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POSITIVE DEFINITE KERNELS AND BOUNDARY SPACES

PALLE JORGENSEN1 and FENG TIAN2∗

Communicated by U. Franz

Abstract. We consider a kernel based harmonic analysis of “boundary,” and
boundary representations. Our setting is general: certain classes of positive
definite kernels. Our theorems extend (and are motivated by) results and
notions from classical harmonic analysis on the disk. Our positive definite
kernels include those defined on infinite discrete sets, for example sets of vertices
in electrical networks, or discrete sets which arise from sampling operations
performed on positive definite kernels in a continuous setting.

Below we give a summary of main conclusions in the paper: Starting with
a given positive definite kernel K we make precise generalized boundaries for
K. They are measure theoretic “boundaries.” Using the theory of Gaussian
processes, we show that there is always such a generalized boundary for any
positive definite kernel.

1. Introduction

Our purpose is to make precise a variety of notions of “boundary” and bound-
ary representation for general classes of positive definite kernels. And to prove
theorems which allow us to carry over results and notions from classical harmonic
analysis on the disk to this wider context (see [10, 11]). We stress that our pos-
itive definite kernels include those defined on infinite discrete sets, for example
sets of vertices in electrical networks, or discrete sets which arise from sampling
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operations performed on positive definite kernels in a continuous setting, and
with the sampling then referring to suitable discrete subsets. See, e.g., [8, 12, 16].

Below we give a summary of main conclusions in the paper: Starting with a
given positive definite kernel K on S × S, we introduce generalized boundaries
for the set S that carries K. It is a measure theoretic “boundary” in the form
of a probability space, but it is not unique. The set of measure boundaries will
be denoted M (K). We show that there is always such a generalized boundary
probability space associated to any positive definite kernel. For example, as an
element in M (K), we can take a “measure” boundary to be the Gaussian pro-
cess having K as its covariance kernel. This exists by Kolmogorov’s consistency
theorem.

Definition 1.1. By a probability space, we mean a triple (B,F , µ) where:

• B is a set,
• F is a σ-algebra of subsets of B, and
• µ is a probability measure defined on F , i.e., µ (∅) = 0, µ (B) = 1, µ (F ) ≥

0 ∀F ∈ F , and if {Fi}i∈N ⊂ F , Fi ∩ Fj = ∅, i 6= j in N, then µ (∪iFi) =∑
i µ (Fi).

Definition 1.2. Let S be any set. A function K : S × S → C is positive definite
iff (Def.) ∑

i

∑
j

cicjK (si, sj) ≥ 0, (1.1)

for all {si}n
i=1 ⊂ S, and all (ci)

n
i=1 ∈ Cn.

Definition 1.3. Fix a set S, and let K : S×S → C be a positive definite kernel.

(1) For all x ∈ S, set

Kx := K (·, x) : S −→ C (1.2)

as a function on S.
(2) Let H (K) be the Hilbert-completion of the span {Kx : x ∈ S}, with re-

spect to the inner product〈∑
cxKx,

∑
dyKy

〉
H (K)

:=
∑∑

cxdyK (x, y) (1.3)

modulo the subspace of functions of zero H (K)-norm. H (K) is then a
reproducing kernel Hilbert space (HKRS), with the reproducing property:

〈Kx, ϕ〉H (K) = ϕ (x) , ∀x ∈ S, ∀ϕ ∈ H (K) . (1.4)

Note. The summations in (1.3) are all finite. Starting with finitely
supported summations in (1.3), the RKHS H (k) is then obtained by
Hilbert space completion. We use physicists’ convention, so that the inner
product is conjugate linear in the first variable, and linear in the second
variable.
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Conclusions, a summary:

(1) For every positive definite kernel K, we define a “measure theoretic bound-
ary space” M (K). Set

M (K) :=
{

(B,F , µ) a measure space which yields

a factorization for K, see Definition 2.2
}
.

This set M (K) generalizes other notions of “boundary” used in the lit-
erature for networks, and for more general positive definite kernels, and
their associated reproducing kernel Hilbert spaces (RKHSs).

(2) For any positive definite kernel K, the corresponding M (K) is always
non-empty. The natural Gaussian process path-space with covariance
kernel K, and Wiener measure µ is in M (K).

(3) Given K, let H (K) be the associated RKHS. Then for every µ ∈M (K)
there is a canonical isometry Wµ mapping H (K) into L2 (µ). For details,
see Proposition 2.8.

