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Abstract. In this paper, we discuss and improve some recent results about
contractive and cyclic mappings established in the framework of C∗-algebra-
valued b-metric spaces. Our proofs are much shorter than the ones in existing
literature. Also, we give two examples that support our approach.

1. Introduction and preliminaries

In the last decades many researchers in nonlinear analysis worked with cone
metric spaces, cone metric spaces over Banach algebras, C∗-algebra-valued met-
ric spaces, C∗-algebra-valued b-metric spaces and other. Also, many papers in
the existing literature from fixed point theory dealt with the so-called general-
ized metric spaces. However, it is already well-known that almost all results in
generalized metric spaces are equivalent to the corresponding ones in standard
metric spaces (except in the case of cone metric spaces over Banach algebra). In
this paper we consider this phenomenon for self-mappings and cyclic mappings in
the framework of complete C∗-algebra-valued b-metric spaces. Otherwise, more
details on self-mappings and cyclic type mappings in the framework of metric or
b-metric spaces are given in [10, 15, 16].
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Based on the notion and properties of C∗-algebra (see [14]) several authors
introduced and considered the concepts of C∗-algebra-valued metric spaces as
well as C∗-algebra-valued b-metric spaces and gave some fixed point theorems for
self-mappings with contractive conditions on such spaces; see [1, 2, 9, 11, 12, 13].
Also, for important facts on b-metric spaces, we refer to [3, 6].

Firstly, we begin with the basic concepts in C∗-algebras. A real or a complex
linear space A is an algebra if vector multiplication is defined for every pair of
elements of A such that A is a ring with respect to vector addition and vector
multiplication and for every scalar β and every pair of elements u, v ∈ A, we have
β(uv) = (βu)v = u(βv). If A is endowed with a submultiplicative norm ‖ · ‖,
that is, ‖uv‖ ≤ ‖u‖‖v‖ for all u, v ∈ A, then (A, ‖ · ‖) is a normed algebra. A
complete normed algebra is called Banach algebra. An involution on the algebra
A is a conjugate linear mapping ∗ : A → A such that

(1) u∗∗ = u;
(2) (uv)∗ = v∗u∗

for all u, v ∈ A. The pair (A, ∗) is called a ∗-algebra. A Banach ∗-algebra A is
a ∗-algebra A with a complete submultiplicative norm such that ‖u∗‖ = ‖u‖ for
all u ∈ A. Then, a C∗-algebra is a Banach ∗-algebra such that ‖u∗u‖ = ‖u‖2.
Examples of C∗-algebras are the set C of complex numbers, the set L(H) of all
bounded linear operators on a Hilbert space H, and the set Mn(C) of n × n-
matrices. If a normed algebra A admits a unit I, that is, there exists an element
I ∈ A such that Iu = uI = u for all u ∈ A, and ‖I‖ = 1, we say that A is a
unital normed algebra. A complete unital normed algebra A is called a unital
Banach algebra. Throughout this paper, A will denote a unital C∗-algebra with
a unit I. For the basic properties and results in the setting of C∗-algebras, the
interested reader is referred to [4, 5, 14] and the references therein.

The paper is organized as follows. In Section 2, we recollect some basic nota-
tions, definitions and results in the framework of b-metric spaces. In Section 3,
we establish some results about fixed points in the setting of C∗-algebra-valued
b-metric spaces. Two appropriate examples are included. In Section 4, we provide
some results on existence and uniqueness for cyclic mappings in the setting of b-
metric spaces and deduce results on fixed point for cyclic mappings in the setting
of C∗-algebra-valued b-metric spaces. Our proofs are much shorter than the ones
in the existing literature, in particular than those appearing in the paper [11].

2. Fixed points in the setting of b-metric spaces

In this section, we collect some basic notations, definitions, and results con-
cerning b-metric spaces.

