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VERTEX-TRANSITIVE MAPS ON A TORUS

O. ŠUCH

Abstract. We examine FVT (free, vertex transitive) actions of wallpaper groups

on semiregular tilings. By taking quotients by lattices we then obtain various fami-
lies of FVT maps on a torus, and describe the presentations of groups acting on the

torus. Altogether there are 29 families, 5 arising from the orientation preserving

wallpaper groups and 2 from each of the remaining wallpaper groups. We prove
that all vertex-transitive maps on torus admit an FVT map structure.

1. Introduction

This paper is mostly expository. It is devoted to the nice interplay between various
symmetric objects arising from the following diagram:

plane R2

��

semiregular tiling T with
FVT/vertex-transitive action of

wallpaper group Γ
oo

��

torus R2/Λ
a toric map T /Λ with

FVT/vertex-transitive action of finite
group G

oo

This diagram can be constructed in two ways. Starting from the top, one may
choose a lattice Λ invariant under Γ and construct quotients. Alternatively, one
can start at the bottom, and construct the universal covering space of the torus.
All objects involved have a geometric symmetry of continued interest in pure and
applied mathematics.

Semiregular tilings [16] arise when studying analogues to Archimedean solids
on the torus. Various definitions can be given, isometric and topological. Inter-
estingly, on the torus the local notion of identical local type and the global notion
of vertex-transitivity coincide. This can be contrasted with the case of sphere,
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where there is a solid with vertices of the same local type, which is not vertex-
-transitive [18].

Wallpaper groups [17] classify symmetries of two-dimensional Euclidean pat-
terns. They have played great importance in crystallography, so much so, they are
also known as plane crystallographic groups. One way to understand the struc-
ture of wallpaper groups is to construct their Cayley graphs, or even better Cayley
maps, in which relation words can be read from closed walks in the graph. This
approach is shown for instance in [4].

Vertex-transitive maps on a torus have received attention for various reasons.
The underlying maps provide examples of several classes of finite groups, as studied
for instance in [4]. Vertex-transitive maps have also been studied in contexts
related to the Babai conjecture ([13], [1]). There is also continuing interest in
symmetric toric maps from chemistry (see e.g. [10]). Vertex-transitive maps on
the torus are also used as the underlying structure for Kohonen neural networks
[15].

Let us make a brief survey of several related works. Well-known is the work of
Burnside [3, p. 203–209] in which he describes the orientation-preserving groups
acting on a torus. Baker [2] in his work gives presentations of most groups with
action on a torus. He omits some families of groups: for instance, for the semireg-
ular tiling of local type 3.4.6.4 he omits families p3m1 3, p31m3. The book of
Coxeter and Moser [4, Section 8.3] also provides lists of presentations. However,
quotients of pmm and pmg listed there are in error. Proulx in her work [11] made
a careful study of which Cayley graphs can be drawn on the torus. The list of
groups she provides, however, does not give explicit presentations. A result in a
similar vein can be found in [6, Theorem 6.3.3]. Thomassen in his work [13] gives
a topological description of vertex-transitive maps on the torus.

Our work is structured into three parts. In the first we describe wallpaper
groups with various FVT actions on semiregular tilings. We shall prove that
except for the pairs (T ,Γ) described in Table 1, no other FVT group actions exist
(Theorem 2).

The basis for the second part is a theorem of Tucker that allows us to explicitly
enumerate all finite groups acting on a torus. This explicit enumeration allows us
to show that there is no redundant family in our list.

In the third part, we list all FVT maps induced by FVT actions of wallpaper
groups on semiregular tilings. We prove that all vertex-transitive maps on the
torus are in fact FVT maps. This should be contrasted with the case of higher
genus ([8], [9]).

The author would like to thank R. Nedela for suggesting the problem, and
J. Karabáš, A. Rosa, V. Proulx, T. Kenney for their indispensable help during
preparation of the paper, as well as to the referee for useful corrections.

1.1. Preliminaries

1.1.1. Lattices. By a lattice we mean a rank two Z-submodule Λ of C. If ω is a
nonzero complex number then ω · Λ := {ω · z|z ∈ Λ} is also a lattice.

There are two special lattices that we will often consider.
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Firstly, the square lattice Λ� corresponding to Gaussian integers, that is to
complex numbers of the form n1 + n2 i, where n1, n2 are integers. Secondly, the
triangle lattice Λ4 is the lattice corresponding to complex numbers of form

n1 + n2 ·
−1 +

√
3 i

2
,

where again n1 and n2 are integers. These two lattices are distiguished by the
following property.

Proposition 1. Let Λ be a lattice. Then the following are equivalent
a) Λ is invariant under a rotation by an angle φ with 0 < φ < π
b) Λ = ωΛ4 or Λ = ωΛ� for some nonzero complex number ω.

Let us now define several more classes of lattices
• a square-like lattice is a lattice of form ω · Λ� with complex ω 6= 0,
• a triangle-like lattice is a lattice of form ω · Λ4 with complex ω 6= 0,
• a real lattice is a lattice invariant under a reflection,
• a rectangular lattice is a lattice generated by a pair of orthogonal vectors,
• a rhombic lattice is a lattice generated by a pair of vectors of equal length.

The latter two classes of lattices can be given other characterizations. The set
NΛ := {‖z‖ | z ∈ Λ} is a discrete subset of the real line. Order the elements of NΛ

0 = c0 < c1 < c2 < . . . .

If the norm c1 is achieved for six elements of Λ, then Λ is triangle-like. If at least
one of the norms c1, c2 is achieved by four elements, then Λ is rhombic. If the four
shortest nonzero vectors are ±w1,±w2 with w1, w2 orthogonal, then the lattice is
rectangular.

Alternatively, one can use the modular j function from the theory of elliptic
curves. The function associates to any lattice Λ a complex number j(Λ) that
uniquely identifies lattices modulo the equivalence relation Λ ∼ ωΛ. One has
equivalences:
• Λ is square-like iff j(Λ) = 1728,
• Λ is triangle-like iff j(Λ) = 0,
• Λ is real iff j(Λ) is real,
• Λ is rectangular iff j(Λ) is real with j(Λ) ≥ 1728,
• Λ is rhombic iff j(Λ) is real with j(Λ) ≤ 1728.

1.1.2. Space groups. By a wallpaper group Γ we mean a group of isometries
of the plane that acts discretely with a compact quotient. At present Wikipedia
[17] provides an excellent resource on the subject of wallpaper groups. There
are seventeen isomorphism classes of groups. In section 2 we will describe their
presentation following the classical work of Coxeter and Moser [4].

The simplest one of them is the group p1 , which is just the free abelian group
on two generators. The subgroup of translations T (Γ) in Γ is always isomorphic to
p1 , and its index in Γ is ≤ 12.

