ABB=(A®1)+ (I B),

which is an operator in B[H ® K]. (It is sometimes written @ instead of H but
we reserve the symbol @ for orthogonal direct sum, as usual.) When the tensor
product (in a finite-dimensional setting) is identified with the Kronecker product
of matrices, the correspondent expression in (2) is referred to as the Kronecker
sum (see e.g., [2, p. 238] and [3]). This justifies the nomenclature tensor sum.
However, it is worth noticing that the tensor sum is not commutative. Indeed,

ABO=A®I, O®BB=I®B,

ABI=A®I1+1IR1, IBB=I®I1I+1®B.
In particular, if H = K and A = B, then

ABO=A®I4TI®A=0@A,

ABI=AQI+IQI#II+IA=1HA.

Basic operations with tensor sum of Hilbert space operators are summarized in
the next proposition. Its proof is straightforward, hence omitted.

Proposition 2. For every o, 3 € C, A, A1, As € B[H] and B, By, B2 € B[K],
(a) (a+B)(ABB)=aABBB+ HBABaB,

(b) (A, + As) B (By + Bo) = A, B By + Ay B Bo,

(¢) (A1BB1)(A28 By) = A1 ® By + A2 ® By + A1 A3 8 By Bs,

(d) (ASBB)* = A* 8 B*,

(e) A B < Al + B

4. PRESERVATION

The next theorem is the central result of this note. It gives sufficient conditions
to ensure when a property that is preserved by ordinary product and by ordinary
sum is also preserved by tensor product and tensor sum. For simplicity, we assume
that the Hilbert spaces throughout this section are separable.
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Theorem 1. Let C' and C be classes of operators on Hilbert spaces such that

G ccc,

(ii) every operator unitary equivalent to an operator in C' or in C is an operator
in C" orin C, respectively, and

(iil) direct sum of countably many copies of an operator in C' or in C is an
operator in C' or in C, respectively.

(a) If the product of commuting operators acting on the same space, one in C’
and the other in C, is in C', then the tensor product of two operators, one
in C' and the other in C, is in C'.

(b) If the sum of commuting operators acting on the same space, one in C' and
the other in C, is in C', then the tensor sum of two operators, one in C’
and the other in C, is in C’.

Proof. Let H and K be Hilbert spaces. Take A in B[H] and B in B[K]. From (1),
AB=(A®I)(I®B)=(I®B)(A®1I)

in B[H ® K], where the same notation I is used for the identity on H and on K.
Also recall that tensor product is unitarily equivalent commutative; that is, there
exists a unitary transformation Il: H ® K — K ® H such that

M(A® B)=(B® A)II
for every A in B[H] and every B in B[K], and so H @ K = K ® H with = denoting

unitary equivalence. Now, since H and KC are separable, the tensor products I ® A
on K@M and I ® B on H ® K are unitarily equivalent to the (countable) direct

sums @, A on @, H and €, B on P, K,
I®A%@kA and 1®Bg@k3,

through unitary transformations ®; and ®x that do not depend on A and B:
There are unitary transformations ®1,: @, H - K@ Hand ®x: P, L - HRK
such that (see e.g., [12, Remark 5])

@H(@kA) = (I® A)®y and @K(@kB) = (I ® B) &k

for every A in B[H] and every B in B[K], and so K& H = @, H and H® K =
@, K. (Note that if H is infinite-dimensional, then H = (3 and @, K = (2 (K);
similarly, if K is infinite-dimensional, then K = (2 and @, H = (3 (H).) There-
fore,
A®B=T"I® AT (I B) = TI" [y (@, A) &3] T & (D, B)
— (I@B) II*(I ® A)TI = Ok (), B) O T [0 (D, A) D3| TT
and, by (2),
ABB=(A)+(I®@B)=II"I® A)I1+ (I ® B)
= 17 [02¢ (D A) 3] T + Pic (D). B) P
Put
AT =TI [0y (@, A) @3] 1T and B’ = &y (D, B) 0}
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in H® K so that
A B=AB ' =B'A and ABB=A4 +B.

Let C’ and C be classes of operators satisfying assumptions (i) to (iii). Suppose
A and B are in C. If one of them is in C’, then A" = II* [‘I’H (@kA)fl)m IT and
B' = & (6, B) P} are in C, with one of them in C’. Since these operators (that
act on the same space H ® K) commute, we may infer the following results.

(a) If both A and B are in C, with one of them in C’, then A’ and B’ are in C,
with one of them in C’. Since A" and B’ commute and A ® B = A’B’, it follows
that A ® B lies in C’ whenever the classes C’ and C are such that the product of
commuting operators, one in C’ and the other in C, is an operator in C".

