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ON SQUARE ITERATIVE ROOTS OF MULTIFUNCTIONS

ZHIJIE NAN and LIN LI

Abstract. The most known results on iterative roots are given under the assump-

tion of continuity and monotonicity. In 2009, Li, Jarczyk, Jarczyk and Zhang con-
sidered the existence of square iterative roots of multifunctions with exactly one

set-valued point. They gave a full description of these roots for strictly monotone,

upper semicontinuous multifunctions. In this paper, we investigate the square roots
of multifunctions without monotonicity.

1. Introduction

Given a set X and an integer n > 0, consider a map F : X → X. An iterative
root of order n of F is a map f : X → X such that

fn = F,(1.1)

where fn denotes the n-th iterate of f , i.e., fn(x) = f(fn−1(x)) and f0(x) ≡
x for any x ∈ X. Both iterates and iterative roots of one-dimensional maps
are important subjects in the theory of functional equations and the theory of
dynamical systems. When F is strictly monotone, many results are given, e.g., in
[1, 2, 4, 5, 7, 6, 10]. The following results are well-known [7]:

Lemma 1. (Theorem 11.1.1 in [7]). Let f : X → X be a solution of (1.1).
Then f is surjective (resp. injective, bijective) if and only if F is surjective (resp.
injective, bijective).

We define Ek[F ], where k is positive a integer, as the set of those x ∈ X for
which there exists an integer j ≥ 0 such that

F j+k(x) = F j(x).(1.2)

The remainder of the set X, i.e., the set of x ∈ X which do not fulfill (1.2) for any
j and k, will be denoted by E0[F ].

Lemma 2. (Theorem 15.6 in [4]) Let F be one-to-one map of a set X onto
itself and let Lk be the number of orbits under F in Ek[F ]. In order that (1.1)
has a solution in X it is necessary and sufficient that, for every k, Lk is either
infinite or divisible by dk, where d0 = n and, for k ≥ 1, dk = n/m(n, k), m(n, k)
being the largest divisor of n that is prime to k.

Received May 21, 2009; revised December 12, 2010.

2010 Mathematics Subject Classification. Primary 39B12, 37E05, 54C60.

Key words and phrases. iterative root; multifunction; monotonicity.



40 ZHIJIE NAN and LIN LI

For a multifunction f : X → 2X , its image f(A) of a set A ⊂ X is defined by
f(A) =

⋃
x∈A f(x) and its n-th iterate fn by the composition of n copies of f

fn = f ◦ · · · ◦ f︸ ︷︷ ︸
n times

.

A point c ∈ X is called a set-valued point if the cardinal #f(x) > 1.
In [3], the authors discussed a class of multifunctions with lack of iterative

roots. And the existence of square iterative roots of monotone multifunctions
were considered in [8]. In this paper, we continue [3, 8] by concerning the purely
set-theoretical situation and investigate the square roots of multifunctions without
monotonicity.

In what follows, we consider a class of multifunctions F : X → 2X of the form

F (x) =
{

F1(x), if x ∈ X r {c},
M, if x = c,

(1.3)

where c ∈ X, M ⊂ X and F1 is a bijection satisfying the sufficient condition of
Lemma 2. Define M∗ = M r {c}. Clearly, M∗ = M when c 6∈ M . Furthermore,
by Lemma 2, if F has a square iterative root, it should be in the form of (1.3).

Theorem 1. Let F : X → 2X be the form of (1.3) that is nearly bijective with
exceptional point c. If c 6∈ M , then F has a square iterative root. Otherwise, F
has a square root iff one of the following conditions satisfies
(1) f1(M∗) ⊆M∗,
(2) M∗ ⊆ f1(M∗),
(3) M∗ ∩ f1(M∗) = N ( M∗ and f−1

1 (N) ∪N = M∗,
where f1 is a square iterative root of F1 and f(c) = M = M∗ ∪ {c}.

Proof. Suppose that f1 is a square iterative root of F1, which implies from
Lemma 1 that f1 : X r {c} → X r {c} is a one-to-one map.