On the other end are the “largest” groups p6m and p4m. Any wallpaper group
is a subgroup of finite index of either p4m or p6m (or both).
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(a) Triangular tiling tT = 1 (b) Hexagonal tiling tT = 2 (c) Snub hexagonal tiling tT =

6

(d) Reverse snub hexagonal

tiling tT = 6

(e) Trihexagonal tiling tT = 3 (f) Small rhombitrihexagonal

tiling tT = 6

(g) Truncated hexagonal tiling

tT = 6

(h) Great rhombitrihexagonal

tiling tT = 12

(i) Square tiling tT = 1

(j) Truncated square tiling

tT = 4

(k) Snub square tiling tT = 4 (l) Elongated triangular tiling

tT = 2

Figure 1. Semi-regular tilings.

1.1.3. Semiregular tilings. A semiregular tiling in the plane is a covering of
the plane by regular polygons so that the group of its symmetries acts transitively
on the vertices of the tiling. There are 11 semiregular tilings of the plane [5], [16].
These are shown in Figure 1. Among them the snub hexagonal tiling (Figure 1,
parts c) and d)) is the only one that is not invariant under a mirror. By a local type
of a semiregular tiling we understand the formal product of numbers indicating
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numbers of vertices of polygons around a vertex. For instance the local type of
the triangle tiling is 36.

Let T be a semiregular tiling. By Aut(T ) we denote the group of its isometries.
It is clearly a wallpaper group. We shall denote by TT the subgroup of Aut(T )
consisting of translations. It is a normal abelian subgroup and we shall denote by
tT the index [Aut(T ) : TT ]. The subgroup TT can be viewed as a lattice. There
are three possibilities for structure of this lattice
• TT is square-like, when T is the square or snub square or truncated square tiling,
• TT is rhombic, when T is the elongated triangular tiling,
• TT is triangle-like for the remaining tilings.

1.1.4. Maps and FVT maps. The base framework for our work is the theory
of maps as described in [7]. In particular, maps considered here can have multiple
edges and loops.We say the action is an FVT action if Γ acts transitively on vertices
of T and the only group element stabilizing a vertex is the identity.

Throughout the paper we will use the term FVT map, which is a generalization
of a Cayley map. By an FVT map on a surface we mean a map and a group G
acting on the map permuting its vertices freely and transitively. Thus a Cayley
map is a special kind of FVT map in which there is an additional condition: the
group action preserves orientation of the surface.

2. FVT actions of wallpaper groups on semiregular tilings

We have three main goals in this section. Firstly, we shall present the seventeen
classes of wallpaper groups and for each of them describe its translation subgroup.

Secondly, we shall describe various FVT actions (see Figures 2–18). As is
customary when dealing with wallpaper groups, actions are described graphically
by describing the layout of the fundamental parallelogram of T (Γ), mirrors of the
group (in bold lines), its glides (in dashed lines) and rotations (diamond – rotation
by π, square by π/2, triangle by 2π/3 and hexagon for rotation by π/3).

In Section 2.4 we shall prove that there are no more FVT actions of a wallpaper
group on a semiregular tiling.

2.1. Actions of non-rigid groups

These are groups whose fundamental region can be any parallelogram, not neces-
sarily rectangular nor rhombic.

2.1.1. Group p1 . The group p1 is the free abelian group generated by two trans-
lations X and Y . It has presentations as follows:

p1 :=〈X,Y ; XY = Y X〉(1)

or upon introducing Z = −X − Y

=〈X,Y, Z; XY Z = ZY X = 1〉.(2)

Actions on the triangle and square tilings are shown in Figures 2(a) and 2(b).
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(a) Square tiling (b) Triangle tiling

Figure 2. FVT actions of the group p1 .

2.1.2. Group p2 . The group p2 is obtained from the group p1 by adding a
half-rotation T that under conjugation changes X,Y to their inverses. It has
presentations:

p2 :=〈X,Y, T ; XY = Y X, T 2 = (TX)2 = (TY )2 = 1〉(3)

or upon introducing T1 = TY , T2 = XT , T3 = T

=〈T1, T2, T3; T 2
1 = T 2

2 = T 2
3 = (T1T2T3)2 = 1〉(4)

or by setting T4 = T1T2T3 = T1X

=〈T1, T2, T3, T4; T 2
1 = T 2

2 = T 2
3 = T 2

4 = (T1T2T3T4)2 = 1〉(5)

(a) Square tiling (b) Triangle tiling

(c) Hexagonal tiling (d) Elongated triangular
tiling

Figure 3. FVT actions of the group p2 .
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The subgroup of translations is generated by X = T2T3, Y = T3T1 and is of index
2. Its actions on the square, triangle, hexagonal and elongated triangular tilings
can be seen in Figure 3(a), 3(b), 3(c), 3(d).

2.2. Actions of rigid subgroups of p4m

2.2.1. Group pm. The group pm is obtained from the group p1 by adding a
reflection R that conjugates X with X−1 and preserves Y . It follows that X and
Y have to be orthogonal. It has presentations:

pm :=〈X,Y,R; XY = Y X,R2 = 1, RXR = X−1, RY R = Y 〉(6)

or upon introducing R′ = RX

=〈R,R′, Y ; R2 = R′
2 = 1, RY = Y R,R′Y = Y R′〉(7)

The subgroup of translations is generated by Y and X = RR′.
Its FVT action on the square tiling is shown in Figure 4.

Figure 4. An FVT action of the group pm on the square lattice.

2.2.2. Group pg. The group pg is obtained from the group p1 by adding a glide
reflection whose square is Y and which conjugates X with X−1. It follows that
necessarily X and Y are orthogonal vectors.

pg :=〈P,X, Y ; [X,Y ] = 1, P 2 = Y, P−1XP = X−1〉

or by setting Q = PX as in [4] (4.504)

=〈P,Q; P 2 = Q2〉

The subgroup of translations 〈X,Y 〉 = 〈P−1Q,P 2〉 has index 2 in pg. Its FVT
actions on the square and triangular tilings are shown in Figures 5(a), 5(b).

2.2.3. Group p4 . The group p4 can be obtained from the group p2 by adding
a rotation S which cyclically permutes four half-rotations T1, T2, T3, T := T4. It
has the presentation

p4 := 〈S, T ; S4 = T 2 = (ST )4 = 1〉

The subgroup of translations is generated by STS and TS2, and it is of index 4.
Its FVT actions on the square, snub square and truncated square tilings are

shown in Figures 6(a), 6(b), 6(c).
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(a) Square tiling (b) Triangular tiling

Figure 5. FVT actions of the group pg.

(a) Square tiling (b) Snub square tiling (c) Truncated square
tiling

Figure 6. FVT actions of the group p4 .

2.2.4. Group pmm. The group pmm can be obtained from the group pm by
adding a reflection R2 that fixes reflections R and R′ and conjugates Y with Y −1.
It has presentations

pmm :=〈R,R′, R2, Y ; [R, Y ] = [R′, Y ] = R2 = R′2 = R2
2 = 1,

R2RR2 = R,R2R
′R2 = R′, R2Y R2 = Y −1〉

or by setting R1 = R, R3 = R′ and R4 = R2Y as in [4] in (4.506)

= 〈R1, R2, R3, R4; R2
1 = R2

2 = R2
3 = R2

4 = (R1R2)2

= (R2R3)2 = (R3R4)2 = (R4R1)2 = 1〉
The subgroup of translations is equal to that of pm. It is generated by the pair of
orthogonal translations RR′ = R1R3 and Y = R2R4.

