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STRENGTHENED CONVERSES OF THE JENSEN AND
EDMUNDSON–LAH–RIBARIČ INEQUALITIES

MARIO KRNIĆ,1∗ ROZARIJA MIKIĆ,2 and JOSIP PEČARIĆ2

Communicated by A. Kaminska

Abstract. In this paper, we give converses of the Jensen and Edmundson–
Lah–Ribarič inequalities which are more accurate than the existing ones. These
converses are given in a difference form and they rely on the recent refinement
of the Jensen inequality obtained via linear interpolation of a convex function.
As an application, we also derive improved converse relations for generalized
means, for the Hölder and Hermite–Hadamard inequalities as well as for the
inequalities of Giaccardi and Petrović.

1. Introduction

One of the most interesting inequalities in present mathematics is the Jensen
inequality due to the fact that it implies a whole series of classical inequalities
such as the arithmetic-geometric mean inequality, the Hölder and Minkowski
inequalities, the Ky Fan inequality etc. Applications of this inequality in various
fields of mathematics, especially in mathematical analysis and statistics, have
certainly contributed to its importance. During decades, the Jensen inequality
was extensively studied by numerous authors and was generalized in different
directions. For a comprehensive inspection of the Jensen inequality including
history, proofs and diverse applications, the reader is referred to [5], [11], [14],
and [16].
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In this paper, we refer to a quite general form of the Jensen inequality for
positive linear functionals. In order to present our results, we first introduce
the appropriate setting. Let E be a nonempty set and L be a vector space of
real-valued functions f : E → R having following properties:

L1: f, g ∈ L⇒ af + bg ∈ L for all a, b ∈ R;
L2: 1 ∈ L, where 1 denotes the constant function.

In other words, L is a subspace of the vector space RE over R containing 1.
We also consider positive linear functionals A : L→ R, that is, we assume that:

A1: A(af + bg) = aA(f) + bA(g) for f, g ∈ L and a, b ∈ R;
A2: f ∈ L, f(t) ≥ 0 for every t ∈ E implies that A(f) ≥ 0 (that is A is

positive).

In addition, if A(1) = 1, we say that A is a positive normalized linear functional.
In [7], one can find the following generalization of the Jensen inequality for

convex functions involving positive normalized linear functionals.

Theorem 1.1. (see [7]) Let L fulfills properties (L1), (L2), and let φ : I → R be
a continous convex function. If A is a positive normalized linear functional, then
for all f ∈ L such that φ(f) ∈ L, it follows that A(f) ∈ I and

φ(A(f)) ≤ A(φ(f)). (1.1)

Inequality (1.1) is sometimes called the Jessen inequality (see also [14, p.47]),
but in this paper it will be referred to as the Jensen inequality, for the sake of
simplicity.

Closely connected to the Jensen inequality is the Edmundson–Lah–Ribarič in-
equality. It has been proved in 1973. by Lah and Ribarič [9]. Since then, there
have been many papers written on the subject of its generalizations, refinements
and reverses. Now, we state a generalization of the Edmundson–Lah–Ribarič in-
equality for positive linear functionals, proved by Beesack and Pečarić [1] (see
also [14, p.98]).

Theorem 1.2. (see [1]) Let φ : [m,M ] → R be a convex function, let L fulfills
conditions (L1), (L2), and let A be any positive normalized linear functional on
L. If f ∈ L is such that φ(f) ∈ L (so that m ≤ f(t) ≤M for all t ∈ E), then

A(φ(f)) ≤ M − A(f)

M −m
φ(m) +

A(f)−m

M −m
φ(M). (1.2)

Recently, Jakšić and Pečarić [6], obtained several converses of inequalities (1.1)
and (1.2), provided that φ : I → R is a continuous convex function such that
[m,M ] ⊆ Int I, where Int I stands for the interior of an interval I. They showed
that if φ◦f ∈ L, then the following difference type converses of Jensen inequality
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(1.1) hold:

0 ≤ A(φ(f))− φ(A(f))

≤ (M − A(f))(A(f)−m) sup
t∈(m,M)

Ψφ(t;m,M)

≤ (M − A(f))(A(f)−m)
φ′−(M)− φ′+(m)

M −m
(1.3)

≤ 1

4
(M −m)(φ′−(M)− φ′+(m))

and

0 ≤ A(φ(f))− φ(A(f)) ≤ 1

4
(M −m)2Ψφ(A(f);m,M)

≤ 1

4
(M −m)(φ′−(M)− φ′+(m)), (1.4)

where Ψφ(·;m,M) : (m,M) → R is defined by

Ψφ(t;m,M) =
1

M −m

(φ(M)− φ(t)

M − t
− φ(t)− φ(m)

t−m

)
, (1.5)

and where φ′−(M), φ′+(m) are one-sided derivatives of function φ at the corre-
sponding points.

