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(p, q)-TYPE BETA FUNCTIONS OF SECOND KIND

ALI ARAL 1∗ and VIJAY GUPTA2

Communicated by A. Kaminska

Abstract. In the present article, we propose the (p, q)-variant of beta func-
tion of second kind and establish a relation between the generalized beta and
gamma functions using some identities of the post-quantum calculus. As an ap-
plication, we also propose the (p, q)-Baskakov–Durrmeyer operators, estimate
moments and establish some direct results.

1. Introduction

The quantum calculus (q-calculus) in the field of approximation theory was
discussed widely in the last two decades. Several generalizations to the q variants
were recently presented in the book [3]. Further there is possibility of extension
of q-calculus to post-quantum calculus, namely the (p, q)-calculus. Actually such
extension of quantum calculus can not be obtained directly by substitution of q by
q/p in q-calculus. But there is a link between q-calculus and (p, q)-calculus. The q
calculus may be obtained by substituting p = 1 in (p, q)-calculus. We mentioned
some previous results in this direction. Recently, Gupta [8] introduced (p, q) gen-
uine Bernstein–Durrmeyer operators and established some direct results. (p, q)
generalization of Szász–Mirakyan operators was defined in [1]. Also authors inves-
tigated a Durrmeyer type modifications of the Bernstein operators in [9]. We can
also mention other papers as Bernstein operators [10], Bernstein–Stancu oper-
ators [11]. Bleimann–Butzer–Hahn operators and Szász–Mirakyan–Kantorovich
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(p, q)-TYPE BETA FUNCTIONS OF SECOND KIND 135

operators . Besides this, we also refer to some recent related work on this topic:
e.g. [5], [12] and [13].

Some basic notations of (p, q)-calculus are mentioned below:

The (p, q)-numbers are defined as

[n]p,q =
pn − qn

p− q
.

Obviously, it may be seen that [n]p,q = pn−1 [n]q/p . In The (p, q)-factorial is defined
by

[n]p,q! =
n∏

k=1

[k]p,q , n ≥ 1, [0]p,q! = 1.

The (p, q)-binomial coefficient is given by[
n
k

]
p,q

=
[n]p,q!

[n− k]p,q! [k]p,q!
, 0 ≤ k ≤ n.

For details see [15] and [16].

Definition 1.1. The (p, q)-power basis is defined below and it also has a link
with q-power basis as

(x⊕ a)n
p,q = (x + a)(px + qa)(p2x + q2a) · · · (pn−1x + qn−1a).

(x	 a)n
p,q = (x− a)(px− qa)(p2x− q2a) · · · (pn−1x− qn−1a).

Definition 1.2. The (p, q)-derivative of the function f is defined as

Dp,qf (x) =
f (px)− f (qx)

(p− q) x
, x 6= 0

and Dp,qf (0) = f
′
(0), provided that f is differentiable at 0. Note also that for

p = 1, the (p, q)-derivative reduces to the q−derivative. The (p, q)-derivative
fulfils the following product rules

Dp,q(f(x)g(x)) = f(px)Dp,qg(x) + g(qx)Dp,qf(x)

Dp,q(f(x)g(x)) = g(px)Dp,qf(x) + f(qx)Dp,qg(x).

The following assertions hold true:

Dp,q(x	 a)n
p,q = [n]p,q (px	 a)n−1

p,q , n ≥ 1

Dp,q(a	 x)n
p,q = − [n]p,q (a	 qx)n−1

p,q , n ≥ 1,

and Dp,q(x	 a)0
p,q = 0.

Definition 1.3. ([14])Let n is a nonnegative integer, we define the (p, q)-gamma
function as

Γp,q (n + 1) =
(p	 q)n

p,q

(p− q)n
= [n]p,q!, 0 < q < p.
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Proposition 1.4. The formula of (p, q)-integration by part is given by∫ b

a

f (px) Dp,qg (x) dp,qx = f (b) g (b)−f (a) q (a)−
∫ b

a

g (qx) Dp,qf (x) dp,qx (1.1)

In the present paper, we propose the (p, q)-Baskakov–Durrmeyer operators and
estimate some approximation properties, which include asymptotic formula and
convergence in terms of modulus of continuity.