It has an FVT action on the square tiling as shown in Figure 7.

2.2.5. Group cm. This group can be obtained by adding a reflection R to the
group pg that exchanges P and Q. It has presentations

cm :=〈P,Q,R; P 2 = Q2, RPR = Q,R2 = 1〉

or by setting S = PR and excluding Q as in [4], (4.505)

=〈R,S; (RS)2 = (SR)2, R2 = 1〉
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(a) Square tiling (b) Square tiling

Figure 7. FVT actions of the group pmm.

Its subgroup of translations contains translations of pg as a subgroup of index 2.
It is generated by a pair of equal length vectors S and RSR. Its FVT actions on

(a) Square tiling (b) Hexagonal tiling (c) Elongated triangu-

lar tiling

Figure 8. FVT actions of the group cm.

square, hexagonal and elongated triangular tilings are shown in Figures 8(a), 8(b),
8(c).

2.2.6. Group pmg. The group pmg can be obtained from the group pg by adding
a reflection R that reverses both P and Q. It has presentations

pmg := 〈P,Q,R;P 2 = Q2;R2 = (RP )2 = (RQ)2 = 1〉

or by setting T1 = PR, T2 = QR as in [4] in (4.507)

= 〈R, T1, T2;R2 = T 2
1 = T 2

2 = 1, T1RT1 = T2RT2〉
Its group of translations coincides with those of pg and is generated by a pair of
orthogonal translations P 2 = (T1R)2 and P−1Q = RT1T2R = T1T2.

Its FVT actions on square, hexagonal and elongated triangular tilings are shown
in Figure 9(a), 9(b), 9(c).

2.2.7. Group pgg. The group pgg can be obtained from the group pg by adding
a half-rotation T conjugating P with Q−1. It has presentations

pgg :=〈P,Q, T ; P 2 = Q2, TPT−1 = Q−1, T 2 = 1〉
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(a) Square tiling

(b) Hexagonal tiling (c) Elongated triangular

tiling

Figure 9. FVT actions of the group pmg.

or by setting O = PT as in [4] in (4.508)

=〈P,O; (PO)2 = (P−1O)2 = 1〉

Its lattice of translations equals to that of pg, and is generated by P−1Q =
P−1TP−1T = (P−2O)2 and P 2 (alternatively one can take P 2 and O2).

FVT actions of pgg on the square, hexagonal, snub square, triangular and
elongated triangular tilings are shown in Figure 10.

2.2.8. Group p4g. The group p4g is obtained from the group pmm by adding
a rotation S. This rotation cyclically permutes reflections R1, R2, R3 and R4.
Setting R := R4 and Ri = S−iRSi one gets its presentation ([4], (4.512))

p4g := 〈R,S;R2 = S4 = (RS−1RS)2 = 1〉

Its lattice of translations contains the lattice of translations of pmm as a sublattice
of index 2. It is generated by orthogonal translations of equal length: S2R1R4 =
S2RS−1RS and S2R2R1 = RSRS.

FVT actions of this group on square and truncated square tilings are shown in
Figures 11(a),11(b).

2.2.9. Group cmm. The group cmm can be obtained from the group pmm by
adding a half-rotation T that exchanges R1 with R3 and R2 with R4. It has
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(a) Square tiling

(b) Hexagonal tiling (c) Snub square tiling

(d) Triangle tiling (e) Elongated triangular

tiling

Figure 10. FVT actions of the group pgg.

presentation ([4], (4.509))

cmm := 〈R1, R2, T ; R2
1 = R2

2 = T 2 = (R1R2)2 = (R1TR2T )2 = 1〉

Its lattice of translations contains the lattice of translations of pmm as a sublattice
of index 2. It is generated by a pair of equal length translationsR1R2T andR2TR1.

FVT actions of this group on the square and truncated square tilings are shown
in Figures 12(a), 12(b).

2.2.10. Group p4m. The group p4m is obtained from the group pmm by adding
a reflection R. This reflection exchanges reflections R1 with R4 and R2 with R3.
It has the following presentation ([4], (4.511)):

p4m := 〈R,R1, R2;R2 = R2
1 = R2

2 = (RR1)4 = (R1R2)2 = (R2R)4 = 1〉
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(a) p4g acting on the square

tiling

(b) p4g acting on the trun-

cated square tiling

Figure 11. FVT actions of the group p4g.

Its lattice of translations coincides with that of pmm. It is generated by a pair of
orthogonal vectors of equal length: R1R3 = R1RR2R and R2R4 = R2RR1R.

Its FVT action on truncated square tiling is shown in Figure 13.

2.3. Actions of rigid subgroups of p6m

2.3.1. Group p3 . Suppose the angle between generating translations X,Y of the
group p1 is 2π/3. The group p3 is then obtained by adding to p1 a rotation S1

by angle 2π/3. The rotation cyclically permutes X, Y and Z := −X − Y . It has
presentations:

p3 :=〈XY Z = ZY X = S3
1 = 1, S−1

1 XS1 = Y,

S−1
1 Y S1 = Z, S−1

1 ZS1 = X〉

or by setting S2 = S1X and S3 = X−1S as in ([4], 4.513)

=〈S1, S2, S3; S3
1 = S3

2 = S3
3 = S1S2S3 = 1〉

=〈S1, S2; S3
1 = S3

2 = (S1S2)3 = 1〉

(a) Square tiling (b) Truncated square tiling

Figure 12. FVT actions of the group cmm.
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Figure 13. An FVT action of the group p4m on the truncated square tiling.

The subgroup of translations is of index 3, and it is generated by a pair of equal
length translations X = S−1

1 S2 and Y = S−1
1 XS1 = S1S2S1.

Its FVT actions on the triangular and trihexagonal tilings are shown in Figures
14(a), 14(b).

(a) Triangular tiling (b) Trihexagonal tiling

Figure 14. FVT actions of the group p3 .

2.3.2. Group p6 . The group p6 is obtained from the group p3 by adding a
half-rotation T . The rotation conjugates rotation S1 and S2. It has presentations

p6 :=〈S1, S2, T ; S3
1 = S3

2 = (S1S2)3 = T 2 = 1, TS1T = S2〉

or by excluding S2 and setting S := S1 we get ([4], (4.516)):

=〈S, T ; S3 = T 2 = (ST )6 = 1〉
The subgroup of translations is of index 6 (it coincides with p3 ) and it is generated
by a pair of equal length vectors S−1

1 S2 = S−1TST and S1S2S1 = STSTS.
Its FVT actions on the small rhombitrihexagonal, truncated hexagonal, hexag-

onal and snub hexagonal tilings are shown in Figure 15(a), 15(b), 15(c), 15(d).
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2.3.3. Group p31m. The group p31m is obtained from the group p3 by adding
a reflection R. This reflection conjugates S1 with S−1

2 . It has presentations

p31m :=〈S3
1 = S3

2 = (S1S2)3 = R2 = 1, RS1R = S−1
2 〉(8)

or by setting S = S1 and excluding S2 ([4], (4.514))

=〈R,S; R2 = S3 = (RS−1RS)3 = 1〉(9)

The translation subgroup is equal to that of p3 and is generated by S−1
1 S2 =

S−1RS−1R and S1S2S1 = SRS−1RS.
It has FVT actions on the small rhombitrihexagonal tiling and truncated hexag-

onal tilings as shown in Figure 16(a), 16(b).