In the case M = M∗, i.e., c 6∈M , then F has an iterative square root f : X →
2X as followes.

f(x) =
{

f1(x), if x ∈ X r {c},
f−1
1 (M), if x = c.

In the other case, i.e., c ∈ M , we note that c ∈ f(c). Based on this, we have
the following three subcases:
(3-1) M∗ ⊆ f1(M∗),
(3-2) f1(M∗) ⊆M∗,
(3-3) M∗ ∩ f1(M∗) = N , N ⊂M∗ is non-empty.

The case of (3-1) implyies that f−1
1 (M∗) ⊆M∗. Therefore

f(x) =
{

f1(x), if x ∈ X r {c},
f−1
1 (M∗) ∪ {c}, if x = c,

is a square iterative root of F .
We may also choose a subset N ⊆ M∗ such that f1(N) = M∗. Then f can be

defined by

f(x) =
{

f1(x), if x ∈ X r {c},
N ∪ {c}, if x = c.
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In the case (3-2), obviously,

f(x) =
{

f1(x), if x ∈ X r {c},
M∗ ∪ {c}, if x = c,

is a square iterative root of F .
In the case of (3-3), since N ⊂ f1(M∗), it implies that f−1

1 (N) ⊂ M∗. There-
fore, f−1

1 (N) ∪ N ⊆ M∗. If f−1
1 (N) ∪ N = M∗, then F has an iterative square

root f given by

f(x) =
{

f1(x), if x ∈ X r {c},
f−1
1 (N) ∪ {c}, if x = c.

Otherwise, i.e.,

f−1
1 (N) ( N ⊂M∗.(1.4)

Assume that F has a square iterative root f and f(c) = M∗1 ∪ {c}. Then by
iterating, it should satisfy the equality

f1(M∗1 ) ∪M∗1 = M∗.(1.5)

It follows that M∗1 ⊆ M∗ and f1(M∗1 ) ⊆ M∗. If N = ∅, then for any subset
N∗ ⊆ M∗ that f1(N∗) ∩M∗ ⊆ f1(M∗) ∩M∗ = ∅. Therefore, F has no square
iterative roots. On the other hand, i.e., N 6= ∅, we may choose the biggest subset
N∗ ⊂M∗ that f1(N∗) ⊆M∗. Obviously,

N∗ = f−1
1 (N).(1.6)

Otherwise, suppose that N∗ = f−1
1 (N) ∪ S with a nonempty set S ⊂ M∗ and

f−1
1 (N) ∩ S = ∅. Then f1(N∗) ⊆ N ∪ f1(S) ⊆ M∗, which implies that f1(S) ⊆

M∗∩f1(M∗) = N . Hence S ⊆ f−1
1 (N) follows that (1.6) is found. Since N∗ ⊂M∗

is the biggest subset that satisfies f1(N∗) ⊆M∗, it implies that f(c) ⊆ N∗ ∪ {c},
which gives

F (c) = f(f(c)) ⊆ N ∪N∗ ∪ {c} = N ∪ f−1
1 (N) ∪ {c} ( M∗ ∪ {c}

in the view of (1.4). Hence, F (c) ( M∗ ∪ {c} is a contraction. Thus, in the last
subcase, there is no subset in M∗ that fulfills (1.5). Therefore, F has no iterative
square roots when f−1

1 (N) ∪N ( M∗. The proof is completed. �

Corollary 1. Let F be the form of (1.3). Suppose that f1 is an arbitrary square
iterative root of F1 on X r {c}. If M∗ is the set of all fixed points of F , then F
has a square iterative root.

Proof. Firstly, we define a multifunction f : X → 2X in the form of (1.3), where
f1 is an arbitrary square root of F1 on X r {c}. Then we claim that

f1(M∗) ⊆M∗.

Otherwise, there exists a point x0 ∈ M∗ that f1(x0) = y0 6∈ M∗ with x0 6= y0.
Thus

F1(y0) = F1(f1(x0)) = f1(F1(x0)) = f1(x0) = y0,



42 ZHIJIE NAN and LIN LI

which is a contradiction. Therefore

f(x) =
{

f1(x), if x ∈ I r {c},
M∗ ∪ {c}, if x = c,

is a square iterative root of F . �
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