2. (p, q)-beta Function of Second Kind

Let m, n ∈ N, we define (p, q)-beta function of second kind as

Bp,q (m,n) =

∫ ∞

0

xm−1

(1⊕ px)m+n
p,q

dp,qx

Theorem 2.1. Let m,n ∈ N. We have the following relation between (p, q)-beta
and (p, q)-gamma function:

Bp,q (m, n) = q[2−m(m−1)]/2p−m(m+1)/2 Γp,q (m) Γp,q (n)

Γp,q (m + n)
.

Proof. We know that

Dp,q
1

(1⊕ x)n
p,q

= −
p [n]p,q

(1⊕ px)n+1
p,q

If we choose f (x) = xm and g (x) = − 1
p[m+n]p,q(1⊕x)m+n

p,q

and use (1.1) we have

Bp,q (m + 1, n) =

∫ ∞

0

xm

(1⊕ px)m+n+1
p,q

dp,qx

= − p−m

p [m + n]p,q

∫ ∞

0

(px)m Dp,q
1

(1⊕ x)m+n
p,q

dp,qx

=
p−m

p [m + n]p,q

∫ ∞

0

Dp,qx
m 1

(1⊕ qx)m+n
p,q

dp,qx

=
p−m [m]p,q

p [m + n]p,q

∫ ∞

0

xm−1 1

(1⊕ qx)m+n
p,q

dp,qx

=
p−m−1 [m]p,q

qm−1 [m + n]p,q

∫ ∞

0

(qx)m−1 1

(1⊕ qx)m+n
p,q

dp,qx

=
p−1 [m]p,q

(pq)m [m + n]p,q

∫ ∞

0

(x)m−1 1

(1⊕ x)m+n
p,q

dp,qx

=
p−1 [m]p,q

(pq)m [m + n]p,q

Bp,q (m, n) ,

Bp,q (1, n) =

∫ ∞

0

1

(1⊕ px)n+1
p,q

dp,qx = − 1

p [n]p,q

∫ ∞

0

Dp,q
1

(1⊕ x)n
p,q

dp,qx =
1

p [n]p,q
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and

Bp,q (m, n)

=
p−1 [m− 1]p,q

(pq)m−1 [m + n− 1]p,q

Bp,q (m− 1, n)

=
p−1 [m− 1]p,q

(pq)m−1 [m + n− 1]p,q

p−1 [m− 2]p,q

(pq)m−2 [m + n− 2]p,q

Bp,q (m− 2, n)

=
p−1 [m− 1]p,q

(pq)m−1 [m + n− 1]p,q

p−1 [m− 2]p,q

(pq)m−2 [m + n− 2]p,q

· · · p−1

pq [n + 1]p,q

Bp,q (1, n)

=
p−1 [m− 1]p,q

(pq)m−1 [m + n− 1]p,q

p−1 [m− 2]p,q

(pq)m−2 [m + n− 2]p,q

· · · p−1

pq [n + 1]p,q

q

pq [n]p,q

=
qp−m

(pq)(m−1)m/2

Γp,q (m) Γp,q (n)

Γp,q (m + n)

�

3. (p, q)-Baskakov–Durrmeyer Operators and Moments

The (p, q)-analogue of Baskakov operators for x ∈ [0,∞) and 0 < q < p ≤ 1 is
defined as

Bn,p,q (f ; x) =
n∑

k=0

bp,q
n,k(x)f

(
pn−1[k]p,q

qk−1[n]p,q

)
, (3.1)

where

bp,q
n,k(x) =

[
n + k − 1

k

]
p,q

pk+n(n−1)/2qk(k−1)/2 xk

(1⊕ x)n+k
p,q

.

In case p = 1, we get the q-Baskakov operators [2]. If p = q = 1, we get at once
the well known Baskakov operators.