(b) If both A and B are in C, with one of them in C’, then A" and B’ are in C, with
one of them in C’. Since A’ and B’ commute and AH B = A’ + B’, it follows that
AH B lies in C’ whenever the classes C'and C are such that the sum of commuting
operators one in C’ and the other in C, is an operator in C’. 1

5. CoMPACT CASE

The sufficient condition (iii) of Theorem 1 cannot be dismissed. However, If C
stands for collection of all (bounded linear) operators and C’ stands for the collec-
tion of all compact operators, both classes comprising operators acting on Hilbert
spaces, then it is plain that the conditions (i) and (ii) are satisfied, but not con-
dition (iii) — the identity on infinite-dimensional spaces is not compact, but is a
countably infinite direct sum of compacts. Moreover, since the compact operators
form a two-sided deal in B[H], it follows that the hypothesis in both (a) and (b)
of Theorem 1 are also satisfied. In fact, as we shall see below, tensor product of
compact operators is compact, but tensor sum of compact operators on infinite-
dimensional spaces is not compact. Recall that a quasinilpotent operator is one
with a null spectral radius (i.e., one whose spectrum is equal to {0}), and a part of
an operator is a restriction of it to an invariant subspace (by a subspace we mean
a closed linear manifold).

Theorem 2. If A € B[H] and B € B[K] are compact, then A® B € B[H ® K]
is compact. Conversely, if A® B € B[H ® K] is compact and one of A € B[H] or
B € BIK] has a nonzero eigenvalue, then the other is compact.

Proof. If A and B are compact on Hilbert spaces (and so on Banach spaces with
Schauder bases), then they are uniform limits of sequences of finite-rank operators
{A,} and {B,} (i.e., A, > A and B,, = B), and therefore A, ® B, ~~ A® B
[17]. Since each A,, and each B, is finite-rank, then so is each A4,, ® B,, (because
range (A, ® B,,) = range (4,,) ® range (B,,)). Hence A ® B is the uniform limit of
a sequence of finite-rank operators, thus compact. Conversely, suppose A ® B is
compact and one of A or B, say B, has a nonzero eigenvalue A\. Take an arbitrary
eigenvector e in the eigenspace kernel (A — B), and consider the 1-dimensional
subspace [e] of K spanned by the eigenvector e, which is clearly B-invariant. Thus
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the regular subspace H ® [e] of H® K is (A ® B)-invariant and so (cf. [14] or
[15]),

(A®@ B)|luge = A® A= A,

where the unitary equivalence happens because A\ # 0. Therefore A is compact
since (A ® B)|ng [¢] is compact (restriction of a compact to a subspace is compact).
O

However, if A and B are compact operators on infinite-dimensional spaces, then
ABB=(A®I)+ (I ® B)

may not be compact because both (A ® I') and (I ® B) are not compact if the iden-
tities act on infinite-dimensional spaces. For instance, A = B =D = diag({%};’o:l)
on Ei is compact, but I ® D = @, D is not compact, and so D® I = I ® D is
not compact, and therefore AH B = (D ® I)+ (I ® D) is not compact.

Remark 1. If A® B € B[H ® K] is compact and one of A € B[H] or B € B[]
has a nonquasinilpotent compact part, then the other is compact.

This in fact is a corollary of the converse of Theorem 2. Indeed, if B has a non-
quasinilpotent compact part, then there exists a nonzero subspace M of I, which
is B-invariant, such that K = B|a in B[M] is not quasinilpotent and compact.
Since M is B-invariant, we get (see [14] or [15])

(A® B)|reom = AR K,

which is compact because the restriction of a compact operator to a subspace is
compact. Since K is compact but not quasinilpotent, it has a nonzero eigenvalue
(Fredholm Alternative). Hence, by the converse of Theorem 2, A must be compact.

Also note that Theorem 2 is not a consequence of Theorem 1 since condition
(iii) in Theorem 1 is not satisfied by compact operators.

6. APPLICATIONS

A first application of Theorem 1 deals with tensor product of proper contractions.
Recall that an operator T is a contraction if |T]| <1 (i.e., || Tz| < ||z| for every
x). It is a proper contraction if ||Tx| < ||z| for every nonzero z, and a strict
contraction if ||T]| <1 (i.e., sup,o(||Tz[|/[|z|]) < 1). It is clear that every strict
contraction is a proper contraction, every proper contraction is a contraction, and
that these are proper inclusions in a infinite-dimensional space.