(4) The isometry Wµ in (3) generally does not map onto L2 (µ).
It does however for the 1

4
-Cantor example, i.e., the restriction of Haus-

dorff measure of dimension 1
2

to the standard 1
4
-Cantor set. In this case,

we have a positive definite kernel on D × D, where D is the unit disk in
the complex plane; and we can take the circle as boundary for D. For µ,
we take the corresponding 1

4
- Cantor measure. But in general, for posi-

tive definite functions K, a “measure theoretic boundary space” is much
“bigger” than probability spaces on the metric boundary for K.

(5) Using the isometries from (3), we can turn M (K) into a partially ordered
set; see Definition 3.2. Then, using Zorn’s lemma, one shows that M (K)
always contains minimal elements. The minimal elements are not unique.

(6) And even if µ is chosen minimal in M (K), the corresponding isometry
Wµ still generally does not map onto L2 (µ). A case in point: the Szegö
kernel, and µ = Lebesgue measure on a period interval.

Remark 1.4. The Cantor examples in (4) are special cases of affine-selfsimilarity
limit (fractal) contractions. See, e.g., [3, 14].

The general role for the fractal dimension in these cases is as follows:

dimfractal =
ln s

ln d
= logd (s) ,

where s = the number of translations in each iteration, and d = the linear scale.
For example, the middle-third Cantor fractal has dimF = ln 2

ln 3
= log3 (2). The

Sierpinski-gasket has dimF = ln 3
ln 2

< 2. For the Sierpinski construction in R3, we

have dimF = ln 4
ln 2

= 2 < 3.

2. Generalized boundary spaces for positive definite kernels

The general setup is as follows: In a general setting positive definite (p.d.)
kernels K are defined on S × S where S is a prescribed set. In classical analysis
such pairs (K, S) have found uses in many problems in harmonic analysis, in
complex analysis, in stochastic analysis, analysis on infinite graphs, and in PDE
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theory, the latter in the context of Green’s functions for elliptic operators. In
the complex analysis setting, S may be the disk D, or the upper half-plane. For
these applications, solutions typically entail consideration of boundaries, some in
a natural geometric framework, and some more abstract. In some of the applica-
tions considered here, the notion of “boundary” is clear enough, for example for
real or complex domains, but not for others. Take for example the case when S
may instead be the set of vertices in an infinite graph.

The problem considered in the present section below is motivated by posi-
tive definite kernels arising naturally from classical frameworks, but our present
emphasis will be applications when there is not already a given, or a natural
boundary available at the outset. Below, we begin with a rigorous definition of
“boundary” associated to a given pair (K,S) as specified above; see Definition
2.2. Starting with Definition 2.5, for different choices of “boundaries” we explore
implications for a new harmonic analysis. Our first result in this framework is
Proposition 2.8 below. Its corollaries are then explored in such applications as
harmonic analysis, Example 2.11; the study of fractal measures for iterated func-
tion systems (IFSs), and for Gaussian processes, Corollary 2.10 and Theorem
2.1.

In Section 3 we turn to a discussion of the variety of “all” boundaries associated
with a given pair (K, S); and when (K, S) is given, we establish the existence of
minimal boundaries, Theorem 3.1.

Remark 2.1. (1) Given a positive definite kernel K on S×S, there is then an
associated mapping ES : S → {Functions on S} given by

ES (t) = K (t, ·) , (2.1)

where the dot “·” in (2.1) indicates the independent variable; so

S 3 s −→ K (t, s) ∈ C.

(2) We shall assume that ES is 1-1, i.e., if s1, s2 ∈ S, and K (s1, t) = K (s2, t),
∀t ∈ S, then it follows that s1 = s2. This is not a strong limiting condition
on K.

(3) We shall view the Cartesian product

BS :=
∏
S

C = CS (2.2)

as the set of all functions S → C.
It follows from assumption (2) that ES : S → BS is an injection, i.e.,

with ES, we may identity S as a “subset” of BS.
For v ∈ S, set πv : BS −→ C,

πv (x) = x (v) , ∀x ∈ BS; (2.3)

i.e., πv is the coordinate mapping at v. The topology on BS shall be
the product topology; and similarly the σ-algebra FS will be the the one
generated by {πv}v∈S, i.e., generated by the family of subsets

π−1
v (M) , v ∈ S, and M ⊂ C a Borel set. (2.4)
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Definition 2.2. Fix a positive definite kernel K : S × S → C. Let M (K) be
the set of all probability spaces (see Definition 1.1), so that (B,F , µ) ∈ M (K)
iff (Def.) there exists an extension

KB : S ×B −→ C, and∫
B

KB (s1, b)K
B (s2, b) dµ (b) = K (s1, s2) , (2.5)

for all (s1, s2) ∈ S × S.