Remark 3.1. Starting with the following relations between (p, q)-calculus and q-
calculus: [

n + k − 1
k

]
p,q

= pk(n−1)

[
n + k − 1

k

]
q/p

and

(x⊕ a)n
p,q = pn(n−1)/2(x + a)n

q/p

and using moments of q-Baskakov operators (see [2], [3]), it can easily be verified
by simple computation that

Bn,p,q (1; x) = 1, Bn,p,q (t; x) = x, Bn,p,q

(
t2; x

)
= x2 +

pn−1x

[n]p,q

(
1 +

p

q
x

)
.
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Definition 3.2. Using (p, q)-beta function of second kind, we propose below for
x ∈ [0,∞), 0 < q < p ≤ 1 the (p, q) analogue of Baskakov–Durrmeyer operators

Dp,q
n (f ; x) = [n− 1]p,q

∞∑
k=0

bp,q
n,k(x)q[k(k+1)−2]/2p(k+1)(k+2)/2

∫ ∞

0

[
n + k − 1

k

]
p,q

tk

(1⊕ pt)k+n
p,q

f(pkt)dp,qt (3.2)

where bp,q
n,k(x) is as defined in (3.1).

Lemma 3.3. For x ∈ [0,∞], 0 < q < p ≤ 1, we have

(1) Dp,q
n (1; x) = 1

(2) Dp,q
n (t; x) = 1

qp2[n−2]p,q
+ [2]p,q

p2q2[n−2]p,q
x + 1

pn x

(3) Dp,q
n (t2; x) = [2]p,q

q3[n−2]p,q [n−3]p,q
+

(
(p5q(q+2p)+1)[3]p,q

p6q4[n−2]p,q [n−3]p,q
+ p5q(q+2p)+1

p3+nq[n−2]p,q

)
x

+ q2+pq+p2

p9+nq2[n−2]p,q
x2 + [3]p,q

p10+nq3[n−3]p,q
x2 +

(pn+2[3]p,q+q[2]p,q [3]p,q)
p12+nq6[n−2]p,q [n−3]p,q

x2 + 1
p7+2n x2.

Proof. Using (3.2) and Remark 3.1, we have

Dp,q
n (1; x) = [n− 1]p,q

∞∑
k=0

bp,q
n,k(x)q[k(k+1)−2]/2p(k+1)(k+2)/2

×
∫ ∞

0

[
n + k − 1

k

]
p,q

tk

(1⊕ pt)k+n
p,q

dp,qt

= [n− 1]p,q

∞∑
k=0

bp,q
n,k(x)q[k(k+1)−2]/2p(k+1)(k+2)/2

×
[

n + k − 1
k

]
p,q

Bp,q(k + 1, n− 1)

= Bn,p,q (1; x) = 1.
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Next using the identity [k +1]p,q = qk +p[k]p,q and applying Remark 3.1, we have

Dp,q
n (t; x)

= [n− 1]p,q

∞∑
k=0

bp,q
n,k(x)q[k(k+1)−2]/2p(k+1)(k+2)/2

∫ ∞

0

[
n + k − 1

k

]
p,q

tk+1pk

(1⊕ pt)k+n
p,q

dp,qt

= [n− 1]p,q

∞∑
k=0

q[k(k+1)−2]/2p(k+1)(k+2)/2bp,q
n,k(x)

[
n + k − 1

k

]
p,q

pkBp,q(k + 2, n− 2)

=
∞∑

k=0

p−2q−k−1bp,q
n,k(x).

[k + 1]p,q

[n− 2]p,q

=
1

[n− 2]p,qp2

∞∑
k=0

q−k−1bp,q
n,k(x)(qk + p[k]p,q)

=
1

[n− 2]p,qqp2
Bn,p,q (1; x) +

[n]p,q

pnq2[n− 2]p,q

Bn,p,q (t; x)

=
1

qp2[n− 2]p,q

+
[n]p,qx

pnq2[n− 2]p,q

.