In the same paper, the authors also proved the following difference type con-
verses of the Edmundson–Lah–Ribarič inequality (1.2):

0 ≤ A(f)−m

M −m
φ(M) +

M − A(f)

M −m
φ(m)− A(φ(f))

≤ A[(M − f)(f −m)] sup
t∈(m,M)

Ψφ(t;m,M)

≤ A[(M − f)(f −m)]

M −m
(φ′−(M)− φ′+(m)) (1.6)

≤ (M − A(f))(A(f)−m)

M −m
(φ′−(M)− φ′+(m))

≤ 1

4
(M −m)(φ′−(M)− φ′+(m)),

0 ≤ A(f)−m

M −m
φ(M) +

M − A(f)

M −m
φ(m)− A(φ(f))

≤ A[(M − f)(f −m)] sup
t∈(m,M)

Ψφ(t;m,M)

≤ (M − A(f))(A(f)−m) sup
t∈(m,M)

Ψφ(t;m,M) (1.7)

≤ (M − A(f))(A(f)−m)

M −m
(φ′−(M)− φ′+(m))

≤ 1

4
(M −m)(φ′−(M)− φ′+(m)),
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and

0 ≤ A(f)−m

M −m
φ(M) +

M − A(f)

M −m
φ(m)− A(φ(f))

≤ 1

4
(M −m)2A(Ψφ(f ;m,M)) (1.8)

≤ 1

4
(M −m)(φ′−(M)− φ′+(m)),

provided that Ψφ(f ;m,M) ∈ L in (1.8).
The main objective of this paper is to give improvements of the above con-

verses. Our main results rely on the refinement of the Edmundson–Lah–Ribarič
inequality obtained by Klaričić Bakula et.al. [8], and the recent refinement of the
Jensen inequality via linear interpolation, established by Choi et.al. [4]. As an ap-
plication, we shall also derive improved converse relations for generalized means,
for the Hölder and Hermite–Hadamard inequalities as well as for the inequalities
of Giaccardi and Petrović.

2. Main results

In order to derive improvements of the relations stated in the introduction, we
will also need to equip our linear class L of functions with an additional property:

L3: f, g ∈ L⇒ min{f, g} ∈ L ∧max{f, g} ∈ L (lattice property).

Hence, from now on, without further noticing, L stands for a vector space of
real-valued functions f : E → R satisfying properties (L1), (L2), and (L3), while
A denotes a positive normalized linear functional acting on L.

In order to obtain the corresponding results, we first state the improved form
of the Edmundson–Lah–Ribarič inequality obtained by Klaričić Bakula et.al. [8].

Theorem 2.1. (see [8]) Let φ : [m,M ] → R be a convex function and f ∈ L be
such that φ ◦ f ∈ L. Then, A(f) ∈ [m,M ] and

A(φ(f)) ≤ M − A(f)

M −m
φ(m) +

A(f)−m

M −m
φ(M)− A(f̃)δφ, (2.1)

where

f̃ =
1

2
−
|f − m+M

2
|

M −m
, δφ = φ(m) + φ(M)− 2φ

(m+M

2

)
. (2.2)

Our basic results will also include the function Ψφ(·;m,M) defined by (1.5).
It should be noticed here that the expression (1.5) is actually the second order
divided difference of the function φ at points m, t, and M , for every t ∈ (m,M).

First we give improved forms of converse Jensen relations (1.3) and (1.4).
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Theorem 2.2. Let φ : I → R be a continuous convex function and [m,M ] ⊆
Int I. If f ∈ L is such that f(E) ⊆ [m,M ] and φ ◦ f ∈ L, then

0 ≤ A(φ(f))− φ(A(f))

≤ (M − A(f))(A(f)−m) sup
t∈(m,M)

Ψφ(t;m,M)− A(f̃)δφ

≤ (M − A(f))(A(f)−m)
φ′−(M)− φ′+(m)

M −m
− A(f̃)δφ (2.3)

≤ 1

4
(M −m)(φ′−(M)− φ′+(m))− A(f̃)δφ

and

0 ≤ A(φ(f))− φ(A(f)) ≤ 1

4
(M −m)2Ψφ(A(f);m,M)− A(f̃)δφ

≤ 1

4
(M −m)(φ′−(M)− φ′+(m))− A(f̃)δφ, (2.4)

where Ψφ, f̃ and δφ are defined by (1.5) and (2.2). If φ is concave on I, then the
inequality signs in (2.3) and (2.4) are reversed.

Proof. According to the property (L3), we have

f̃ = min
{M − f

M −m
,
f −m

M −m

}
=

1

2
−
|f − m+M

2
|

M −m
∈ L.

Further, if A(f) = m or A(f) = M the inequalities hold trivially, so without loss
of generality we can suppose that A(f) ∈ (m,M). The first inequality in (2.3) is
Jensen inequality (1.1). By Theorem 2.1, we have

A(φ(f))− φ(A(f)) ≤ M − A(f)

M −m
φ(m) +

A(f)−m

M −m
φ(M)− φ(A(f))− A(f̃)δφ

=
(M − A(f))(A(f)−m)

M −m

{φ(M)− φ(A(f))

M − A(f)
− φ(A(f))− φ(m)

A(f)−m

}
− A(f̃)δφ

= (M − A(f))(A(f)−m)Ψφ(A(f);m,M)− A(f̃)δφ

≤ (M − A(f))(A(f)−m) sup
t∈(m,M)

Ψφ(t;m,M)− A(f̃)δφ,

so the second inequality in (2.3) holds. Now, the third inequality sign in (2.3)
follows from

sup
t∈(m,M)

Ψφ(t;m,M) =
1

M −m
sup

t∈(m,M)

{φ(M)− φ(t)

M − t
− φ(t)− φ(m)

t−m

}
≤ 1

M −m

(
sup

t∈(m,M)

φ(M)− φ(t)

M − t
+ sup

t∈(m,M)

−(φ(t)− φ(m))

t−m

)
=

1

M −m

(
sup

t∈(m,M)

φ(M)− φ(t)

M − t
− inf

t∈(m,M)

φ(t)− φ(m)

t−m

)
=
φ′−(M)− φ′+(m)

M −m
.