Remark 2.3. In Examples 2.12-3.1, we discuss the case where

S = D = {z ∈ C | |z| < 1}
B = ∂D =

{
z ∈ C | |z| = 1, or z = eix, x ∈ (−π, π]

}
;

but in the definition of M (K), we allow all possible measure spaces (B,F , µ) as
long as the factorization (2.5) holds.

Questions:

(1) Given (1.1) what are the solutions (B,F , µ) to (2.5)?
(2) Are there extensions KB : S × B → C such that B is a boundary with

respect to the metric on S? That is,

distK (s1, s2) = ‖Ks1 −Ks2‖H (2.6)

and lim KB (·, b) = limi→∞ K (·, si).
(3) Find the subsets S0 ⊂ S such that the following sampling property holds

for all f ∈ C (B) (or for a subspace of C (B)):

f (b) =
∑
si∈S0

f (si) KB (si, b) , ∀b ∈ B. (2.7)

Example 2.4 (Shannon). Let BL be the space of band-limited functions on R,
where

BL =
{

f ∈ L2 (R) | f̂ (ξ) = 0, ξ ∈ R\
[
−1

2
, 1

2

]}
.

We have

f (t) =
∑
n∈Z

f (n)
sin π (t− n)

π (t− n)
, ∀t ∈ R, ∀f ∈ BL. (2.8)

Definition 2.5. We say (B,F , µ) ∈ GC, generalized Carleson measures, iff (Def.)
there exists a constant Cµ such that∫

B

|f̃ (b) |2dµ (b) ≤ Cµ ‖f‖2
H (K) , ∀f ∈ H (K) , (2.9)

where f̃ in (2.9) is defined via the extension

f̃ (b) := 〈KB
b , f〉H (K), b ∈ B, f ∈ H (K) . (2.10)

Set (GC)1 := generalized Carleson measures with Cµ = 1.

Note. The case Cµ = 1 is of special interest. For classical theory on Carleson
measures, we refer to [2, 4, 5, 13, 15, 17].
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Definition 2.6. Let Hi, i = 1, 2 be Hilbert spaces. We say that H1 is boundedly
contained in H2 iff (Def.) H1 ⊂ H2 (as a subset), and if the inclusion map
H1 → H2, h 7→ h, is bounded. That is, there exits C < ∞ such that for all
h ∈ H1,

‖h‖H2
≤ C ‖h‖H1. (2.11)

Remark 2.7. Note that if (B,F , µ) is a measure space, K : S × S → C is a
positive definite kernel, then (B,F , µ) ∈ GC if and only if H (K) is boundedly
contained in L2 (B,F , µ); see (2.9).

We stress that with the inclusion H (K) “⊂” L2 (µ) we can make the implicit

identification f ∼ f̃ where

f̃ (b) = 〈K̃b, f〉H (K), ∀f ∈ H (K) , b ∈ B; (2.12)

and (2.12) is to be understood for a.a. b w.r.t. (F , µ).

In [9], we showed that for all positive definite kernel K (s, t), (s, t) ∈ S × S, we
have M (K) 6= ∅. Moreover,

Proposition 2.8. Fix a positive definite kernel K : S × S → C, then

M (K) ⊂ (GC)1 . (2.13)

If (B,F , µ) ∈M (K), then the mapping

H (K) 3 K(s, ·
↑

on S

) −→ KB(s, ·
↑

on B

) ∈ L2 (B, µ) (2.14)

extends by linearity and closure to an isometry (see Definition 2.5)

WB : H (K) −→ L2 (B, µ) , f −→ f̃ .

However, WB is generally not onto L2 (B, µ).
More specifically, we have∥∥∥∑

j
cjK (sj, ·)

∥∥∥2

H (K)
=
∥∥∥∑

j
cjK

B (sj, ·)
∥∥∥2

L2(B,µ)
, (2.15)

or equivalently,∑
j1

∑
j2

cj1cj2K (sj1 , sj2) =

∫
B

∣∣∣∑
j
cjK

B (sj, b)
∣∣∣2 dµ (b) (2.16)

for all finite sums, where {sj}, {cj} ⊂ Cn, ∀n ∈ N.

Proof. Suppose (B,F , µ) ∈M (K), i.e., assume (B,F , µ) is a measure space such

that (2.5) holds. Set KB = K̃, refer to the extension K̃ : S ×B → C introduced
in (2.6).

We claim that then (2.9) holds for all f ∈ H (K). Here f̃ is defined via K̃;
see (2.10):

f̃ (b) := 〈K̃b, f〉H (K), ∀f ∈ H (K) , ∀b ∈ B..