Further using the identity [k + 2]p,q = qk+1 + pqk + p2[k]p,q and by Remark 3.1,
we get

Dp,q
n (t2; x) = [n− 1]p,q

∞∑
k=0

bp,q
n,k(x)q[k(k+1)−2]/2p(k+1)(k+2)/2

×
∫ ∞

0

[
n + k − 1

k

]
p,q

tk+2p2k

(1⊕ pt)k+n
p,q

dp,qt

= [n− 1]p,q

∞∑
k=0

q[k(k+1)−2]/2p(k+1)(k+2)/2bp,q
n,k(x)

×
[

n + k − 1
k

]
p,q

p2k.Bp,q(k + 3, n− 3)

=
∞∑

k=0

q−(2k+3)p−5bp,q
n,k(x).

[k + 2]p,q[k + 1]p,q

[n− 2]p,q[n− 3]p,q

=
∞∑

k=0

bp,q
n,k(x)p−5.q−(2k+3)

(
p3[k]2p,q + qk (p[2]p,q + p2) [k]p,q + q2k[2]p,q

)
[n− 2]p,q[n− 3]p,q

=
1

[n− 2]p,q[n− 3]p,q

∞∑
k=0

bp,q
n,k(x)

[(
pn−1

qk−1
[k]p,q

)2
p−7−2n

q5

+ ([2]p,q + p)

(
pn−1

qk−1
[k]p,q

)
p−3−n

q4
+ q−3[2]p,q

]
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=
q−3[2]p,q

[n− 2]p,q[n− 3]p,q

Bn,p,q (1; x) +
p−3−n

q4

([2]p,q + p) [n]p,q

[n− 2]p,q[n− 3]p,q

Bn,p,q (t; x)

+
p−7−2n

q5

[n]2p,q

[n− 2]p,q[n− 3]p,q

Bn,p,q

(
t2; x

)
=

[2]p,q

q3[n− 2]p,q[n− 3]p,q

+
([2]p,q + p) [n]p,q

p3+nq4[n− 2]p,q[n− 3]p,q

x

+
[n]2p,q

p7+2nq5[n− 2]p,q[n− 3]p,q

(
x2 +

pn−1x

[n]p,q

(
1 +

p

q
x

))
=

[2]p,q

q3[n− 2]p,q[n− 3]p,q

+
([2]p,q + p) [n]p,q

p3+nq4[n− 2]p,q[n− 3]p,q

x

+
[n]2p,q

p7+2nq5[n− 2]p,q[n− 3]p,q

(
x2 +

pn−1x

[n]p,q

(
1 +

p

q
x

))
.

=
[2]p,q

q3[n− 2]p,q[n− 3]p,q

+
([2]p,q + p) [n]p,q

p3+nq4[n− 2]p,q[n− 3]p,q

x

+
[n]2p,q

p7+2nq5[n− 2]p,q[n− 3]p,q

x2 +
[n]p,q

p8+nq5[n− 2]p,q[n− 3]p,q

x +

× [n]p,q

p7+nq6[n− 2]p,q[n− 3]p,q

x2.

=
[2]p,q

q3[n− 2]p,q[n− 3]p,q

+
([2]p,q + p) [n]p,q

p3+nq4[n− 2]p,q[n− 3]p,q

x

+
1

p7+2n
x2 +

[2]p,q

p9+nq2[n− 2]p,q

x2 +
[3]p,q

p10+nq3[n− 3]p,q

x2

+
[2]p,q[3]p,q

p12+nq5[n− 2]p,q[n− 3]p,q

x2

+
[n]p,q

p8+nq5[n− 2]p,q[n− 3]p,q

x +
[n]p,q

p7+nq6[n− 2]p,q[n− 3]p,q

x2

=
[2]p,q

q3[n− 2]p,q[n− 3]p,q

+

(
(p5q (q + 2p) + 1) [3]p,q

p6q4[n− 2]p,q[n− 3]p,q

+
p5q (q + 2p) + 1

p3+nq[n− 2]p,q

)
x

+
q2 + pq + p2

p9+nq2[n− 2]p,q

x2 +
[3]p,q

p10+nq3[n− 3]p,q

x2

+
(pn+2[3]p,q + q[2]p,q[3]p,q)

p12+nq6[n− 2]p,q[n− 3]p,q

x2 +
1

p7+2n
x2.