2.3.4. Group p3m1 . The group p3m1 is also obtained from the group p3 by
adding a reflection R. This reflection conjugates S1 with S−1

1 and S2 with S−1
2 .

It has presentations

p3m1 :=〈S1, S2, R; S3
1 = S3

2 = (S1S2)3 = 1, RS1R = S−1
1 , RS2R = S−1

2 〉(10)

or by setting R1 = RS2, R2 = S1R, R3 = R ([4], (4.515)):

=〈R1, R2, R3; R2
1 = R2

2 = R2
3 = (R1R2)3 = (R2R3)3 = (R3R1)3 = 1〉(11)

Its translation subgroup is equal to that of p3 and is generated by S−1
1 S2 =

R3R2R3R1 and S1S2S1 = R2R1R2R3.
It has FVT actions on hexagonal tiling as shown in Figure 17.

(a) Small rhombitrihexagonal

tiling

(b) Truncated hexagonal tiling

(c) Hexagonal tiling (d) Snub hexagonal tiling

Figure 15. FVT actions of the group p6 .
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(a) Small rhombitrihexagonal

tiling

(b) Truncated hexagonal tiling

Figure 16. FVT actions of the group p31m.

Figure 17. An FVT action of the group p3m1 .

Figure 18. An FVT action of p6m on the great rhombitrihexagonal tiling.

2.3.5. Group p6m. The group p6m is obtained from the group p3m1 by adding
a reflection R. This reflection conjugates mirrors R1 and R3 and fixes R2 . It has
presentations

p6m :=〈R,R1, R2, R3; R2
1 = R2

2 = R2
3 = (R1R2)3 = (R2R3)3 = (R3R1)3 = 1

R2 = 1, RR1R = R3, RR2R = R2〉

or by excluding R3 ([4], (4.517))

=〈R,R1, R2; R2 = R2
1 = R2

2 = (R1R2)3 = (R2R)2 = (RR1)6 = 1〉

Its translation subgroup coincides with p3m1 and is generated by R3R2R3R1 =
RR1RR2RR1RR1 and R2R1R2R3 = R2R1R2RR1R.



16 O. ŠUCH

It has an FVT action on the great rhombitrihexagonal tiling as shown in Fig-
ure 18.

2.4. Nonexistence of other actions

We have shown for every wallpaper group one or multiple FVT actions on semireg-
ular tilings of the plane. Summary of these actions can be seen in Table 1. It is
natural to ask whether there are more actions.

tT 1 2 4 3 6 12

Type 44 36 63 33 ·42 4·82 32 ·4·3·4 3·6·3·6 3·122 3·4·3·6 35 ·6 4·6·4·12

p1 2(a) 3(a)

p2 3(a) 3(b) 3(c) 3(d)

pm 4

pg 5(a) 5(b)

cm 8(a) 8(b) 8(c)

pmm 7

pmg 9(a) 9(b) 9(c)

pgg 10(a) 10(d) 10(b) 10(e) 10(c)

cmm 12(a) 12(b)

p4 6(a) 6(c) 6(b)

p4g 11(a) 11(b)

p4m 13

p3 14(a) 14(b)

p3m1 17

p31m 16(b) 16(a)

p6 15(c) 15(b) 15(a) 15(d)

p6m 18

Table 1. Crosstable of FVT actions.

In fact, we have have

Theorem 2. A wallpaper group Γ has an FVT action on a semi-regular tiling
T if and only if an action is listed in Table 1.

Proof. The only-if part follows from Propositions 3, 4 and 5, which follow. The
if part follows from direct examination of pictures referenced in Table 1. �

Suppose a semiregular plane tiling T is given and Γ is a wallpaper group to-
gether with action σ (by plane isometries) on T . The key to investigation of all
possible actions is the following equation relating number of vertex orbits modulo
translations

tT iσ = [Γ : T (Γ)].(12)
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In this equation tT is the number of orbits of vertices under the action of the
subgroup of translations preserving T and iσ is the index of the image of T (Γ)
in TT .

As an example, consider the simplest consequence of this equality. Suppose Γ is
of type p1 . Then [Γ : T (Γ)] = 1 hence Γ can act only on the triangular or square
tiling. Moreover, iσ has to be 1. Both square and triangle tiling in fact admit
action of p1 .

2.4.1. Square-like TT . In this section we consider only semiregular tilings for
which TT is square-like. Since any square-like lattice has no sublattices invariant
under rotation by angle 2π/3, it follows that FVT actions by groups p3 , p3m1 ,
p31m, p6 , p6m are apriori not possible.

Proposition 3. Suppose Γ is a wallpaper group and T a tiling with a square-
like lattice of translations. If there is no action indicated in Table 1 then there is
no FVT action of Γ on T .

Proof. We have to deal with the square, truncated square and snub square
tiling. In the following we shall assume that the length of the shortest nonzero
translation fixing T is 1.

Consider the square tiling. There is no FVT action of the group p4m on
the square tiling, because such an action would have reflections at 45 degrees.
Every line of symmetry not parallel to the edges of the square tiling however
passes through a vertex, thus the resulting action would have a nontrivial vertex
stabilizer.

Consider now the snub square tiling. It follows from (12) that the only remain-
ing groups that could admit an FVT action are pmm, pmg, cmm, p4m, and p4g.
Since every line of symmetry of the tiling passes through a vertex, the first four
groups cannot act. Since its parallel lines of symmetry have distance

√
2/2, it

cannot have FVT action by group p4g. (The full symmetry group of this tiling is
p4g but it acts with non-trivial vertex stabilizers.)

Consider finally the truncated square tiling. It follows from (12) that the only
remaining groups that could admit an FVT action are pmm, pmg, pgg. In the
former two cases, that would require parallel reflections to be 1/2 apart, and for
the latter two cases it would require that parallel glides be 1/2 apart. That is not
the case, as is seen by looking at Figure 13 which shows the full symmetry group.
There we see that parallel reflections are at minimum 1 apart, as well as parallel
glides. �

2.4.2. Triangle-like TT . In this section we consider only semiregular tilings for
which TT is triangle-like. Since any triangle-like lattice has no sublattices invariant
under rotation by angle 2π/4, it follows that FVT actions by groups p4 , p4g, p4m
are apriori not possible.

Proposition 4. Suppose Γ is a wallpaper group and T a tiling with a triangle-
like lattice of translations. If there is no action indicated in Table 1 then there is
no FVT action of Γ on T .
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Proof. We have to deal with the triangle, hexagonal,trihexagonal, snub hexag-
onal, truncated hexagonal, small and great rhombitrihexagonal tilings. In the
following we shall assume that the length of the shortest translation of T is 1.