Finally, the last inequality in (2.3) holds due to the classical arithmetic-geometric

mean inequality (M−A(f))(A(f)−m)
M−m ≤ 1

4
(M −m), since A(f) ∈ [m,M ].
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The proof of the series of inequalities in (2.4) is clear from the proof of (2.3).
At last, if φ is concave, then −φ is convex, so applying (2.3) and (2.4) to −φ we
obtain relations with a reversed signs of inequalities. �

Remark 2.3. It should be noticed here that the function φ (Theorem 2.2) is
defined on interval I such that [m,M ] ⊆ Int I. This condition assures finiteness
of the one-sided derivatives at points m and M , which implies that the expression
Ψφ(t;m,M) is meaningful for all t ∈ [m,M ].

Next, we give improved forms of converses (1.6), (1.7), and (1.8), related to
the Edmundson–Lah–Ribarič inequality.

Theorem 2.4. Let φ : I → R be a continuous convex function and [m,M ] ⊆
Int I. If f ∈ L is such that f(E) ⊆ [m,M ] and φ ◦ f ∈ L, then

0 ≤ A(f)−m

M −m
φ(M) +

M − A(f)

M −m
φ(m)− A(φ(f))− A(f̃)δφ

≤ A[(M − f)(f −m)] sup
t∈(m,M)

Ψφ(t;m,M)− A(f̃)δφ

≤ A[(M − f)(f −m)]

M −m
(φ′−(M)− φ′+(m))− A(f̃)δφ (2.5)

≤ (M − A(f))(A(f)−m)

M −m
(φ′−(M)− φ′+(m))− A(f̃)δφ

≤ 1

4
(M −m)(φ′−(M)− φ′+(m))− A(f̃)δφ,

0 ≤ A(f)−m

M −m
φ(M) +

M − A(f)

M −m
φ(m)− A(φ(f))− A(f̃)δφ

≤ A[(M − f)(f −m)] sup
t∈(m,M)

Ψφ(t;m,M)− A(f̃)δφ

≤ (M − A(f))(A(f)−m) sup
t∈(m,M)

Ψφ(t;m,M)− A(f̃)δφ (2.6)

≤ (M − A(f))(A(f)−m)

M −m
(φ′−(M)− φ′+(m))− A(f̃)δφ

≤ 1

4
(M −m)(φ′−(M)− φ′+(m))− A(f̃)δφ,

and

0 ≤ A(f)−m

M −m
φ(M) +

M − A(f)

M −m
φ(m)− A(φ(f))− A(f̃)δφ

≤ 1

4
(M −m)2A(Ψφ(f ;m,M))− A(f̃)δφ (2.7)

≤ 1

4
(M −m)(φ′−(M)− φ′+(m))− A(f̃)δφ,

where Ψφ, f̃ and δφ are defined by (1.5) and (2.2), and Ψφ(f ;m,M) ∈ L in (2.7).
If φ is concave on I, then the inequality signs in (2.5), (2.6) and (2.7) are reversed.
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Proof. It has been shown in the proof of Theorem 2.2 that f̃ ∈ L. Now, since
f(E) ⊆ [m,M ], following the lines as in the proof of Theorem 2.2, we obtain
scalar relations

f(t)−m

M −m
φ(M) +

M − f(t)

M −m
φ(m)− φ(f(t))

≤ (M − f(t))(f(t)−m) sup
t∈(m,M)

Ψφ(t;m,M)

≤ (M − f(t))(f(t)−m)

M −m
(φ′−(M)− φ′+(m))

≤ 1

4
(M −m)(φ′−(M)− φ′+(m))

and

f(t)−m

M −m
φ(M) +

M − f(t)

M −m
φ(m)− φ(f(t))

≤ 1

4
(M −m)2Ψφ(f ;m,M)

≤ 1

4
(M −m)(φ′−(M)− φ′+(m)).

In addition, applying a positive normalized linear functional A to the above series
of inequalities, and taking into account the inequality (2.1), we obtain the first
three inequality signs in (2.5) and the series of inequalities in (2.7). To prove
the fourth inequality in (2.5), we need to notice that the quadratic function
g(t) = (M− t)(t−m) is concave, so by Jensen inequality (1.1) we have A(g(f))−
A(f̃)δφ ≤ g(A(f))−A(f̃)δφ. Finally, the last inequality in (2.5) follows from the
arithmetic-geometric mean inequality.

To conclude the proof, it suffices to justify the third inequality sign in (2.6).
Clearly, it follows again by virtue of concavity of the function g(t) = (M−t)(t−m)
and Jensen inequality (1.1). �

Remark 2.5. Obviously, our Theorems 2.2 and 2.4 are improvements of relations
(1.3), (1.4), (1.6), (1.7) and (1.8) presented in the introduction, since under the
required assumptions we have

A(f̃)δφ = A
(1

2
−
|f − m+M

2
|

M −m

)(
φ(m) + φ(M)− 2φ

(m+M

2

))
≥ 0.

Remark 2.6. It should be noticed here that the series of inequalities in (2.5) and
(2.6) differ only in the third line. This occurs as a result of an order of estimating
expressions A[(M − f)(f − m)] and Ψφ(t;m,M). Therefore, without further
noticing, inequalities related to (2.6) will be omitted in the sequel.