�

4. Weighted approximation

We consider the following class of functions:
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Let Hx2 [0, ∞) be the set of all functions f defined on [0, ∞) satisfying the
condition |f (x)| ≤ Mf (1 + x2) , where Mf is a constant depending only on f.
By Cx2 [0, ∞), we denote the subspace of all continuous functions belonging to
Hx2 [0, ∞) . Also, let C∗

x2 [0, ∞) be the subspace of all functions f ∈ Cx2 [0, ∞) ,

for which lim
|x|→∞

f(x)
1+x2 is finite. The norm on C∗

x2 [0, ∞) is ‖f‖x2 = supx∈[0, ∞)
|f(x)|
1+x2 .

Now we shall discuss the weighted approximation theorem, where the approx-
imation formula holds true on the interval [0, ∞) .

Theorem 4.1. Let p = pn and q = qn satisfies 0 < qn < pn ≤ 1 and for
n sufficiently large pn → 1, qn → 1 and qn

n → 1 and pn
n → 1. For each f ∈

C∗
x2 [0, ∞) , we have

lim
n→∞

‖Dpn,qn
n (f)− f‖x2 = 0.

Proof. Using the Theorem in [7] we see that it is sufficient to verify the following
three conditions

lim
n→∞

‖Dpn,qn
n (tν , x)− xν‖x2 = 0, ν = 0, 1, 2. (4.1)

Since Dpn,qn
n (1, x) = 1 the first condition of (4.1) is fulfilled for ν = 0 .

We can write for n > 3

‖Dpn,qn
n (t, x)− x‖x2 ≤ 1

qnp2
n[n− 2]pn,qn

+

(
[2]pn,q

pn
nq

2
n[n− 2]pn,qn

+
1

pn
n

− 1

)
sup

x∈[0, ∞)

x

1 + x2

and

∥∥Dpn,qn
n

(
t2, x

)
− x2

∥∥
x2

≤
(

q2
n + pnqn + p2

n

p9+n
n q2

n
[n− 2]pn,qn

+
[3]pn,qn

p10+n
n q3

n[n− 3]p,q

+
(pn+2

n [3]pn,qn + qn[2]pn,qn [3]pn,qn)

p12+n
n q6

n[n− 2]pn,qn [n− 3]pn,qn

)
× sup

x∈[0, ∞)

x2

1 + x2

+

(
1

p7+2n
n

− 1

)
sup

x∈[0, ∞)

x2

1 + x2

+

(
(p5

nqn (qn + 2pn) + 1) [3]pn,qn

p6
nq

4
n[n− 2]pn,qn [n− 3]pn,qn

+
p5

nqn (qn + 2pn) + 1

p3+n
n qn[n− 2]pn,qn

)
sup

x∈[0, ∞)

x

1 + x2

+
[2]pn,qn

q3
n[n− 2]pn,qn [n− 3]pn,qn

which implies that

lim
n→∞

‖Dpn,qn
n (t, x)− x‖x2 = 0
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and

lim
n→∞

∥∥Dpn,qn
n

(
t2, x

)
− x2

∥∥
x2 = 0.

Thus the proof is completed. �

We give the following theorem to approximate all functions in Cx2 [0, ∞) .

Theorem 4.2. Let p = pn and q = qn satisfies 0 < qn < pn ≤ 1 and for
n sufficiently large pn → 1, qn → 1 and qn

n → 1 and pn
n → 1. For each f ∈

C∗
x2 [0, ∞) , we have

lim
n→∞

sup
x∈[0, ∞)

|Dpn,qn
n (f, x)− f (x)|

(1 + x2)1+α = 0.