Consider first the triangle tiling. Any line of symmetry passes through a vertex,
thus a group can have an FVT action only if it contains no reflections. It thus
remains to prove that FVT actions by group p6 is not possible. But that follows
from the fact that the triangle lattice has no sublattice of index 6 invariant under
rotation by 2π/3.

Consider the hexagonal tiling. From (12) it follows that we need to exclude
only FVT actions by groups pm, pg, pmm, cmm, p31m and p6m. An action by
first two would imply that σ(T (Γ)) is rectangular. But from (12) it would follow
that iσ = 1, and σ(T (Γ)) would be rhombic, which is a contradiction. It has
no FVT action by pmm and cmm because for any pair of perpendicular lines of
symmetry, one of them passes through a vertex. It cannot have an action by the
group p31m, because parallel mirrors not containg a vertex are multiple of

√
3/2

apart, but an action would imply existence of parallel mirrors 3/2 apart. Finally,
an FVT action by p6m is not possible, since the triangle lattice has no sublattice
of index 2 invariant under rotation by 2π/3.

Consider the trihexagonal tiling. It follows from (12) that we need to exclude
FVT actions by groups p3m1 , p31m, p6 and p6m. The first three are impossible
because the triangle lattice has no sublattice of index 6 invariant under rotation
by 2π/3. If it had an action by p6m, the centers of rotation by angle 2π/6 would
have to be centered at centers of hexagons in an essentially unique way (because
there is only one sublattice of index 4 invariant under rotation by 2π/3). But then
reflections passing through the centers would fix vertices of the tiling, thus the
action would not be FVT.

Consider now the snub hexagonal tiling. This tiling is the unique tiling not
invariant under reflections, thus p6 is the full symmetry group of the tiling and
its action is an FVT action.

Truncated hexagonal and small rhombitrihexagonal tilings are very similar.
From (12) it follows that we need to exclude only actions of p6m and p3m1 .
The action by the former is impossible, because there is no index 2 sublattice of
the triangle lattice having invariance under the rotation by angle 2π/3. The action
of the latter would imply iσ = 1, and once easily sees that in both tilings there
would be mirrors passing through a vertex.

Finally, the great rhombitrihexagonal tiling can only have an action by p6m as
follows from (12). �

2.4.3. Elongated triangular tiling. The lattice of translations of the elongated
triangular tiling is rhombic. It contains neither the square lattice nor the triangle
lattice. It follows that actions by groups with rotation by angle smaller that π are
impossible.

Proposition 5. If Γ is a wallpaper group with FVT action on the elongated
triangular tiling, then the action is one listed in Table 1.
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Proof. It follows from (12) that we need to exclude only groups pm, pg, cmm
and pmm. The former two groups cannot have FVT action because the translation
lattice TT is not rectangular. Since TT has no sublattice of index 2 which is
rhombic, it follows it cannot have an FVT action by cmm either. It cannot have
FVT action by pmm because “vertical” reflections pass through a vertex of the
tiling. �

3. Families of toric groups

By a toric group we mean a finite group that acts faithfully on a torus (topological
or real-analytic). Any such group is connected with a Cayley map on torus by the
following theorem of Tucker ([14], see also [6], Theorem 6.2.4, and [1], Lemma
7.3):

Theorem 6. Let the finite group G act on an orientable surface S. Then there
is a Cayley graph for G cellularly embedded in S so that the natural action of G
on the Cayley graph extends to the given action of G on S.

Thus given a toric group G we can construct a Cayley map on torus. Taking
its pullback to the universal cover of the torus we shall obtain an FVT action of
a wallpaper group Γ on a semiregular tiling. As explained in [4], Section 3.6.,
presentations of the group G can be obtained by adding to relations of Γ the
relations corresponding to the sides of a fundamental parallelogram of a lattice Λ′

that induces a torus as a quotient. The precise form of relations depends on the
group, and of course on the lattice. We start by describing families of lattices and
then distinguish five essentially different cases.

3.1. Sublattices

Suppose a basis X,Y of a lattice Λ is given. We call Λ(a; b, c) the sublattice
generated by Xa and XbY c

Λ(a; b, c) := 〈Xa, XcY b〉

If the lattice Λ is rectangular, we can take X and Y to be orthogonal (necessarily)
of minimal length. We define the following sublattices of Λ

Λoo(a, b) := Λ(a; b, 0) = 〈Xa, Y b〉

Λoc(a, b) := Λ(2a; b, a) = 〈XaY b, XaY −b〉

If the lattice Λ is rhombic, we can take X and Y to be a linearly independent
pair of minimal vectors of equal length. We define the following sublattices of Λ

Λco(a, b) := 〈XaY a, XbY −b〉

Λcc(a, b) := 〈XaY b, XbY a〉

If the lattice Λ is square-like (and hence both rhombic and rectangular), we can
take vectors X and Y to be both orthogonal and equal length. We define the
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following sublattices of Λ

Λ4(b, c) := 〈XbY c, X−cY b〉
Λ4(a) := Λ4(a, 0) = Λoo(a, a) = Λcc(a, 0) = Λ(a; a, 0) = 〈Xa, Y a〉
Λ′4(a) := Λ4(a, a) = Λoc(a, a) = Λco(a, a) = Λ(2a; a, a) = 〈XaY a, XaY −a〉

If the lattice Λ is triangle-like, we can tak vectors X and Y to be minimal and
forming angle 2π/3. We define the following sublattices of Λ

Λ3(b, c) := 〈XbY c, X−cY b−c〉
Λ3(a) := Λ3(a, 0) = Λ(a; a, 0) = 〈Xa, Y a〉
Λ′3(a) := Λ3(a,−a) = Λ(3a; a,−a) = 〈XaY −a, XaY 2a〉

3.2. Quotients of p1 and p2

These two groups are the only wallpaper groups that have no restriction on the type
of the lattice of translations, meaning that any sublattice of T (Γ) is automatically
an invariant subgroup. If a basis X,Y of T (Γ) is chosen, then any sublattice Λ′

is generated by two elements p11 ·X + p12 · Y and p21 ·X + p22 · Y where pij are
integers. By row reduction of the matrix

( p11 p12
p21 p22

)
we can bring it into the form(

a 0
c b

)
. Then a ·X and c ·X + b · Y will be another basis for Λ. Corresponding to

this lattice we obtain a three-parameter family of groups

Γ(a; b, c) := Γ/〈Xa, Y bXc〉.

3.3. Quotients of pm, pg, pmm, pmg and pgg

The common feature of these five groups is that the lattice of translations is
rectangular. Suppose a reflection or a glide r of Γ is given. Choose an orthogonal
basis X and Y of T (Γ) such that conjugation by r maps X to X−1 and fixes Y .
Conjugation by r maps the lattice Λ(a; b, c) to the lattice Λ(a; b,−c). Lattices
Λ(a; b, c) and Λ(a; b,−c) are isomorphic if and only if c ≡ −c (mod a). Therefore
if a lattice Λ is invariant under r it has to belong to one of the following families

Λoo(a, b) = Λ(a; b, 0)

Λoc(a, b) = Λ(2a; b, a)

Corresponding to the former we obtain the following quotient of Γ:

Γ1(a; b) := Γ/〈Xa, Y b〉

and corresponding to the latter the quotient

Γ2(a; b) := Γ/〈X2a, XaY b〉 = Γ/〈Y 2b, XaY b〉 = Γ/〈XaY −b, XaY b〉.