Definition 2.1. Let X be a nonempty set. A mapping D : X2 → [0,∞) is called
a b-metric if there exists a real number b ≥ 1 such that, for every u, v, z ∈ X, we
have

(1) D(u, v) = 0 if and only if u = v;
(2) D(u, v) = D(v, u);
(3) D(u, v) ≤ b(D(u, z) + D(z, v)).
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The pair (X, D, b) is called a b-metric space.

Every metric space is a b-metric space with b = 1. The notions of convergence,
closedness and completeness in b-metric space are given in the same way as in
metric spaces. Let X be a nonempty set, u0 ∈ X and let T : X → X be a
mapping. The sequence {un} defined by un = T nu0 for all n ∈ N is called the
Picard sequence (generated by T ) starting at u0. Briefly, we give some known
results on fixed points in the context of b-metric spaces, with short proofs, that
will be used in the sequel. First of all, we prove the following known result, but
with new and much shorter proof.

Lemma 2.2 (Banach type theorem). Let (X, D, b) be a complete b-metric space,
and let T : X → X be a given mapping. Assume that there exists some λ ∈ [0, 1)
such that

D (Tu, Tv) ≤ λD (u, v) for all u, v ∈ X. (2.1)

Then T has a unique fixed point z ∈ X, and for every u0 ∈ X, the Picard sequence
{T nu0} converges to z.

Proof. First, if λ ∈ [0, b−1) the proof follows according to ([7], Theorem 3.3).
Therefore, let λ ∈ [b−1, 1). It is clear that (2.1) implies

D (T nu, T nv) ≤ λnD (u, v) ,

for all n ∈ N and u, v ∈ X. Since λn → 0 as n → ∞ we get that there exists
k ∈ N such that λk < b−1. Now, again according to ([7], Theorem 3.3), we obtain
that T k has a unique fixed point, say z. Consequently, z is a unique fixed point
of T and for every u0 ∈ X the sequence {T nu0} converges to z. The proof is
complete. �

Remark 2.3. For more details on the previous Lemma see Theorem 12.2 of [3]
and Theorem 2.1 of [6].

Lemma 2.4. Let (X, D, b) be a complete b-metric space, and let T : X → X be
a given mapping. Assume that there exists some λ ∈ [0, b−1) such that

D (Tu, Tv) ≤ λ max{D (u, v) , D(u, Tu), D(v, Tv)} for all u, v ∈ X. (2.2)

Then T has a unique fixed point z, and for every u0 ∈ X, the Picard sequence
{T nu0} converges to z.

Proof. Denote un = T nu0. By using (2.2) with u = un−1 and v = un, we get

D(un, un+1) ≤ λ max{D(un−1, un), D(un, un+1)}.
If we suppose that D(un, un+1) ≥ D(un−1, un), we get D(un, un+1) ≤ λD(un, un+1),
a contradiction since λ < 1. Hence, D(un, un+1) < D(un−1, un) and we get

D(un, un+1) ≤ λD(un−1, un) for all n ∈ N. (2.3)

From (2.3), we deduce that {un} is a Cauchy sequence and hence converges to
some z ∈ X. We claim that z is a fixed point of T . We have

D(z, Tz) ≤ bD(z, un+1) + bD(Tun, T z)

≤ bD(z, un+1) + bλ max{D(un, z), D(un, Tun), D(z, Tz)}
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for all n ∈ N. Letting n → ∞ in the previous relation, we obtain D(z, Tz) ≤
bλD(z, Tz) that implies z = Tz. The uniqueness of the fixed point follows by
(2.2). �

From Lemma 2.4, we obtain the following results.

Lemma 2.5 (Kannan type theorem). Let (X, D, b) be a complete b-metric space,
and let T : X → X be a given mapping. Assume that there exists some λ ∈ [0, 1

2b
)

such that

D (Tu, Tv) ≤ λ(D(u, Tu) + D(v, Tv)) for all u, v ∈ X.

Then T has a unique fixed point z and for every u0 ∈ X the Picard sequence
{T nu0} converges to z.