Improved converse relations obtained in Theorems 2.2 and 2.4 rely on the
refinement of the Edmundson–Lah–Ribarič inequality given by (2.1). Recently,
Pečarić and Perić [13], established even more accurate version of the Edmundson–
Lah–Ribarič inequality. The corresponding result is derived by virtue of the
refinement of the Jensen inequality via linear interpolation obtained by Choi
et.al. [4].
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Theorem 2.7. (see [13]) Let φ : [m,M ] → R be a convex function and f ∈ L be
such that φ ◦ f ∈ L. Then, A(f) ∈ [m,M ] and

A(φ(f)) ≤ M − A(f)

M −m
φ(m) +

A(f)−m

M −m
φ(M)−Rφ,A(m,M ; f), (2.8)

where

Rφ,A(m,M ; f) =
N−1∑
n=0

2n∑
k=1

∆φ(m,M, n, k)A
(
rnχ( k−1

2n
, k
2n

)

( f −m

M −m

))
, (2.9)

r0(t) = min{t, 1− t}, rn(t) = min{2rn−1(t), 1− 2rn−1(t)}, 0 ≤ t ≤ 1,

∆φ(m,M, n, k) =φ
((2n − k + 1)m+ (k − 1)M

2n

)
+ φ

((2n − k)m+ kM

2n

)
− 2φ

((2n+1 − 2k + 1)m+ (2k − 1)M

2n+1

)
,

and where χ stands for a characteristic function of the corresponding interval.

Remark 2.8. Any summation having
∑N−1

n=0 is assumed to be zero for N = 0,
therefore inequality (2.8) may be regarded as a generalization of inequality (2.1).
The functions rn, n ∈ N, are non-negative and it has been shown in [4] that they
can be rewritten in an explicit form

rn(t) =

{
2nt− k + 1, k−1

2n
≤ t ≤ 2k−1

2n+1 ,

k − 2nt, 2k−1
2n+1 < t ≤ k

2n
,

(2.10)

for k = 1, 2, . . . , 2n. In addition, if N ≥ 1, then Rφ,A(m,M ; f) can be rewritten
in the following way:

Rφ,A(m,M ; f) =∆φ(m,M, 0, 1)A
(
r0χ(0,1)

( f −m

M −m

))
+

N−1∑
n=1

2n∑
k=1

∆φ(m,M, n, k)A
(
rnχ( k−1

2n
, k
2n

)

( f −m

M −m

))
.

Now, since χ(0,1)

(
f−m
M−m

)
= 1, ∆φ(m,M, 0, 1) = φ(m)+φ(M)−2φ

(m+M

2

)
, and

r0

( f −m

M −m

)
= min

{ f −m

M −m
, 1− f −m

M −m

}
=

1

2
−
|f − m+M

2
|

M −m
,

it follows that the inequality (2.8) provides sharper estimate for the Edmundson–
Lah–Ribarič inequality than inequality (2.1).

According to the previous remark we can give strengthened Theorems 2.2 and
2.4. More precisely, following the lines of the proofs of Theorems 2.2 and 2.4 with
a term Rφ,A(m,M ; f) instead of A(f̃)δφ, and taking into account relation (2.8), we
give now sharper forms for converses of the Jensen and Edmundson–Lah–Ribarič
inequalities than those established in Theorems 2.2 and 2.4.
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Theorem 2.9. Let φ : I → R be a continuous convex function and [m,M ] ⊆
Int I. If f ∈ L is such that f(E) ⊆ [m,M ] and φ ◦ f ∈ L, then

0 ≤ A(φ(f))− φ(A(f))

≤ (M − A(f))(A(f)−m) sup
t∈(m,M)

Ψφ(t;m,M)−Rφ,A(m,M ; f)

≤ (M − A(f))(A(f)−m)
φ′−(M)− φ′+(m)

M −m
−Rφ,A(m,M ; f)

≤ 1

4
(M −m)(φ′−(M)− φ′+(m))−Rφ,A(m,M ; f) (2.11)

and

0 ≤ A(φ(f))− φ(A(f)) ≤ 1

4
(M −m)2Ψφ(A(f);m,M)−Rφ,A(m,M ; f)

≤ 1

4
(M −m)(φ′−(M)− φ′+(m))−Rφ,A(m,M ; f), (2.12)

where Ψφ and Rφ,A are defined by (1.5) and (2.9). If φ is concave on I, then the
inequality signs in (2.11) and (2.12) are reversed.

Theorem 2.10. Let φ : I → R be a continuous convex function and [m,M ] ⊆
Int I. If f ∈ L is such that f(E) ⊆ [m,M ] and φ ◦ f ∈ L, then

0 ≤ A(f)−m

M −m
φ(M) +

M − A(f)

M −m
φ(m)− A(φ(f))−Rφ,A(m,M ; f)

≤ A[(M − f)(f −m)] sup
t∈(m,M)

Ψφ(t;m,M)−Rφ,A(m,M ; f)

≤ A[(M − f)(f −m)]

M −m
(φ′−(M)− φ′+(m))−Rφ,A(m,M ; f) (2.13)

≤ (M − A(f))(A(f)−m)

M −m
(φ′−(M)− φ′+(m))−Rφ,A(m,M ; f)

≤ 1

4
(M −m)(φ′−(M)− φ′+(m))−Rφ,A(m,M ; f)

and

0 ≤ A(f)−m

M −m
φ(M) +

M − A(f)

M −m
φ(m)− A(φ(f))−Rφ,A(m,M ; f)

≤ 1

4
(M −m)2A(Ψφ(f ;m,M))−Rφ,A(m,M ; f) (2.14)

≤ 1

4
(M −m)(φ′−(M)− φ′+(m))−Rφ,A(m,M ; f)

where Ψφ and Rφ,A are defined by (1.5) and (2.9), and Ψφ(f ;m,M) ∈ L in (2.14).
If φ is concave on I, then the inequality signs in (2.13) and (2.14) are reversed.