Note that the definition of these groups depends on the choice of the transformation
r, which dictates the choice of translations X and Y . This is not a problem for
groups pm, pg because all glides and mirrors in these groups are parallel. Because
an outer automorphism interchanges generating mirrors of pmm and glides of pgg
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this is not a problem for these groups. In the case of the group pmg we choose r
to be the mirror R.

3.4. Quotients of cm and cmm

The common feature of these groups is that the lattice σ(T (Γ)) is rhombic.
Suppose that Λ is invariant under Γ. Let m be a reflection in Γ, and choose a

pair of shortest nonzero vectors in T (Γ) such that m(X) = Y . The vectors X and
Y then form a basis of Λ. View Λ as a sublattice of the the rectangular lattice Λ′

with the basis E := 1
2 (X − Y ) and F := 1

2 (X + Y ). If we express Λ in this basis,
the invariance under m implies as above that Λ has to be one of the following
lattices {

Z · aE ⊕ Z · bF
Z · (cE − dF )⊕ Z · (cE + dF ).

The condition that Λ is a sublattice of Z ·X ⊕Z · Y means that in former case, a
and b have to be even, and in the latter case c and d have to be of the same parity.
In order to obtain families dependent on pairs of integers we can reparametrize by
transformations a′ = a

2 , b
′ = b

2 in the former case, and c′ = c−b
2 , d′ = c+b

2 in the
latter case.

We will thus obtain families

Γ1(c′, d′) := Γ/〈Xc′Y d
′
, Xd′

Y c
′
〉 corresponding to Λcc(c

′, d′)

Γ2(a′, b′) := Γ/〈(XY )b
′
, Xa′

Y −a
′
〉 corresponding to Λco(a

′, b′)

3.5. Quotients of p3 , p4 , p6

The common feature of these three groups is that they contain a rotation φ by
angle < π and they do not contain a reflection. The first property implies that if
a single vector (b, c) belongs to the lattice Λ, then also φ

(
(b, c)

)
is contained in Λ.

Thus lattices invariant under Γ are completely enumerated by the families Λ4(b, c)
for the group p4 and Λ3(b, c) for groups p3 and p6 .

The corresponding quotients of Γ is the group

Γ(b, c) := Γ/〈XbY c〉

3.6. Quotients of p4m and p4g

The common feature of these two groups is that they contain a rotation by angle
π/2 as well as a reflection or a glide. It follows that a lattice Λ is invariant only
if the Λ is square-like and it is invariant under reflecting in the direction of the
reflection (in the case of p4m) or the glide reflection (in the case of p4g). Choose
a basis of TT consisting of a pair of equal-length, mutually orthogonal vectors X
and Y . There are two one-parameter families of such lattices, namely Λ4(a) and
Λ′4(a)The group Γ induces a FVT action on the map T /Λ4(a) via its quotient

Γ1(a) := Γ/〈Xa〉
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and on the map T /Λ′4(a) via its quotient

Γ2(a) := Γ/〈XaY a〉

3.7. Quotients of p31m, p3m1 and p6m

The common feature of these three groups is that they contain a rotation by angle
2π/3 as well as a reflection. We can choose a basis X, Y of equal length-vectors
that form angle 2π/3. A lattice Λ is invariant if and only if the Λ is triangle-like
and invariant under mirroring in the direction of the reflection. There are two
one-parameter families of such lattices, namely Λ3(a) and Λ′3(a). The group Γ
induces an FVT action on the map T /Λ3(a) via its quotient

Γ1(a) := Γ/〈Xa〉

and on the map T /Λ′3(a) via its quotient

Γ3(a) := Γ/〈X2aY a〉.

3.8. List of presentations

In this section we list explicit presentations of all 29 families of finite groups that
act on torus. The list is divided into 5 parts corresponding to reasoning of the
previous section.

3.8.1. Quotients of p1 and p2 . The group p1 acts on the torus via its quotients

p1 (a; b, c) := 〈X,Y ; [X,Y ] = Xa = Y bXc = 1〉.(13)

The group p2 acts on the torus via its quotients

p2 (a; b, c) = 〈T,X, Y ; [X,Y ] = T 2 = (TX)2 = (TY )2

= Xa = Y bXc = 1〉
〈T1, T2, T3; T 2

1 = T 2
2 = T 2

3 = (T1T2T3)2

= (T2T3)a = (T3T1)b(T2T3)c = 1〉
〈T1, T2, T3, T4; T 2

1 = T 2
2 = T 2

3 = T 2
4 = T1T2T3T

2
4

= (T2T3)a = (T3T1)b(T2T3)c = 1〉.

(14)

3.8.2. Quotients of pm, pg, pmm, pmg, pgg. The group pm acts on the torus
via its quotients

pm1(a; b) :=〈R,X, Y ; [X,Y ] = R2 = Xa = Y b = 1, RXR = X−1, RY R = Y 〉

=〈R,R′, Y ; R2 = R′2 = (RR′)a = Y b = 1, RY = Y R,R′Y = Y R′〉,

(15)

pm2(a, b) := 〈R,R′, Y ;R2 = R′2 = (RR′)aY b = Y 2b = 1, RY = Y R,R′Y = Y R′〉.
(16)
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The group pg acts on the torus via its quotients

pg1(a; b) :=〈P,X, Y ; [X,Y ] = Xa = Y b = 1, P 2 = Y, P−1XP = X−1〉

=〈P,Q; P 2 = Q2, (P−1Q)a = P 2b = 1〉
(17)

and

pg2(a; b) := 〈P,Q; P 2 = Q2, (P−1Q)aP 2b = P 4b = 1〉.(18)

The group pmm acts on the torus via its quotients

pmm1(a; b) := 〈R,R′, R2, Y ; [R, Y ]=[R′, Y ]=R2 = R′2 =R2
2! =(RR′)a = Y b=1,

R2RR2 = R,R2R
′R2 = R′, R2Y R2 = Y −1〉

or by setting R1 = R, R3 = R′ and R4 = R2Y as in [4] in (4.506)

= 〈R1, R2, R3, R4;R2
1 = R2

2 = R2
3 = R2

4 = (R1R2)2 = (R2R3)2

= (R3R4)2 = (R4R1)2 = (R1R3)a = (R2R4)b = 1〉,

(19)

pmm2(a; b) := 〈R1, R2, R3, R4;R2
1 =R2

2 =R2
3 =R2

4 =(R1R2)2 =(R2R3)2 =(R3R4)2

= (R4R1)2 = (R1R3)a(R2R4)b = (R2R4)2b = 1〉.