Claim: f 7→ f̃ is isometric from H (K) into L2 (µ), i.e.,

‖f̃‖L2(B,µ) = ‖f‖H (K) , ∀f ∈ H (K) . (2.17)
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Proof of (2.17). It is enough to consider the case where f =
∑

i ciKsi
(finite

sum), see (1.1); so that f̃ =
∑

i ciK̃si
on B, and

‖f̃‖2
L2(B,µ) =

∑
i

∑
j

cicj〈K̃si
K̃sj

〉L2(B,µ)

=
∑

i

∑
j

cicj

∫
B

K̃si
(b)K̃sj

(b) dµ (b)

=
∑

i

∑
j

cicjK (si, sj) (see (2.5) , use µ ∈M (K))

= ‖f‖2
H (K) , by (1.1) and the defn. of H (K) .

�

Corollary 2.9. Suppose H (K) 3 f
WB−−−→ f̃ ∈ L2 (B, µ) is bounded, i.e., that µ

is a Carleson measure, then the adjoint operator

W ∗
B : L2 (B, µ) −→ H (K)

is given by

W ∗
B (F ) (s) =

∫
B

K̃ (s, b)F (b) dµ (b) , ∀F ∈ L2 (B, µ) . (2.18)

Proof. For all F ∈ L2 (B, µ), and all s ∈ S, we have

〈Ks, W
∗
BF 〉H (K) = (W ∗

BF ) (s) (reprod prop., and W ∗
BF ∈ H (K))

= 〈WBKs, F 〉L2(µ) (by duality)

=

∫
B

K̃ (s, b)F (b) dµ (b)

which is the desired conclusion (2.18). �

We now turn to the Gaussian measure boundary:

Corollary 2.10. Suppose K : S × S → C is a given positive definite kernel, and
that there is a measure space (F , µ) where F is a σ-algebra of subsets of S, such
that the RKHS H (K) satisfies H (K) ⊂ L2 (S,F , µ) (isometric inclusion), then
(S,F , µ) ∈M (K) iff

K (s, t) =

∫
S

K (s, x)K (t, x) dµ (x) , ∀ (s, t) ∈ S × S. (2.19)

Example 2.11. The condition in (2.19) is satisfied for Bargmann’s Hilbert space
H of entire analytic functions on C (see [1, 6]) subject to

‖f‖2
H =

1

2π

∫∫
R2

|f (x + i y)|2 e−
x2+y2

2 dx dy (2.20)

=
1

2π

∫
C
|f (z)|2 e−

|z|2
2 dx dy < ∞.
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The following kernel (Bargmann’s kernel) is positive definite on C× C:

K (z, w) = exp

(
zw

2
− |z|2 + |w|2

4

)
. (2.21)

It is known that K in (2.21) satisfies (2.19) with respect to the measure µ on C,
given by

dµ (z) = dA (z) =
1

2π
dx dy. (2.22)

Theorem 2.1. Let (K, S) be a positive definite kernel such that the associated
mapping ES : S → BS is 1-1 (see (2.1)).

Then there is a probability space (BS,FS, µS) which satisfies the condition (1.1)
in Definition 1.2.

Proof. This argument is essentially the Kolmogorov inductive limit construction.
For every n ∈ N, ∀ {s1, · · · , sn} ⊂ S, we associate a measure µ{s1,··· ,sn} on BS as
follows:

Let µ{s1,··· ,sn} be the measure on BS which has (πs1 , · · · , πsn) as an n vector
valued random variable with Gaussian the specific distribution: mean zero, and
joint covariance matrix {K (si, sj)}n

i,j=1. By a standard argument, one checks that

then µ{s1,··· ,sn} is a consistent system of measures on BS; and (by Kolmogorov)
that there is a unique probability measure µS on the measure space (BS,FS)
such that, for all (s1, · · · , sn), the marginal distribution of µS coincides with
µ{s1,··· ,sn}. �

Example 2.12 (WB is onto). Let

V = D = {z ∈ C | |z| < 1} (2.23)

B = ∂D =
{
z ∈ C | |z| = 1, or z = eix, x ∈ (−π, π]

}
. (2.24)

Set

K (z, w) =
∞∏
l=0

(
1 + (zw)4l

)
, (z, w) ∈ D× D,

and

KB (z, x) =
∞∏
l=0

(
1 +

(
zei2πx

)4l
)

, (z, x) ∈ D×B.

Then (2.5) holds for the case when µ 1
4

= the 1
4
-Cantor measure on B; see [7].