Proof. For any fixed x0 > 0,

sup
x∈[0, ∞)

|Dpn,qn
n (f, x)− f (x)|

(1 + x2)1+α

≤ sup
x≤x0

|Dpn,qn
n (f, x)− f (x)|

(1 + x2)1+α + sup
x≥x0

|Dpn,qn
n (f, x)− f (x)|

(1 + x2)1+α

≤ ‖Dpn,qn
n (f)− f‖C[0, x0] + ‖f‖x2 sup

x≥x0

|Dpn,qn
n (1 + t2, x)|
(1 + x2)1+α

+sup
x≥x0

|f (x)|
(1 + x2)1+α .

The first term of the above inequality tends to zero from well known Korovkin’s

theorem. By Lemma 3.3 for any fixed x0 > 0 it is easily seen that sup
x≥x0

|Dpn,qn
n (1+t2,x)|
(1+x2)1+α

tends to zero as n → ∞. We can choose x0 > 0 so large that the last part of
above inequality can be made small enough. �

Remark 4.3. For q ∈ (0, 1) and p ∈ (q, 1] it is seen that limn→∞[n]p,q = 1/(q− p).
In order to consider convergence of (p, q) Baskakov operators we assume p = (pn)
and q = (qn) such that 0 < qn < pn ≤ 1 and for n sufficiently large pn → 1,
qn → 1 and pn

n → 1 and qn
n → 1.

5. Quantitative approximation

Let CB [0,∞) denote the space of all real valued continuous and bounded func-
tions on [0,∞) . In this space we consider the norm

‖f‖CB
= sup

x∈[0,∞)

|f (x)| .

Now we give the first and second order modulus of continuity of function f ∈ CB

(see [4], [6]) The first modulus of continuity is defined as

ω1 (f ; δ) = sup
x,u,v≥0
|u−v|≤δ

|f (x + u)− f (x + v)|
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and the second order modulus of continuity is defined

ω2 (f ; δ) = sup
x,u,v≥0
|u−v|≤δ

|f (x + 2u)− 2f (x + u + v+) f (x + 2v)| , δ ≥ 0.

We will use the Steklov mean function for f ∈ CB

fh (x) =
4

h2

∫ h
2

0

∫ h
2

0

[2f (x + u + v)− f (x + 2 (u + v))] dudv. (5.1)

Since fh ∈ CB we can write

fh (x)− f (x) =
4

h2

∫ h
2

0

∫ h
2

0

[2f (x + u + v)− f (x + 2 (u + v))− f (x)] dudv.

It is obvious that

|fh (x)− f (x)| ≤ ω2 (f ; h)

and

‖fh − f‖CB
≤ ω2 (f ; h) . (5.2)

If f is continuous, then f ′h ∈ CB and

f ′h (x) =
4

h2

[
2

∫ h
2

0

(
f

(
x + v +

h

2

)
− f (x + v)

)
dv

−1

2

∫ h
2

0

(f (x + h + 2v)− f (x + v)) dv

]
.

Thus we have

‖f ′h‖CB
≤ 5

h
ω1 (f ; h) . (5.3)

Similarly f ′′h ∈ CB and

‖f ′′h‖CB
≤ 9

h2
ω2 (f ; h) . (5.4)

Theorem 5.1. Let q ∈ (0, 1) and p ∈ (q, 1]. The operator Dp,q
n maps space CB

into CB and

‖Dp,q
n (f)‖CB

≤ ‖f‖CB
.
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Proof. Let q ∈ (0, 1) and p ∈ (q, 1]. From Lemma 3.3. we have

|Dp,q
n (f ; x)| ≤ [n− 1]p,q

∞∑
k=0

bp,q
n,k(x)q[k(k+1)−2]/2p(k+1)(k+2)/2

∫ ∞

0

[
n + k − 1

k

]
p,q

tk

(1⊕ pt)k+n
p,q

∣∣f(pkt)
∣∣ dp,qt

≤ sup
x∈[0,∞)

|f (x)| [n− 1]p,q

∞∑
k=0

bp,q
n,k(x)q[k(k+1)−2]/2p(k+1)(k+2)/2

∫ ∞

0

[
n + k − 1

k

]
p,q

tk

(1⊕ pt)k+n
p,q

dp,qt

= sup
x∈[0,∞)

|f (x)|Dp,q
n (1; x) = ‖f‖CB

.