Remark 2.11. Our main results presented in this section cover the classical dis-
crete and integral case. Namely, common examples of positive linear functionals
are A(f) =

∫
E
fdµ or A(f) =

∑
k∈E pkfk, where µ is positive measure on E in the

first case, and in the other, E = N is a countable set with the discrete measure
µ(k) = pk ≥ 0, 0 <

∑
k∈E pk <∞, f(k) = fk, defined on it.
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Moreover, let X : Ω → [m,M ] be a random variable on a probability space
(Ω, p) with finite expectation E[X]. Then, setting A = E and f = X, our
Theorems 2.2, 2.4, 2.9 and 2.10 yield probabilistic versions of converses for the
Jensen and Edmundson–Lah–Ribarič inequalities, provided that E[φ(X)] <∞.

3. Applications

In this section, we give applications of our main results to generalized means,
to the Hölder and Hermite–Hadamard inequalities and to inequalities of Giac-
cardi and Petrović. In such a way, we will obtain more precise converses for
these inequalities. In some cases, we will also obtain the refinements of some
aforementioned inequalities.

3.1. Generalized means. Let ψ : I → R be continuous and strictly monotonic
function, and let f ∈ L be such that ψ(f) ∈ L. A generalized mean with respect
to the functional A and the function ψ, for f ∈ L, is defined by

Mψ(f, A) = ψ−1A(ψ(f)).

First, we state two already known results referring to a comparison of these
generalized means, and then, we give the corresponding converses based on our
main results.

Theorem 3.1. (see [14]) Let ψ, χ : I → R be continuous and strictly monotonic
functions, and let f ∈ L be such that ψ(f), χ(f) ∈ L. Then,

Mψ(f, A) ≤Mχ(f, A),

provided either χ is increasing and φ = χ ◦ ψ−1 is convex, or χ is decreasing and
φ = χ ◦ ψ−1 is concave.

Theorem 3.2. (see [14]) Let ψ and χ be as in Theorem 3.1, but with I = [m,M ].
If f ∈ L is such that f(E) ⊆ [m,M ], then

(ψ(M)− ψ(m))A(χ(f))− (χ(M)− χ(m))A(ψ(f)) ≤ ψ(M)χ(m)− χ(M)ψ(m),

provided that φ = χ ◦ ψ−1 is convex. The inequality is reversed if φ is concave.

By virtue of Theorems 2.9 and 2.10, we give now converse relations that cor-
respond to Theorems 3.1 and 3.2.

Theorem 3.3. Let ψ, χ : I → R be continuous and strictly monotonic functions
such that the function φ = χ ◦ ψ−1 is convex on I. Let [m,M ] ⊆ Int I, and let
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f ∈ L be such that ψ(f), χ(f) ∈ L and f(E) ⊆ [m,M ]. Then,

0 ≤ χ(Mχ(f, A))− χ(Mψ(f, A))

≤ (Mψ − A(ψ(f)))(A(ψ(f))−mψ) sup
t∈(mψ ,Mψ)

Ψφ(ψ(t);mψ,Mψ)

−Rφ,A(mψ,Mψ, ψ(f))

≤ (Mψ − A(ψ(f)))(A(ψ(f))−mψ)
φ′−(Mψ)− φ′+(mψ)

Mψ −mψ

−Rφ,A(mψ,Mψ, ψ(f))

≤ 1

4
(Mψ −mψ)(φ′−(Mψ)− φ′+(mψ))−Rφ,A(mψ,Mψ, ψ(f))

and

0 ≤ χ(Mχ(f, A))− χ(Mψ(f, A))

≤ 1

4
(Mψ −mψ)2Ψφ(A(ψ(f));mψ,Mψ)−Rφ,A(mψ,Mψ, ψ(f))

≤ 1

4
(Mψ −mψ)(φ′−(Mψ)− φ′+(mψ))−Rφ,A(mψ,Mψ, ψ(f)),

where Ψφ and Rφ,A are defined by (1.5) and (2.9), and [mψ,Mψ] = ψ([m,M ]). If
φ is concave, then the signs of inequalities are reversed.

Proof. Since f(E) ⊆ [m,M ], it follows that mψ ≤ ψ(f(t)) ≤ Mψ for every t ∈ E
(if ψ is increasing, then mψ = ψ(m) and Mψ = ψ(M); if ψ is decreasing, then
mψ = ψ(M) and Mψ = ψ(m)). Therefore, the conditions as in Theorem 2.9 are
satisfied, so we obtain required inequalities by putting m = mψ, M = Mψ and
replacing f with ψ ◦ f in (2.11) and (2.12) respectively. �

Theorem 3.4. Suppose that the assumptions as in Theorem 3.3 are fulfilled.
Then,

0 ≤ A(ψ(f))−mψ

Mψ −mψ

χ(Mψ) +
Mψ − A(ψ(f))

Mψ −mψ

χ(mψ)− χ(Mχ(f, A))

−Rφ,A(mψ,Mψ, ψ(f))

≤ A[(Mψ − ψ(f))(ψ(f)−mψ)] sup
t∈(mψ ,Mψ)

Ψφ(ψ(t);mψ,Mψ)

−Rφ,A(mψ,Mψ, ψ(f))

≤ A[(Mψ − ψ(f))(ψ(f)−mψ)]

Mψ −mψ

(φ′−(Mψ)− φ′+(mψ))

−Rφ,A(mψ,Mψ, ψ(f))

≤ (Mψ − A(ψ(f)))(A(ψ(f))−mψ)

Mψ −mψ

(φ′−(Mψ)− φ′+(mψ))

−Rφ,A(mψ,Mψ, ψ(f))