Lemma 2.6 (Chatterjea type theorem). Let (X, D, b) be a complete b-metric
space, and let T : X → X be a given mapping. Assume that there exists some
λ ∈ [0, 1

b(1+b)
) and a nonnegative real number L such that

D (Tu, Tv) ≤ λD(u, Tv) + LD(v, Tu) for all u, v ∈ X. (2.4)

Then T has a unique fixed point z and for every u0 ∈ X the Picard sequence
{T nu0} converges to z.

Proof. Let {un} be the sequence of Picard starting at u0 ∈ X. By using (2.4)
with u = un−1 and v = un, we see that

D(un, un+1) ≤
bλ

1− bλ
D(un−1, un) for all n ∈ N.

From the previous inequality, since bλ(1 − bλ)−1 < b−1, we deduce that {un} is
a Cauchy sequence and hence converges to some z ∈ X. Clearly, z is the unique
fixed point of T and for every u0 ∈ X the sequence {T nu0} converges to z. �

3. Fixed points in the setting of C∗-algebra-valued b-metric spaces

Let A be a C∗-algebra. An element a ∈ A is called positive if a = a∗ and in
this case the spectrum σ(a) of a is a subset of nonnegative real numbers. The
set of positive elements in A is denoted by A+. We define an order relation � by
using A+, where a � b if a = b or b−a is a positive element. We use the notation
θ � a to denote that a is a positive element, where θ is the zero element in A.
Now, we recall some properties of the elements of A+.

(j) The set A+ = {a∗a : a ∈ A} is a closed cone in A;
(jj) if θ � a � b, then ‖a‖ ≤ ‖b‖;
(jjj) if θ � a � b, then θ � λ∗aλ � λ∗bλ for all λ ∈ A;
(jv) if a, b ∈ A+ and ab = ba; then θ � ab.

The concept of C∗-algebra-valued b-metric space was introduced by Ma and
Jiang [12] as follows.

Definition 3.1. Let X be a nonempty set. A mapping d : X2 → A is called a
C∗-algebra-valued b-metric on X if there exists b ∈ A, with I � b and ab = ba
for all a ∈ A, such that the following conditions hold:
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(1) θ � d(u, v) for all u, v ∈ X;
(2) θ = d(u, v) if and only if u = v;
(3) d(u, v) = d(v, u) for all u, v ∈ X;
(4) d(u, v) � b(d(u, z) + d(z, v)) for all u, v, z ∈ X.

Then (X,A, d, b) is called a C∗-algebra-valued b-metric space.

The following remark is used to obtain fixed point results in C∗-algebra-valued
b-metric spaces.

Remark 3.2. Every C∗-algebra-valued b-metric on a set X induces on X a b-metric
D with constant ‖b‖, where D : X2 → [0,∞) is defined by D(u, v) = ‖d(u, v)‖
for all u, v ∈ X. To verify that D is a b-metric, it is sufficient to show that the
triangle inequality holds. By using (jj), we get

D(u, v) = ‖d(u, v)‖ ≤ ‖b(d(u, z) + d(z, v))‖
≤ ‖b‖(‖d(u, z)‖+ ‖d(z, v)‖)
= ‖b‖(D(u, z) + D(z, v)).

Our first contribution in the framework of C∗-algebra-valued b-metric spaces
is the following theorem.

Theorem 3.3. Let (X,A, d) be a complete C∗-algebra-valued b-metric space, and
let T : X → X be a given mapping. Assume that there exists λ ∈ A with ‖λ‖ < 1
such that

d(Tu, Tv) � λ∗d (u, v) λ, for all u, v ∈ X. (3.1)

Then T has a unique fixed point in X.

Proof. Firstly, by the properties (jj) and (jjj), the condition (3.1) implies

‖d (Tu, Tv)‖ ≤ ‖λ∗‖ ‖d (u, v)‖ ‖λ‖ = ‖λ‖2 ‖d (x, y)‖ ,

that is, by Remark 3.2,

D (Tu, Tv) ≤ ‖λ‖2 D (u, v) , for all u, v ∈ X.