According to Proposition 1(e), the tensor product A ® B is a contraction (or a
strict contraction) if and only if || A|| || B|| < 1 (or ||A]| || B]] < 1). Thus it is trivially
verified that if A in B[H] and B in B[K] are contractions, then so is A® B in
B[H ® K] and, if in addition one of A or B is a strict contraction, then so is
A ® B. However, a similar result for proper contractions does not follow at once
from the norm identity in Proposition 1(e). Indeed, it can be verified that the
tensor product of proper contractions is a proper contraction if and only if, for
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every nonzero finite sum of single tensors Z 1T @ Yis

D> (Awi; Axj) (Byi; Byy) < > (wisay) (i v5)

i=1j=1 i=1 j=1

whenever ||Az|| < ||z|] and ||By|| < |ly|| for every nonzero x and y in H and K [13].
Actually, the tensor product of proper contractions in fact is a proper contraction,
which can be verified as a corollary of Theorem 1(a).

Corollary 1. Let A and B be operators acting on separable Hilbert spaces. If
one of them is a contraction and the other is a proper contraction, then the tensor
product A ® B is a proper contraction.

Proof. Observe that assumptions (i), (ii) and (iii) of Theorem 1 hold for con-
tractions and proper contractions acting on separable Hilbert spaces. That is, it
is readily verified that if C stands for the class of all contractions on separable
Hilbert spaces and C’ for the class of all proper contractions on separable Hilbert
spaces, then assumptions (i), (i) and (iii) hold true. Since the product (either left
or right) of a contraction with a proper contraction (not necessarily commuting
contractions) always is a proper contraction [16], it follows by Theorem 1(a) that
A ® B is a proper contraction whenever one of A or B is a contraction and the
other is a proper contraction. O

A second application of Theorem 1 deals with tensor sum of strictly positive
operators. Recall that a Hilbert space operator T is nonnegative if 0 < (T'z; x) for
every vector  (notation: T' > O), positive if 0 < (T'x; x) for every nonzero vector
x (notation: T > O), and strictly positive if it is an invertible (with a bounded
inverse) nonnegative operator (notation: 7 > O). Again, it is clear that every
strictly positive operator is positive, every positive operator is nonnegative, and
that these are proper inclusions in a infinite-dimensional space.

Consider a tensor sum AH B in B[H ® K]. Observe from (2) that

N N
<(AEEIB)Z xi®yi;2xi®yi>
i=1 1:;] N v N
- <(A®I)in ®Yii Yy T ®yi> + <(I®B)Z:ci ®yii Yy T ®yi>
— Py i—1 i=1

N N N N

ZZ (Ax;s25) (i y5) ZZ zisx5) (Byiiyj)

=1 j=1 =

for every nonzero finite sum of single tensors Z _1 %; ® y;. Thus it can be verified
that A H B is nonnegative, positive or strictly positive if and only if

N N N N
DO (Awisag) (yisyy) + )Y (wiizy) (Byisy;)

i=1 j=1 i=1 j=1
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is nonnegative, positive or positive and bounded away from zero, respectively, for
every nonzero finite sum of single tensors Zfil x; ® y;. We apply Theorem 1(b)
to show that a tensor sum is nonnegative, positive or strictly positive if one of
the summands is nonnegative and the other is monnegative, positive, or strictly
positive.

Corollary 2. Let A and B be operators acting on separable Hilbert spaces. The
tensor sum A B B is nonnegative, positive or strictly positive if one of A or B is
nonnegative and the other is nonnegative, positive or strictly positive, respectively.

Proof. Let C,C’ and C” denote the classes of all nonnegative, positive and strictly
positive operators acting on separable Hilbert spaces, respectively. Assumptions
(i), (ii) and (iii) of Theorem 1 hold for the pairs (C’,C), (C"”,C) and (C”,C’) of these
three classes, where C” € C’ C C. It is readily verified that the sum of nonnegative
operators is again nonnegative, the sum of a nonnegative with a positive is a
positive operator, and the sum of a nonnegative with a strictly positive is a strictly
positive operator (see, e.g., [11, p.430]). Thus, by Theorem 1(b), ABH B > O,
AHB > O or AHB > O if one of A or B is nonnegative (say A > O) and the
other is nonnegative, positive or strictly positive (say B > O, B > O, or B > O)
respectively. O