≤ 1

4
(Mψ −mψ)(φ′−(Mψ)− φ′+(mψ))−Rφ,A(mψ,Mψ, ψ(f))
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and

0 ≤ A(ψ(f))−mψ

Mψ −mψ

χ(Mψ) +
Mψ − A(ψ(f))

Mψ −mψ

χ(mψ)− χ(Mχ(f, A))

−Rφ,A(mψ,Mψ, ψ(f))

≤ 1

4
(Mψ −mψ)2A(Ψφ(ψ(f);mψ,Mψ))−Rφ,A(mψ,Mψ, ψ(f))

≤ 1

4
(Mψ −mψ)(φ′−(Mψ)− φ′+(mψ))−Rφ,A(mψ,Mψ, ψ(f)),

where Ψφ and Rφ,A are defined by (1.5) and (2.9), and [mψ,Mψ] = ψ([m,M ]). If
φ is concave, then the signs of inequalities are reversed.

Proof. It follows from Theorem 2.10 by utilizing the same substitutions as in the
previous theorem. �

Remark 3.5. Power means

M [r](f, A) =

{
(A(f r))1/r , r 6= 0
exp(A(log f)) , r = 0

are the special case of generalized means, so by choosing χ(t) = ts, ψ(t) = tr in
Theorems 3.3 and 3.4, which are either increasing or decreasing functions, one
obtains the corresponding results for power means. Here, they are omitted. For
more details about power means, the reader is referred to [2] and [14].

3.2. The Hölder inequality. Generalizations of the Hölder inequality and its
converse for positive linear functionals acting on the vector space of positive real-
valued functions are stated in the following theorems:

Theorem 3.6. (see [14]) Let p > 1 and q = p/(p − 1). If w, f, g ∈ L are such
that w, f, g ≥ 0 and wfp, wgq, wfg ∈ L, then

A(wfg) ≤ A1/p(wfp)A1/q(wgq).

If 0 < p < 1 and A(wgq) > 0 (or p < 0 and A(wfp) > 0), then the inequality
sign is reversed.

Theorem 3.7. (see [14]) Let p > 1, q = p/(p− 1), and w, f, g ∈ L be such that
w, f, g ≥ 0 and wfp, wgq, wfg ∈ L. If fg−q/p(E) ⊆ [m,M ], then

(M −m)A(wfp) + (mMp −Mmp)A(wgq) ≤ (Mp −mp)A(wfg).

If p < 0, then the inequality also holds provided that either A(wfp) > 0 or
A(wgq) > 0. If 0 < p < 1, then the reversed inequality holds provided that either
A(wfp) > 0 or A(wgq) > 0.

Our next application are converses in connection with the Hölder inequality
and they give estimates for the difference between the right-hand side and the
left-hand side of the inequalities from Theorems 3.6 and 3.7.
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Theorem 3.8. Let p > 1, q = p/(p− 1), w, f, g ∈ L be such that w, f, g ≥ 0 and
wfp, wgq, wfg ∈ L. If A(wgq) > 0 and fg−q/p(E) ⊆ [m,M ], then

0 ≤ A(wfp)Ap/q(wgq)− Ap(wfg)

≤ (MA(wgq)− A(wfg))(A(wfg)−mA(wgq)) sup
t∈(m,M)

Ψφ(t;m,M)Ap−2(wgq)

− R̃φ,A(m,M ; fg−
p
q )Ap−1(wgq)

≤ (MA(wgq)− A(wfg))(A(wfg)−mA(wgq))p
Mp−1 −mp−1

M −m
Ap−2(wgq)

− R̃φ,A(m,M ; fg−
p
q )Ap−1(wgq)

≤ p

4
(M −m)(Mp−1 −mp−1)Ap(wgq)− R̃φ,A(m,M ; fg−

p
q )Ap−1(wgq)

and

0 ≤ A(wfp)Ap/q(wgq)− Ap(wfg)

≤ 1

4
(M −m)2Ψφ(

A(wfg)

A(wgq)
;m,M)Ap(wgq)− R̃φ,A(m,M ; fg−

p
q )Ap−1(wgq)

≤ p

4
(M −m)(Mp−1 −mp−1)Ap(wgq)− R̃φ,A(m,M ; fg−

p
q )Ap−1(wgq),

where φ(t) = tp, Ψφ is defined by (1.5), and

R̃φ,A(m,M ; fg−
p
q )

=
N−1∑
n=0

2n∑
k=1

∆φ(m,M, n, k)A
(
wgqrnχ( k−1

2n
, k
2n

)

(fg− q
p −m

M −m

))
,

where ∆φ(m,M, n, k) is defined in Theorem 2.7. If A(wfg) > 0, then the in-
equalities also hold for p < 0, while for 0 < p < 1 the inequalities are reversed.

Proof. Clearly, the function φ(t) = tp is convex (concave) for p > 1 and p < 0 (for

0 < p < 1). We define B(f) = A(wf)
A(w)

for w ∈ L such that w ≥ 0 and A(w) > 0.