The proof of Theorem 3.3 follows by Lemma 2.2. �

Theorem 3.3 generalizes Corollary 40 of [11]. Now, we improve Theorem 41 of
[11].

Theorem 3.4. Let (X,A, d) be a complete C∗-algebra-valued b-metric space, and
let T : X → X be a surjective mapping. Assume that there exists an invertible
element λ ∈ A with ‖λ−1‖ < 1 such that

d (Tu, Tv) � λ∗d (u, v) λ for any u, v ∈ X. (3.2)

Then T has a unique fixed point in X.

Proof. By using the same reasoning as in [11], we get that T is injective. In this
case the condition (3.2) becomes

λ∗d (u, v) λ = λ∗d
(
T−1Tu, T−1Tv

)
λ � d (Tu, Tv) .
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Thus by (jjj), we have

d
(
T−1Tu, T−1Tv

)
� (λ∗)−1 d (Tu, Tv) λ−1 =

(
λ−1

)∗
d (Tu, Tv) λ−1.

Further, by Remark 3.2 and the injectivity of T , we get

D
(
T−1u, T−1v

)
≤

∥∥λ−1
∥∥2

D (u, v) for all u, v ∈ X.

According to Lemma 2.2, the mapping T−1 has a unique fixed point, and hence
there is a unique fixed point of T . The theorem is proved. �

From Lemma 2.4, we derive the following result.

Theorem 3.5. Let (X,A, d, b) be a complete C∗-algebra-valued b-metric space,
and let T : X → X be a given mapping. Assume that there exists λ ∈ A with
‖λ‖ < 1√

3‖b‖
such that

d (Tu, Tv) � λ∗ [d(u, v) + d (u, Tu) + d (v, Tv)] λ, for all u, v ∈ X. (3.3)

Then T has a unique fixed point in X.

Proof. From (3.3), by using (jj) and (jjj), we obtain

‖d (Tu, Tv) ‖ ≤ ‖λ∗ [d(u, v) + d (u, Tu) + d (v, Tv)] λ‖
≤ ‖λ∗‖(‖d(u, v)‖+ ‖d (u, Tu) ‖+ ‖d (v, Tv) ‖)‖λ‖
= ‖λ∗‖‖λ‖(‖d(u, v)‖+ ‖d (u, Tu) ‖+ ‖d (v, Tv) ‖).

Now, by using Remark 3.2, we get

D(Tu, Tv) ≤ 3‖λ‖2 max{D(u, v), D(u, Tu), D(v, Tv)} for all u, v ∈ X.

Thus Lemma 2.4 ensures that T has a unique fixed point in X. �

Similarly, from Lemmas 2.5 and 2.6, we obtain the following results.

Theorem 3.6. Let (X,A, d, b) be a complete C∗-algebra-valued b-metric space,
and let T : X → X be a given mapping. Assume that there exists λ ∈ A+ with
‖λ‖ < 1

2‖b‖ and λa = aλ for all a ∈ A+ such that

d (Tu, Tv) � λ (d (u, Tu) + d (v, Tv)) , for all u, v ∈ X.

Then T has a unique fixed point in X.

Theorem 3.7. Let (X,A, d, b) be a complete C∗-algebra-valued b-metric space,
and let T : X → X be a given mapping. Assume that there exist λ, L ∈ A+ with
‖λ‖ < 1

‖b‖(1+‖b‖) and λa = aλ, La = aL for all a ∈ A+ such that

d (Tu, Tv) � λd (u, Tv) + Ld (v, Tu) , for all u, v ∈ X.

Then T has a unique fixed point in X.

The following Examples 3.8 and 3.9 support Theorems 3.6 and 3.7, respectively.
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Example 3.8. Let A = M2×2 (R) be endowed with the norm ‖A‖ = maxi,j |aij|,
where aij are the entries of the matrix A ∈ M2×2 (R), and the involution given by

A∗ =
(
A

)T
= AT . Clearly, each matrix of the type A =

[
α 0
0 β

]
belongs to A+

if α, β ≥ 0. This implies

[
α 0
0 β

]
�

[
δ 0
0 γ

]
if and only if α ≤ δ and β ≤ γ.