Proof. (Sketch) Set

Λ4 =

{
n∑

i=0

bi4
i | bi ∈ {0, 1} , n ∈ N

}
(2.25)

= {0, 1, 4, 5, 16, 17, 20, 21, 64, 65, · · · }
then

∞∏
l=0

(
1 + t4

l
)

=
∑
λ∈Λ

tλ, |t| < 1. (2.26)
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The desired conclusion

K (z, w) =

∫
C 1

4

KC 1
4

(z, x)KC 1
4

(w, x) dµ 1
4
(x) (2.27)

follows from the fact that {eλ | λ ∈ Λ4} is an ONB in L2
(
C1/4, µ1/4

)
by [10]. �

3. Boundary theory

We now turn to the details regarding boundary theory. To connect it to the
classical theory of kernel spaces of analytic functions on the disk, we begin with
an example, and we then turn to the case of the most general positive definite
kernels; but not necessarily restricting the domain of the kernels to be considered.

Example 3.1 (WB is not onto). Let

K (z, w) =
1

1− zw
, (Szegö kernel)

KB (z, x) =
1

1− zei2πx
, and (3.1)

µ = restriction of Lebesgue measure to [0, 1] .

Let H2 be the Hardy space on D. Then

WB : H2 −→ L2 ([0, 1] , µLeb)

is isometric, but not onto. Indeed,

WB (H2) = spanL2(0,1) {en (x) | n ∈ N0 = {0} ∪ N} .

Returning to the general case, we show below that there is always a minimal
element in M (K); see Definition 2.2.

Definition 3.2. Suppose (Bi,Fi, µi) ∈M (K), i = 1, 2. We say that

(B1,F1, µ1) ≤ (B2,F2, µ2) (3.2)

if ∃ϕ : B2 −→ B1, s.t.

µ2 ◦ ϕ−1 = µ1, and (3.3)

ϕ−1 (F1) = F2. (3.4)

Lemma 3.3. M (K) has minimal elements.

Proof. If (3.3)-(3.4) hold, then

L2 (B1, µ1) 3 f
W21−−−−→ f ◦ ϕ ∈ L2 (B2, µ2)

is isometric, i.e., ∫
B2

| f ◦ ϕ︸ ︷︷ ︸ |2
W21f

dµ2 =

∫
B1

|f |2 dµ1, (3.5)

and

WB2 = W21WB1 on H (K) , (3.6)
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i.e., the diagram commutes:

L2 (B1, µ1)

W21

��
H (K)

WB1
11

WB2

// L2 (B2, µ2)

We can then use Zorn’s lemma to prove that ∀K, M (K) has minimal elements
(B,F , µ). (See the proof of Theorem 3.1 below.) But even if (B,F , µ) is minimal,
WB : H (K) → L2 (µ) may not be onto. �

In the next result, we shall refer to the partial order “≤” from (3.2) when
considering minimal elements in M (K). And, in referring to M (K), we have in
mind a fixed positive definite function K : S × S → C, specified at the outset;
see Definitions 1.2 and 2.2.

Theorem 3.1. Let (K, S) be a fixed positive definite kernel, and let M (K) be
the corresponding boundary space from Definition 2.2.

Then, for every (X, λ) ∈M (K), there is a (M, ν) ∈M (K) such that

(M, ν) ≤ (X, λ) , (3.7)

and (M, ν) is minimal in the following sense: Suppose (B, µ) ∈M (K) and

(B, µ) ≤ (M, ν) , (3.8)

then it follows that (B, µ) ' (M, ν), i.e., we also have (M, ν) ≤ (B, µ).

Proof. We shall use Zorn’s lemma, and the argument from Lemma 3.3.
Let L = {(B, µ)} be a linearly ordered subset of M (K) s.t.

(B, µ) ≤ (X, λ) , ∀ (B, µ) ∈ L; (3.9)

and such that, for every pair (Bi, µi), i = 1, 2, in L, one of the following two cases
must hold:

(B1, µ1) ≤ (B2, µ2) , or (B2, µ2) ≤ (B1, µ1) . (3.10)

To apply Zorn’s lemma, we must show that there is a (BL, µL) ∈ M (K) such
that

(BL, µL) ≤ (B, µ) , ∀ (B, µ) ∈ L. (3.11)

Now, using (3.9)-(3.10), we conclude that the measure spaces {(B, µ)}L have
an inductive limit, i.e., the existence of:

µL := ind limit
B−→

L
BL

µB. (3.12)

In other words, we may apply Kolmogorov’s consistency to the family L of mea-
sure spaces in order to justify the inductive limit construction in (3.12).

We have proved that every linearly ordered subset L (as specified) has a “lower
bound” in the sense of (3.11). Hence Zorn’s lemma applies, and the desired con-
clusion follows, i.e., there is a pair (M, ν) ∈ M (K) which satisfies the condition
(3.8) from the theorem. �
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