7. FINAL REMARKS

Another application of Theorem 1 involves both tensor product and tensor sum
of normal operators. Recall that a Hilbert space operator 7T is normal if it com-
mutes with its adjoint (i.e., if T*T = T'T™*). Theorem 1 ensures that normality is
preserved by both tensor product and tensor sum. Indeed, If C = C’ stands for the
collection of all normal operators on separable Hilbert spaces, then it is clear that
assumptions (i), (ii) and (iii) of Theorem 1 hold true. A corollary of the Fuglede—
Putnam Theorem ensures that (ordinary) product and (ordinary) sum of commut-
ing normal operators is again a normal operator (see, e.g., [11, p.508]). Therefore,
both A® B and AB B are normal operators on H ® K whenever A and B are
normal operators on H and K, respectively, according to Theorem 1(a,b). How-
ever, this can be directly verified (without applying Theorem 1) as follows. By
Proposition 1(c,d),

(A® B)"(A® B) = (A*® B*) (A® B) = A*"A® B*B,

(A B)(A®B)*=(A®B)(A*® B*) = AA*® BB*.
Moreover, by Proposition 2(c,d),
(ABB)"(ABB)=(A*"HB")(AHB)=(A*® B)+ (A® B*) + (A*AHB B*B),
(ABB)(ABB)" = (ABB)(A*"BB*) = (A® B*) + (A" ® B) + (AA* B BB").
Therefore, if A*A = AA* and B*B = B B*, then
(A®B)*(A®B)=(A®B)(A® B)" and (ABB)*(ABB)=(AEB)(A#HB)"

More results on tensor products along this line can be found in [20] and [12].
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It is also worth noticing on a possible attempt to generalize the results pre-
sented in this paper towards multiple tensor products and multiple tensor sums in
the following sense. The tensor product of a pair of Hilbert spaces and of a pair of
operators can be naturally extended to a finite collection of complex Hilbert spaces
and to a finite collection of operators as follows. For any integer m > 2, let {H;}7™,
be a finite collection of Hilbert spaces. The single tensor product of an m-tuple
of vectors (z1,...,T,) with each x; in H; is the conjugate multilinear functional
Q" i [1im, H; — C defined by (®:’il xi)(ul, cosUm) = [T, (5 u;) for ev-
ery (ui,...,un) € [[/~, H;. The tensor product space @;-, H; is the completion
of the inner product space of all (finite) sums of single tensor products @~ ; x
with z; ; € H;, which is again a Hilbert space with respect to the inner product

¢ i=1
for every >, Qi ik and >, Qir, wie in @i~ H;. The tensor product
X, M, of subspaces M, of H; is a subspace of the tensor product space @, H;.
This comes from the fact that if {h; ~, },,er; is an orthonormal basis for each H;,
then {&;" | M, } ... vy 1, is an orthonormal basis for @, H; (sec, e.g.,
[21, Theorem 3.12(b)]). The tensor product of a finite collection {A;}™, of oper-
ators, each A; acting on H;, is given by

<é Ai> Zéxlk = ZéAimi,k for every Zéxlk S éHi.
i=1 k=1 k=1 k=1 i=1

This defines an operator in B[).", H;] with the following properties.

m * m m -1 m
(@ Al-) =) 4;, and (@ Az-) =) A"
i=1 i=1 i=1 i=1

if each A; is invertible. Also

@[l e (@) (@2) - (@)

if {B;}", is a collection of m operators with each B; acting on each H,. Moreover,
the multiple tensor product ®:il A; is promptly endowed with associativity, which
means that

m j—1 m
®i:1Ai - ®Z:1 Ai ® Aj ® ®i:j+1Ai

for every integer j € [2,m — 1] if m > 2. Thus the tensor product results in The-
orems 1 and 2 may undergo a natural extension to a finite number of operators
along the lines developed in [14]. Similarly, an extension for the tensor sum of a
finite collection {A;}7™, of operators will also enjoy associativity. Indeed, if each
A; acts on the same H for all ¢ = 1,2, 3, and if I denotes the identity on H, then

(A A)BA; =411+ IR A1+11I® A; = A; B (A B Aj).



142

C. S. KUBRUSLY anp N. LEVAN

Thus a trivial induction leads to the following generalization of (2)

m m i—1 m
Hﬂi:lAi:Z ®Ij ®Az® ® Ij )
i=1 \j=1 Jj=i+1 )

where I; is the identity on each H; and the empty tensor sum (i.e., ®j:k 1; for

¢ < k) is always missing. So the multiple tensor product H" ; A; is also entitled
to be treated in light of Theorem 1. This and its possible outgrowths might be a
promising suggestion for a future research.
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