Let X = [−1, 1], b =

[
2 0
0 2

]
and

d (u, v) =

[
|u− v|2 0

0 |u− v|2
]

= |u− v|2
[

1 0
0 1

]
= |u− v|2 1A. (3.4)

Then (X,A, d, b) is a C∗-algebra-valued b-metric space. Define a mapping T :
X → X by Tu = −u

5
. For all u, v ∈ X, we have

d (Tu, Tv) =
1

25
(u− v)2 1A as well as

d (u, Tu) + d (v, Tv) =

[(
u +

u

5

)2

+
(
v +

v

5

)2
]

1A

=

[
36u2

25
+

36v2

25

]
1A.

Putting λ = 2
25

1A =

[
2
25

0
0 2

25

]
, we get

d (Tu, Tv) � λ (d (u, Tu) + d (v, Tv))

⇔ 1

25
(u− v)2 ≤ 2

25

(
36u2

25
+

36v2

25

)
⇔ 0 ≤ 47u2 + 47v2 + 50uv,

and the last inequality is true for all u, v ∈ X.
Since ‖λ‖ = 2

25
‖1A‖ < 1

4‖1A‖
= 1

2·2‖1A‖
= 1

2‖b‖ , we obtain that T satisfies the

contractive condition of Theorem 3.6 and hence T has a unique fixed point in X,
that is, F (T ) = {0}.

Example 3.9. Let A = M2×2 (R) be endowed with the norm and the involution

considered in Example 3.8. Let X = [−1, 1], b =

[
k 0
0 k

]
, 1 < k <

√
13− 1

2
,

and d : X ×X → A be given as in (3.4). Also, define a mapping T : X → X by
Tu = −u

4
for all u ∈ X. Putting λ = 1

3
1A, we obtain that

d (Tu, Tv) � λd (u, Tv) + Ld (v, Tu) (3.5)
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for all u, v ∈ X. Indeed, if we choose 3−11A � L, (3.5) follows by

1

16
|u− v|2 ≤ 1

3

((
u +

v

4

)2

+
(
v +

u

4

)2
)

=
1

3 · 16

(
17u2 + 17v2 + 16uv

)
⇔ 0 ≤ 7u2 + 7v2 + 11uv,

and the last inequality is true for all u, v ∈ X.

Now, ‖λ‖ = 1
3

< 1
‖b‖(1+‖b‖) = 1

k(1+k)
⇔ 0 < k <

√
13− 1

2
, which is true since

1 < k <

√
13− 1

2
. Thus all the conditions of Theorem 3.7 are satisfied. This

means that T has a unique fixed point. Here, it is z = 0.

4. Fixed points of cyclic mappings

Let X be a non-empty set and A, B two subsets of X. A mapping T : A∪B →
A ∪ B is called cyclic if TA ⊂ B and TB ⊂ A. First, we recall some fixed point
results for cyclic mappings in the setting of b-metric spaces, which one can easily
get from the corresponding non-cyclic versions.

Theorem 4.1. Let (X, D, b) be a complete b-metric space, and let A and B be
two nonempty closed subsets of X. Assume that T : A ∪ B → A ∪ B is a cyclic
mapping and that there exists some λ ∈ [0, 1) such that

D(Tu, Tv) ≤ λD(u, v), for all u ∈ A, v ∈ B.

Then T has a unique fixed point in A ∩B.

Proof. Let k ∈ N be such that λ2k < b−1. Note that S = T 2k+1 is a cyclic mapping
on A ∪B such that

D(Su, Sv) ≤ λ2kD(u, v), for all u ∈ A, v ∈ B.

Now, fix u0 ∈ A and consider the Picard sequence {un} generated by S, starting
at u0. As for each n ∈ N the elements un−1 and un belong one to the set A and
the other to the set B, by the previous inequality, we get

D(un, un+1) ≤ λ2kD(un−1, un), for all n ∈ N.