(20)

The group pmg acts on the torus via its quotients

pmg1(a; b) := 〈P,Q,R;P 2 = Q2;R2 = (RP )2 = (RQ)2 = (P−1Q)a = P 2b = 1〉

= 〈R, T1, T2;R2 = T 2
1 = T 2

2 = (T1R)2a = (T1T2)b = 1〉,

(21)

pmg2(a; b) := 〈P,Q,R;P 2 = Q2;R2 = (RP )2 = (RQ)2 =(P−1Q)aP 2b=P 4b=1〉

= 〈R, T1, T2;R2 = T 2
1 = T 2

2 = (T1R)2a(T1T2)b = (T1T2)2b = 1〉.

(22)

The group pgg acts on the torus via its quotients

pgg1(a; b) := 〈P,Q, T ;P 2 = Q2;TPT−1 = Q−1;T 2 = (P−1Q)a = P 2b = 1〉

= 〈P,O; (PO)2 = (P−1O)2 = P 2a = (P−2O)2b = 1〉
(23)

pgg2(a; b) := 〈P,Q, T ;P 2 = Q2;TPT−1 = Q−1;T 2 = (P−1Q)aP 2b = P 4b = 1〉

= 〈P,O; (PO)2 = (P−1O)2 = P 2a(P−2O)2b = P 4a = 1〉

(24)
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3.8.3. Quotients of cm and cmm. The group cm acts on the torus via its
quotients

cm1(a, b) := 〈R,S; (RS)2 = (SR)2, R2 = Sa(RSR)b = Sb(RSR)a = 1〉,(25)

cm2(a; b) := 〈R,S; (RS)2 = (SR)2, R2 = (RSRS)a = (RSRS−1)b = 1〉.(26)

The group cmm acts on the torus via its quotients

cmm1(a, b) := 〈R1, R2, T ; R2
1 = R2

2 = T 2 = (R1R2)2 = (R1TR2T )2 = 1,

(R1R2T )a(R2TR1)b = (R1R2T )b(R2TR1)a = 1〉,
(27)

cmm2(a, b) := 〈R1, R2, T ; R2
1 = R2

2 = T 2 = (R1R2)2 = (R1TR2T )2 = 1,

(R1R2TR2TR1)a = (R1R2TR1TR2)b = 1〉.
(28)

3.8.4. Quotients of p3 , p4 and p6 . The group p4 acts on the torus via its
quotients

p4 (b, c) :=〈S, T ; S4 = T 2 = (ST )4 = (STS)b(TS2)c = 1〉.(29)

The group p3 acts on the torus via its quotients

p3 (b, c) :=〈S1, S2; S3
1 = S3

2 = (S1S2)3 = (S2
1S2)b(S1S2S1)c = 1〉.(30)

The group p6 acts on the torus via its quotients

p6 (b, c) :=〈S, T ; S3 = T 2 = (ST )6 = (S−1TST )b(STSTS)c = 1〉.(31)

3.8.5. Quotients of p4g and p4m. The group p4g acts on the torus via its
quotients

p4g1(a) := 〈R,S;R2 = S4 = (RS−1RS)2 = (S2RS−1RS)a = 1〉
= 〈R,S;R2 = S4 = (RS−1RS)2 = (RS)2a = 1〉,

(32)

p4g2(a) := 〈R,S;R2 = S4 = (RS−1RS)2 = 1, (S2RS−1(RS)3)a〉(33)

The group p4m acts on the torus via its quotients

p4m1(a) := 〈R,R1, R2;R2 = R2
1 = R2

2 = (RR1)4 = (R1R2)2 = (R2R)4

= (R1RR2R)a = 1〉
(34)

p4m2(a) := 〈R,R1, R2;R2 = R2
1 = R2

2 = (RR1)4 = (R1R2)2 = (R2R)4

(R1RR2R)a(R2RR1R)a = 1〉.
(35)
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3.8.6. Quotients of p3m1 , p31m and p6m. The group p31m acts on the torus
via its quotients

p31m1(a) := 〈R,S;R2 = S3 = (RS−1RS)3 = (S−1R)2a = 1〉(36)

p31m2(a) := 〈R,S;R2 = S3 = (RS−1RS)3 = 1,

(S−1R)2a(SRS−1RS)−a = 1〉.
(37)

The group p3m1 acts on the torus via its quotients

p3m1 1(a) := 〈R1, R2, R3;R2
1 = R2

2 = R2
3 = (R1R2)3 = (R2R3)3 = (R3R1)3

= (R3R2R3R1)a = 1〉
= 〈R1, R2, R3;R2

1 = R2
2 = R2

3 = (R1R2)3 = (R2R3)3 = (R3R1)3

= (R2R1R2R3)a = 1〉.

(38)

p3m1 2(a) := 〈R1, R2, R3;R2
1 = R2

2 = R2
3 = (R1R2)3 = (R2R3)3 = (R3R1)3 = 1,

(R3R2R3R1)a(R2R1R2R3)−a = 1〉.

(39)

The group p6m acts on the torus via its quotients

p6m1(a) := 〈R,R1, R2;R2 = R2
1 = R2

2 = (R1R2)3 = (R2R)2 = (RR1)6 = 1,

(RR1RR2RR1RR1)a = 1〉
= 〈R,R1, R2;R2 = R2

1 = R2
2 = (R1R2)3 = (R2R)2 = (RR1)6 = 1,

(R2R1R2RR1R)a = 1〉,

(40)

p6m2(a) := 〈R,R1, R2;R2 = R2
1 = R2

2 = (R1R2)3 = (R2R)2 = (RR1)6 = 1,

(RR1RR2RR1RR1)a(R2R1R2RR1R)−a = 1〉.
(41)

3.9. Non-redundancy of families

A natural question to ask is whether the groups so obtained are distinct. To that
end we shall prove the following result:

Proposition 7. None of the families above belongs entirely to the union of the
rest.

Proof. It is sufficient to exhibit for each family a group that belongs uniquely
to that family. For instance for family p1 we can take the group