�

We are going to study the degree of approximation in terms of ω1 (f ; δ) and
ω2 (f ; δ), first and second order modulus of continuity.

Theorem 5.2. Let q ∈ (0, 1) and p ∈ (q, 1]. If f ∈ CB, then

|Dp,q
n (f ; x)− f (x)|

≤ 5ω1

(
f ;

1√
[n− 2]p,q

)

×

(
1

qp2
√

[n− 2]p,q

+
[2]p,q

p2q2
√

[n− 2]p,q

x +

(
1

pn
− 1

)√
[n− 2]p,qx

)

+
9

2
ω2

(
f ;

1√
[n− 2]p,q

)(
p7+2n − 2p7+n − 1

p7+2n

)
[n− 2]p,qx

2

+
q2 + pq + p2 − 2p8+n − 2qp7+n

p9+nq2
x2

+ +
[3]p,q[n− 2]p,q

p10+nq3[n− 3]p,q

x2 +
(pn+2[3]p,q + q[2]p,q[3]p,q)

p12+nq6[n− 3]p,q

x2

+

(
(p5q (q + 2p) + 1) [3]p,q

p6q4[n− 3]p,q

+
p5q (q + 2p) + 1

p3+nq
− 2

qp2

)
x +

[2]p,q

q3[n− 3]p,q

]

Proof. We use the Stieklov function fh defined by (5.1). For x ≥ 0 and n ∈ N,
we have

|Dp,q
n (f ; x)− f (x)| ≤ Dp,q

n (|f − fh| ; x) + |Dp,q
n (fh − fh (x) ; x)|

+ |fh (x)− f (x)| .

By (5.2) we can write

Dp,q
n (|f − fh| ; x) ≤ ‖Dp,q

n (f − fh)‖CB
≤ ‖f − fh‖CB

≤ ω2 (f ; h) .
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Since Dp,q
n is a linear positive operator we get

|Dp,q
n (fh − fh (x) ; x)| ≤

∣∣∣f ′

h (x)
∣∣∣Dp,q

n (t− x; x) +
1

2

∥∥∥f ′′
∥∥∥

CB

Dp,q
n

(
(t− x)2 ; x

)
.

By Lemma 3.3, (5.3) and (5.4) we have

|Dp,q
n (fh − fh (x) ; x)|

≤ 5

h
ω1 (f ; h)

(
1

qp2[n− 2]p,q

+
[2]p,q

p2q2[n− 2]p,q

x +

(
1

pn
− 1

)
x

)
+

9

2h2
ω2 (f ; h) Dp,q

n

(
(t− x)2 ; x

)
,

where

Dp,q
n

(
(t− x)2 ; x

)
=

(
p7+2n − 2p7+n − 1

p7+2n

)
x2 +

q2 + pq + p2 − 2p8+n − 2qp7+n

p9+nq2[n− 2]p,q

x2

+
[3]p,q

p10+nq3[n− 3]p,q

x2 +
(pn+2[3]p,q + q[2]p,q[3]p,q)

p12+nq6[n− 2]p,q[n− 3]p,q

x2

+

(
(p5q (q + 2p) + 1) [3]p,q

p6q4[n− 2]p,q[n− 3]p,q

+
p5q (q + 2p) + 1

p3+nq[n− 2]p,q

− 2

qp2[n− 2]p,q

)
x

+
[2]p,q

q3[n− 2]p,q[n− 3]p,q

for x ≥ 0, h > 0. Setting h =
√

1
[n−2]p,q

, we have desired result. �

Remark 5.3. From Theorem 5.2 we can say that that the order of approximation
of Dp,q

n (f ; x) to f (x) is at least as good as the order of approximation to f(x)
by classical Baskakov–Durrmeyer operators for any x ∈ [0,∞) as a depending
on selection of qn and pn. If we choose p and q as in Remark 4.3, we have an
approximation process with the aid of operator (3.2).
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