This condition ensures that {un} is a Cauchy sequence and so there exists some
z ∈ X such that un → z as n →∞. Since u2n ∈ A and u2n+1 ∈ B for all n ∈ N,
we get z ∈ A ∩ B 6= ∅. To conclude, note that T : A ∩ B → A ∩ B satisfies the
condition of Lemma 2.2 and since A ∩ B is complete, we deduce that T has a
unique fixed point in A ∩B. �

Theorem 4.2. Let (X, D, b) be a complete b-metric space, and let A and B be
two nonempty closed subsets of X. Assume that T : A ∪ B → A ∪ B is a cyclic
mapping and that there exists some λ ∈ [0, b−1) such that

D (Tu, Tv) ≤ λ max{D (u, v) , D(u, Tu), D(v, Tv)} for all u ∈ A, v ∈ B.

Then T has a unique fixed point in A ∩B.
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Proof. As in the proof of Lemma 2.4, we get that every Picard sequence starting
at a point u0 ∈ A is a Cauchy sequence. Consequently, there exists some z ∈ X
which is the limit of such sequence. Obviously z ∈ A ∩ B 6= ∅. Now, one can
apply Lemma 2.4 to T : A∩B → A∩B for concluding that T has a unique fixed
point in A ∩B. �

From Theorem 4.2, we obtain the following result.

Theorem 4.3. Let (X, D, b) be a complete b-metric space, and let A and B be
two nonempty closed subsets of X. Assume that T : A ∪ B → A ∪ B is a cyclic
mapping and that there exists some λ ∈ [0, 1

2b
) such that

D (Tu, Tv) ≤ λ(D(u, Tu) + D(v, Tv)) for all u ∈ A, v ∈ B.

Then T has a unique fixed point in A ∩B.

Similarly, we establish the cyclic version of Lemma 2.6.

Theorem 4.4. Let (X, D, b) be a complete b-metric space, and let A and B be
two nonempty closed subsets of X. Assume that T : A ∪ B → A ∪ B is a cyclic
mapping and that there exists some λ ∈ [0, 1

b(1+b)
) and a nonnegative real number

L such that

D (Tu, Tv) ≤ λD(u, Tv) + LD(v, Tu) for all u ∈ A, v ∈ B.

Then T has a unique fixed point in A ∩B.

From Theorem 4.1, we obtain the following cyclic version of Theorem 3.3 in
the setting of C∗-algebra-valued b-metric spaces.

Theorem 4.5. Let (X,A, d, b) be a complete C∗-algebra-valued b-metric space,
let A and B be two nonempty closed subsets of X, and let T : A∪B → A∪B be
a cyclic mapping. Assume that there exists λ ∈ A with ‖λ‖ < 1 such that

d(Tu, Tv) � λ∗d(u, v)λ, for all u ∈ A, v ∈ B.

Then T has a unique fixed point in A ∩B.

Note that Theorem 4.5 generalizes Theorem 38 of [11]. Now, we give the cyclic
versions of Theorems 3.6 and 3.7 which are simple consequences of Theorems 4.3
and 4.4, respectively.

Theorem 4.6. Let (X,A, d, b) be a complete C∗-algebra-valued b-metric space,
let A and B be two nonempty closed subsets of X, and let T : A∪B → A∪B be
a cyclic mapping. Assume that there exists λ ∈ A+ with ‖λ‖ < 1

2‖b‖ and λa = aλ

for all a ∈ A+ such that

d (Tu, Tv) � λ(d (u, Tu) + d (v, Tv)), for any u ∈ A, v ∈ B,

Then T has a unique fixed point in A ∩B.

Theorem 4.7. Let (X,A, d, b) be a complete C∗-algebra-valued b-metric space,
let A and B be two nonempty closed subsets of X, and let T : A∪B → A∪B be
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a cyclic mapping. Assume that there exist λ, L ∈ A+ with ‖λ‖ < 1
‖b‖(1+‖b‖) and

λa = aλ, La = aL for all a ∈ A+ such that

d (Tu, Tv) � λd (u, Tv) + Ld (v, Tu) , for any u ∈ A, v ∈ B.