Since B(1) = 1, the conditions of Theorem 2.9 are fulfilled. Now the required
relations follow from (2.11) and (2.12) by replacing A with B, w with wgq and f
with fg−q/p. �

In the same way, by virtue of Theorem 2.10, we get:

Theorem 3.9. Suppose that the assumptions as in Theorem 3.8 are fulfilled. If
p > 1 or p < 0, then
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0 ≤ A(wfg)−mA(wgq)

M −m
Mp +

MA(wgq)− A(wfg)

M −m
mp − A(wfp)

− R̃φ,A(m,M ; fg−
p
q )

≤ A(wgq[(M − fg−q/p)(fg−q/p −m)]) sup
t∈(m,M)

Ψφ(t;m,M)

− R̃φ,A(m,M ; fg−
p
q )

≤ A(wgq[(M − fg−q/p)(fg−q/p −m)])

M −m
p(Mp−1 −mp−1)

− R̃φ,A(m,M ; fg−
p
q )

≤ (MA(wgq)− A(wfg))(A(wfg)−mA(wgq))

(M −m)A(wgq)
p(Mp−1 −mp−1)

− R̃φ,A(m,M ; fg−
p
q )

≤ p

4
(M −m)(Mp−1 −mp−1)A(wgq)− R̃φ,A(m,M ; fg−

p
q )

and

0 ≤ A(wfg)−mA(wgq)

M −m
Mp +

MA(wgq)− A(wfg)

M −m
mp − A(wfp)

− R̃φ,A(m,M ; fg−
p
q )

≤ 1

4
(M −m)2A(wgqΨφ(fg

−q/p;m,M))− R̃φ,A(m,M ; fg−
p
q )

≤ p

4
(M −m)(Mp−1 −mp−1)A(wgq)− R̃φ,A(m,M ; fg−

p
q ).

If 0 < p < 1, the inequalities are reversed.

Remark 3.10. It should be noticed here that Theorems 3.1, 3.2, 3.6 and 3.7 hold
regardless to the lattice property (L3).

3.3. Hermite–Hadamard’s inequality. The Hermite–Hadamard inequality states
that if f : [a, b] → R is a convex function, then

f
(a+ b

2

)
≤ 1

b− a

∫ b

a

f(t)dt ≤ f(a) + f(b)

2
. (3.1)

If f is concave, the inequalities in (3.1) are reversed. For more details about the
Hermite–Hadamard inequality, the reader is referred to [3], [10], [12], [14], and
references therein.

It is interesting that Theorems 2.9 and 2.10 can be utilized in obtaining con-
verses for both inequalities in (3.1).
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Theorem 3.11. If f : I → R is continuous convex function and [a, b] ⊆ Int I,
then

0 ≤ 1

b− a

∫ b

a

f(t)dt− f
(a+ b

2

)
≤ 1

4
(b− a)2 sup

t∈(a,b)

Ψf (t; a, b)−Rf (a, b)

≤ 1

4
(b− a)(f ′−(b)− f ′+(a))−Rf (a, b) (3.2)

and

0 ≤ 1

b− a

∫ b

a

f(t)dt− f
(a+ b

2

)
≤ 1

4
(b− a)2Ψf

(a+ b

2
; a, b

)
−Rf (a, b)

≤ 1

4
(b− a)(f ′−(b)− f ′+(a))−Rf (a, b), (3.3)

where

Rf (a, b) =
N−1∑
n=0

2−n−2

2n∑
k=1

∆f (a, b, n, k) (3.4)

and ∆f (a, b, n, k) is defined in Theorem 2.7. If f is concave, the inequalities are
reversed.

Proof. Inequalities (3.2) and (3.3) follow from (2.11) and (2.12), respectively, by

putting A(f) = 1
b−a

∫ b

a
f(t)dt, f(t) = t and replacing φ with f . The expression for

Rf (a, b) is calculated from (2.9) by making the same substitutions and utilizing
the explicit form (2.10) of functions rn. �

Theorem 3.12. If f : I → R is continuous convex function and [a, b] ⊆ Int I,
then

0 ≤ f(a) + f(b)

2
− 1

b− a

∫ b

a

f(t)dt−Rf (a, b)

≤ 1

6
(b− a)2 sup

t∈(a,b)

Ψf (t; a, b)−Rf (a, b)

≤ 1

6
(b− a)(f ′−(b)− f ′+(a))− 1

4
Rf (a, b), (3.5)

where Rf (a, b) is defined by (3.4). If f is concave, the inequalities in (3.5) are
reversed.

Proof. Inequalities (3.5) are obtained from (2.13) by making the same substitu-
tions as in the proof of the previous theorem. �

Remark 3.13. It should be noticed here that the first inequality sign in (3.5)
provides the refinement of the right inequality in (3.1).
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Remark 3.14. If f : I → R is continuous convex function such that [a, b] ⊆ Int I,
then, combining the relations from the previous two theorems, we have

f(a) + f(b)

2
− 1

6
(b− a)2 sup

t∈(a,b)

Ψf (t; a, b)−Rf (a, b) ≤
1

b− a

∫ b

a

f(t)dt

≤ f
(a+ b

2

)
+

1

4
(b− a)2 sup

t∈(a,b)

Ψf (t; a, b)−Rf (a, b),

where Rf (a, b) is defined by (3.4).

3.4. Inequalities of Giaccardi and Petrović. Let p and x be r-tuples of
non-negative real numbers such that

(xi − x0)
( r∑
j=1

pjxj − xi

)
≥ 0, i = 1, ..., r;

r∑
k=1

pkxk 6= x0; x0,
r∑
i=1

pixi ∈ [a, b].

(3.6)
The Giaccardi inequality (see [17]) asserts that if f : [a, b] → R is convex function,
then

r∑
i=1

pif(xi) ≤ Af
( r∑
i=1

pixi

)
+B

( r∑
i=1

pi − 1
)
f(x0),

where

A =

∑r
i=1 pi(xi − x0)∑r
i=1 pixi − x0

, B =

∑r
i=1 pixi∑r

i=1 pixi − x0

. (3.7)

The succeeding result is the refinement and converse of the Giaccardi inequality
obtained directly from Theorem 2.10.