p1 (5, 1, 0) = Z5,

whose order is not divisible by 2 nor by 3, and thus p1 (5, 1, 0) belongs only to the
family p1 . Unique groups for the remaining families are listed in Table 2. �
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Family Size Presentation Unique group GAP id
p1 (a, b, c) ab (13) p1 (5, 1, 0) [5,1]
p2 (a, b, c) 2ab (14) p2 (4, 4, 4) [32,34]
pm1(a, b) 2ab (15) pm1(2, 4) [16,10]
pm2(a, b) 4ab (16) pm2(2, 4) [32,38]
pg1(a, b) 2ab (17) pg1(4, 2) [16,4]
pg2(a, b) 4ab (18) pg2(2, 1) [8,4]
cm1(a, b) 2|a2 − b2| (25) cm1(4, 0) [32,11]
cm2(a, b) 4ab (26) cm2(4, 2) [32,5]
pmm1(a, b) 4ab (19) pmm1(2, 2) [16,14]
pmm2(a, b) 8ab (20) pmm2(2, 2) [32,49]
pmg1(a, b) 4ab (21) pmg1(2, 4) [32,28]
pmg2(a, b) 8ab (22) pmg2(3, 2) [48,41]
pgg1(a, b) 4ab (23) pgg1(4, 4) [64,12]
pgg2(a, b) 8ab (24) pgg2(2, 2) [32,7]
cmm1(a, b) 4|a2 − b2| (27) cmm1(4, 0) [64,134]
cmm2(a, b) 8ab (28) cmm2(2, 4) [64,128]
p4 (a, b) 4(a2 + b2) (29) p4 (2, 1) [20,3]
p4g1(a) 8a2 (32) p4g1(4) [128,134]
p4g2(a) 16a2 (33) p4g2(2) [64,32]
p4m1(a) 8a2 (34) p4m1(4) [128,928]
p4m2(a) 16a2 (35) p4m2(2) [64,138]
p3 (b, c) 3(b2 − bc+ c2) (30) p3 (2, 0) [12,3]
p6 (b, c) 6(b2 − bc+ c2) (31) p6 (2, 0) [24,13]
p3m1 1(a) 6a2 (38) p3m1 1(3) [54, 8]
p3m1 3(a) 18a2 (39) p3m1 3(2) [72,43]
p31m1(a) 6a2 (36) p31m1(6) [216,92]
p31m3(a) 18a2 (37) p3m1 3(2) [72,42]
p6m1(a) 12a2 (40) p6m1(2) [48,48]
p6m3(a) 36a2 (41) p6m3(2) [144,183]

Table 2. List of 29 toric group families.

4. All vertex-transitive maps on torus admit free action

Given an FVT action of a wallpaper group Γ on a semiregular tiling T , we can
construct vertex-transitive maps on various surfaces. The general construction
consists of taking a normal torsion-free subgroupH of Γ such that C/H is compact.
Then the FVT action on the tiling gives rise to a vertex-transitive map on C/H.

We shall consider a special case, namely vertex-transitive maps arising on the
torus. These are of special interest, because of Babai’s conjecture, independently
proved by Babai and Thomassen ([1], [13]), that any vertex-transitive graph with
“sufficiently many” vertices compared to its genus comes from a vertex-transitive
map that can be drawn on either the torus or the Klein bottle. FVT maps are of
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course vertex-transitive and we will prove that all vertex-transitive maps on the
torus are in fact FVT.

4.1. FVT maps on the torus

From Table 1 we can directly create the list of maps admitting an FVT action by
a quotient of a wallpaper group. Every such map is given by a semiregular tiling
of the plane, and a sublattice of translations of T . We will use notation of 3.1
with appropriate basis X,Y of Λ = TT to describe the sublattices.
• if T is the square or triangular tiling, then for any lattice Λ = Λ(a; b, c), the

quotient T /Λ is a FVT map for the group p1 (a; b, c),
• if T is the hexagonal or the elongated triangular tiling then for any lattice

Λ = Λ(a; b, c) the quotient T /Λ is an FVT map for the group p2 (a; b, c),
• if T is the snub hexagonal, truncated hexagonal or small rhombitrihexagonal

tiling, then for any lattice Λ = Λ3(b, c) the quotient T /Λ is an FVT map for
the group p6 (b, c),

• if T is the trihexagonal tiling, then for any lattice Λ = Λ3(b, c) the quotient
T /Λ is an FVT map for the group p3 (b, c),

• if T is the great rhombitrihexagonal tiling, then for any lattice of the form
Λ = Λ3(a) or Λ = Λ′3(a) the quotient is an FVT map for the group p6m1(a) or
p6m3(a) respectively,

• if T is the truncated square tiling, then for a lattice Λ of any of forms
– Λ4(b, c)
– Λco(a, b)
– Λcc(a, b)

the quotient T/Λ is an FVT map for the group p4 (b, c), cmm2(a, b) or cmm1(a, b)
respectively,

• if T is the snub square tiling, then for a lattice of any of the forms
– Λ4(b, c)
– Λoc(a, b)
– Λoo(a, b)

the quotient T /Λ is an FVT map for the group p4 (b, c), pgg2(a, b) and pgg1(a, b)
respectively.

4.2. All vertex-transitive toroidal maps are FVT

We are ready to prove our final result.

Theorem 8. Every vertex-transitive map on a torus admits an FVT map struc-
ture.

Proof. From the list in the preceding section it is clear that there are no non-
FVT maps arising from the square, triangular, hexagonal or elongated triangular
tilings. Proceed now by a contradiction. Suppose a map on torus is given with
group G acting transitively on vertices. The pullback of the map to the universal
cover must be a semiregular tiling with vertex-transitive action of a wallpaper
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group Γ. We have a generalization of the index equality (12):

[Γ : T (Γ)] = iσtT |Γv|,(42)

where Γv is the stabilizer of any vertex (they are all conjugate).
Suppose tT is divisible by 3. From (42) it follows that Γ can only be one of the

groups p3 , p6 , p3m1 , p31m and p6m . All these groups contain rotation by 2π/3,
thus the lattice Λ has to be triangle-like. This is in fact a sufficient condition for
the map to be FVT in the case when T is the trihexagonal, snub hexagonal tiling,
truncated hexagonal or small rhombitrihexagonal tiling. In the remaining case of
the great rhombitrihexagonal tiling we have tT = 12, and since [Γ : T (Γ)] < 12 for
all wallpaper groups other than p6m we have to have Γ = p6m. But then the left
hand side of (42) is equal to 12, thus |Γv| = 1, and the action is FVT, which is a
contradiction.

It remains to consider the case of snub square and truncated square tilings. For
those tilings tT = 4 and they do not admit rotation by 2π/3. For subgroups of
p4m not containing rotation by 2π/4 the index [Γ : T (Γ)] ≤ 4. It follows that a
vertex-transitive map without an FVT action would have to contain a rotation by
2π/4, but for both tilings quotients by lattices invariant by such a rotation admit
FVT actions by quotients of group p4. �

4.3. Proulx examples

We conclude this section by showing examples of toric maps that are not vertex-
transitive, even though the graphs they induce are vertex-transitive [11].

(a) Cayley graph for G1 (b) Cayley graph for G2

Figure 19. Proulx toroidal Cayley graphs.
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Specifically Figure 4.2 shows Cayley graphs drawn on the torus for groups

G1 =〈R,S;R3 = S3 = 1, RSR = SRS〉,
G2 =〈R,S;R3 = S2 = RSRSR−1S)2 = 1〉

Since these maps do not occur in the list of Section 4.1, they are not Cayley and
from Theorem 8 it follows they are not vertex-transitive maps.

5. Open questions

An interesting group theoretic question is to classify abstract group isomorphisms
between toric groups. We list some of those that we arrived at by an experiment
(the GAP code is available for download on [12]):

p2 (2, 2k, 2) = pmg1(k, 2),

pgg1(2k + 1, 2l) = pmg1(2l, 2k + 1),

p3m1 1(a) = p31m1(a), if 3 6 |a

Another question of interest is to provide a list of FVT actions on vertex-
transitive maps on the Klein bottle. Thirteen families of such maps have been
classified by Babai [1], and a natural question is whether all of them admit a FVT
action.

We hope to return to these questions in later papers.
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