Then T has a unique fixed point in A ∩B.

Theorem 4.7 generalizes Theorem 44 of [11]. Next we give the cyclic version of
Theorem 3.5.

Theorem 4.8. Let (X,A, d, b) be a complete C∗-algebra-valued b-metric space,
let A and B be two nonempty closed subsets of X, and let T : A∪B → A∪B be
a cyclic mapping. Assume that there exists λ ∈ A with ‖λ‖ < 1√

3‖b‖
such that

d (Tu, Tv) � λ∗ [d(u, v) + d (u, Tu) + d (v, Tv)] λ, for all u ∈ A, v ∈ B.

Then T has a unique fixed point in A ∩B.

Remark 4.9. Putting A = B = X in each of Theorems 4.5, 4.6, 4.7 and 4.8, we
obtain Theorems 3.3, 3.6, 3.7 and 3.5, respectively. This shows that each true
cyclic type extension is in fact a generalization of usual non-cyclic type assertion.

Remark 4.10. By using the same reasoning as in [15, 16], it follows easily that
Theorem 4.5 and Theorem 3.3 are equivalent results.

The following result is new and complements Theorem 42 of [11].

Theorem 4.11. Theorem 42 of [11], that is, Theorem 4.6 and Theorem 3.6 are
equivalent.

Proof. It is sufficient to prove that Theorem 42 of [11] is a consequence of Theorem
3.6. As in the proof of Theorem 4.2, we firstly get that A∩B 6= ∅. Further, since
(A ∩B,A, d, b) is now a complete C∗-algebra-valued b-metric space, the result
follows by Theorem 3.6. �

The next result improves and complements Theorem 44 of [11]. Its proof is
omitted.

Theorem 4.12. Theorem 4.7 and Theorem 3.7 are equivalent.

Remark 4.13. It is not hard to verify that Examples 3.8 and 3.9 satisfy all the
conditions of Theorems 42 and 44 of [11], respectively. Also, it is easy to check the
contractive conditions (75) and (96) of [11]. All this shows that cyclic results in
many cases are not generalizations of ordinary fixed point results. In particular,
Examples 39, 43 and 45 of [11] can be treated, and the existence of a fixed point
proved, in a much easier way without using results of the paper [11].

5. Conclusion

If a certain (non-cyclic) fixed point result in the framework of a complete C∗-
algebra-valued metric space (respectively, C∗-algebra-valued b-metric space) is
known, in order to obtain the respective cyclic-type fixed point result in the same
framework, it is enough to prove that the respective cyclic contractive condition
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implies that A ∩ B 6= ∅. Indeed, in this case (A ∩B,A, d) is a complete C∗-
algebra-valued metric space (respectively, C∗-algebra-valued b-metric space) and
the restriction of T to A ∩ B satisfies the given standard condition. In other
words, if some ordinary fixed point result in the framework of a complete C∗-
algebra-valued metric space (respectively, C∗-algebra-valued b-metric space) has
a true cyclic-type extension, then these results are equivalent.

It is worth noticing, that Theorems 4.5, 4.6 and 4.7, are also true, if we sup-
pose that only one of A, B is closed ([8], Remarks 1 and 3). However, in this case
the cyclic and non-cyclic versions of this assertion are not equivalent anymore.
Further, the approach in this paper shows that many results in the framework
of C∗-algebra-valued b-metric spaces are immediate consequences of the corre-
sponding ones in standard b-metric spaces. This follows immediately since each
C∗-algebra-valued b-metric space is in fact a cone b-metric space over normal cone
with the normal constant equal to 1. Hence, a cyclic result is either not true or
it is equivalent to the corresponding ordinary fixed point result. In this sense the
results in [11] are superfluous.

Finally we pose an open question as follows.

Problem 5.1. Prove or disprove the following claim: The normal cone Ah =
{u ∈ A : u = u∗} in each C∗-algebra A is solid.
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