Theorem 3.15. Let p and x be r-tuples of non-negative real numbers such that
(3.6) holds. If f : I → R is continuous convex function and [a, b] ⊆ Int I, then

0 ≤ Af
( r∑
i=1

pixi

)
+B

( r∑
i=1

pi − 1
)
f(x0)−

r∑
i=1

pif(xi)−Rf (m,M ;x)

≤
r∑
j=1

pj

( r∑
i=1

pixi − xj

)
(xj − x0) sup

t∈(m,M)

Ψf

(
t;x0,

r∑
i=1

pixi

)
−Rf (m,M ;x)

≤
∑r

j=1 pj(
∑r

i=1 pixi − xj)(xj − x0)

M −m
(f ′−(M)− f ′+(m))−Rf (m,M ;x)

≤
(
M −

∑r
i=1 pixi∑r
i=1 pi

)(∑r
i=1 pixi∑r
i=1 pi

−m
)f ′−(M)− f ′+(m)

M −m

r∑
i=1

pi −Rf (m,M ;x)

≤ 1

4
(M −m)(f ′−(M)− f ′+(m))

r∑
i=1

pi −Rf (m,M ;x)
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and

0 ≤ Af
( r∑
i=1

pixi

)
+B

( r∑
i=1

pi − 1
)
f(x0)−

r∑
i=1

pif(xi)−Rf (m,M ;x)

≤ 1

4
(M −m)2

r∑
i=1

piΨf

(
xi;x0,

r∑
i=1

pixi

)
−Rf (m,M ;x)

≤ 1

4
(M −m)(f ′−(M)− f ′+(m))

r∑
i=1

pi −Rf (m,M ;x),

where m = min{x0,
∑r

i=1 pixi}, M = max{x0,
∑r

i=1 pixi},

Rf (m,M ;x) =
r∑
i=1

N−1∑
n=0

2n∑
k=1

pi∆f (m,M, n, k)rnχ( k−1
2n

, k
2n

)

( xi −m

M −m

)
,

∆f (m,M, n, k) is defined in Theorem 2.7 and A, B are defined by (3.7). If f is
concave, the inequalities are reversed.

Proof. It follows directly from Theorem 2.10 for A(x) =

∑r
i=1 pixi∑r
i=1 pi

and φ = f . �

A special case of the Giaccardi inequality is the Petrović inequality (see [15])
which asserts that if f : [0, a] → R is convex function, then

r∑
i=1

f(xi) ≤ f
( r∑
i=1

xi

)
+ (r − 1)f(0),

where xi, i = 1, ..., r, are non-negative real numbers such that x1, ..., xr,
∑r

i=1 xi ∈
[0, a]. Our last result, which gives the lower and upper bound for the difference
between the right-hand side and the left-hand side of the Petrović inequality, can
be obtained from Theorem 2.10, but can also be obtained as a special case of
Theorem 3.15 for p1 = ... = pr = 1 and x0 = 0.

Corollary 3.16. Let f : I → R be a continuous convex function and [0, a] ⊆ IntI.
If x1, ..., xr ∈ [0, a] are real numbers such that

∑r
i=1 xi ∈ (0, a], then
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0 ≤ f
( r∑
i=1

xi

)
+ (r − 1)f(0)−

r∑
i=1

f(xi)−Rf (x)

≤
r∑
j=1

xj

( r∑
i=1

xi − xj

)
sup

t∈(0,
Pr
i=1 xi)

Ψf

(
t; 0,

r∑
i=1

xi

)
−Rf (x)

≤
∑r

j=1 xj(
∑r

i=1 xi − xj)∑r
i=1 xi

(
f ′−

( r∑
i=1

xi

)
− f ′+(0)

)
−Rf (x)

≤ r − 1

r

( r∑
i=1

xi

)(
f ′−

( r∑
i=1

xi

)
− f ′+(0)

)
−Rf (x)

≤ r

4

( r∑
i=1

xi

)(
f ′−

( r∑
i=1

xi

)
− f ′+(0)

)
−Rf (x)

and

0 ≤ f
( r∑
i=1

xi

)
+ (r − 1)f(0)−

r∑
i=1

f(xi)−Rf (x)

≤ 1

4

( r∑
i=1

xi

)2
r∑
i=1

Ψf

(
xi; 0,

r∑
i=1

xi

)
−Rf (x)

≤ r

4

( r∑
i=1

xi

)(
f ′−

( r∑
i=1

xi

)
− f ′+(0)

)
−Rf (x),

where

Rf (x) =
r∑
i=1

N−1∑
n=0

2n∑
k=1

∆f (0,
r∑
i=1

xi, n, k)rnχ( k−1
2n

, k
2n

)

( xi∑r
i=1 xi

)
,

and ∆f (0,
∑r

i=1 xi, n, k) is defined in Theorem 2.7. If f is concave, the inequalities
are reversed.
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8. M. Klaričić Bakula, J. Pečarić, and J. Perić, On the converse Jensen inequality, Appl. Math.
Comp. 218 (2012), 6566–6575.
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14. J. E. Pečarić, F. Proschan, and Y. L. Tong, Convex functions, partial orderings and statis-

tical applications, Academic Press Inc., San Diego, 1992.
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Univ. Timişoara Ser. Ştiinţ. Mat. 17 (1979), no. 1, 95–104.

1Faculty of Electrical Engineering and Computing, University of Zagreb,
Unska 3, 10000 Zagreb, Croatia.

E-mail address: mario.krnic@fer.hr

2Faculty of Textile Technology, University of Zagreb, Prilaz baruna Fili-
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