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APPROXIMATION METHODS FOR SOLUTIONS OF SYSTEM
OF SPLIT EQUILIBRIUM PROBLEMS

GODWIN CHIDI UGWUNNADI1∗ and BASHIR ALI2

Communicated by T. Suzuki

Abstract. In this paper, we introduce a new algorithm for finding a common
fixed point of a finite family of continuous pseudocontractive mappings which
is a unique solution of some variational inequality problem and whose image
under some bounded linear operator is a common solution of some system of
equilibrium problems in a real Hilbert space. Our result generalize and improve
some well-known results.

1. Introduction and preliminaries

Let H be a real Hilbert space. A mapping T with domain D(T ) ⊂ H and
range R(T ) in H is called pseudocontractive if for each x, y ∈ D(T ) we have

〈Tx− Ty, x− y〉 ≤ ||x− y||2. (1.1)

T is called strongly pseudocontractive if there exists k ∈ (0, 1) such that

〈Tx− Ty, x− y〉 ≤ k||x− y||2, ∀x, y ∈ D(T ),

and T is said to be k strictly pseudocontractive if there exists a constant
0 ≤ k < 1 such that

〈Tx− Ty, x− y〉 ≤ ||x− y||2 − k||(I − T )x− (I − T )y||2,
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for all x, y ∈ D(T ). The operator T is called Lipschitian if there exists L ≥ 0
such that ||Tx− Ty|| ≤ L||x− y||, for all x, y ∈ D(T ). If L = 1, then T is called
nonexpansive, and if L ∈ [0, 1), then T is called a contraction. As a result of
[11], it follows from inequality (1.1) that T is pseudocontractive if and only if the
inequality

||Tx− Ty|| ≤ ||(1 + t)(x− y)− t(Tx− Ty)||,
holds for each x, y ∈ D(T ) and for all t > 0. Apart from being an important
generalization of nonexpansive, strongly pseudocontractive and k-strictly pseu-
docontractive mappings. Interest in pseudocontractive mappings stem mainly
from their firm connection with the important class of nonlinear accretive op-
erator, where a mapping A with domain D(A) and range R(A) in H is called
accretive if the inequality

||Ax− Ay|| ≤ ||x− y − s(Ax− Ay)||,
holds for every x, y ∈ D(A) and for all s > 0. We observe that A is accretive
if and only if T := I − A is pseudocontractive, and thus a zero of A, N(A) :=
{x ∈ D(A) : Ax = 0}, is a fixed point of T , F (T ) := {x ∈ D(T ) : Tx = x} and
vice-versa.

It is now well known that if A is accretive then the solutions of the equation
Ax = 0 correspond to the equilibrium points of some evolution systems. Conse-
quently, considerable research efforts have been devoted to iterative methods for
approximating fixed points of T when T is pseudocontractive (see, for example
[5],[16] and the references contained in them).

Let H be a real Hilbert space and C be a closed convex subset of H. Let
g : C × C → R be a bi-function. The classical equilibrium problem (EP for
short) is defined as follows.

(EP) Find p ∈ C such that g(p, y) ≥ 0,∀y ∈ C.

The symbol EP (g) is used to denote the set of all solutions of the problem (EP),
that is,

EP (g) = {p ∈ C : g(p, y) ≥ 0,∀y ∈ C}.
Let G = {gi} be a family of bifunctions from C × C to R. The system of
equilibrium problem G = {gi} is to determine common equilibrium points for
G = {gi} i.e., the set

EP (G) = {p ∈ C : gi(p, y) ≥ 0,∀y ∈ C, i ∈ I}.
It is known that the problem (EP) contain optimization problems, comple-

mentary problems, variational inequalities problems, saddle point problems, fixed
point problems, bilevel problems, semiinfinite problems and others as special cases
and have many applications in physics and economics; for detail, one can refer to
([1], [15], [21], [19]) and references therein. Recently, a lot of research efforts are
devoted to finding a solution of split equilibrium or fixed point problems see, for
instance, ([3], [10], [14]) and the references therein.
In last ten years or so, the problem (EP) has been generalized and improved to
find a common element of the set of fixed points of a nonlinear operator and the
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set of solutions of the problem (EP). More precisely, many authors have studied
the following problem (FTEP) (see, for instance, [4], [20]):

(FTEP) Find p ∈ C such that Tp = p and g(p, y) ≥ 0,∀y ∈ C,

where C is a closed convex subset of a Hilbert space H, g : C × C → R is a
bi-function and T : C → C is a nonlinear operator.

Let H be a real Hilbert space, a mapping G : D(G) ⊂ H → H is said to be
monotone if for all x, y ∈ D(G),

〈Gx−Gy, x− y〉 ≥ 0,

where D(G) denote the domain of G. For some η ∈ (0, 1), G is called η −
strongly monotone if for all x, y ∈ D(G),

〈Gx−Gy, x− y〉 ≥ η||x− y||2.
A map G : H → H is said to be strongly positive if there exists a constant η > 0
such that

〈Gx, x〉 ≥ η‖x‖2, ∀x ∈ D(G).

For a strongly positive bonded linear operator G and any x, y ∈ D(G), we have

〈Gx−Gy, x− y〉 ≥ η‖x− y‖2.

This implies that G is η−strongly monotone. In this case, by simple calculation,
the following relation also holds:

〈Gx−Gy, x− y〉 ≤ (1 + ||G||2)
2

||x− y||2 − 1

2
||(I −G)x− (I −G)y||2.

This implies that G/||G|| is 1/2−strictly pseudocontractive.

Let K be a nonempty, closed and convex subset of H and G : K → H be a
nonlinear mapping. The variational inequality problem is to:

find u ∈ K such that 〈Gu, v − u〉 ≥ 0, ∀v ∈ K.

The set of solution of variational inequality problem is denoted by V I(K, G),
which was introduced and studied by [17].

[13] introduced the viscosity approximation method for nonexpansive mappings.
Let T be a nonexpansive mappings and f be contraction on H, starting with an
arbitrary x0 ∈ H, define a sequence {xn} recursively by

xn+1 = αnf(xn) + (1− αn)Txn, n ≥ 0, (1.2)

where {αn} is a sequence in (0,1). He proved that under certain appropriate
conditions on {αn}, the sequence {xn} generated by (1.2) strongly converges to
the unique solution x∗ in F (T ) of the variational inequality

〈(I − f)x∗, x− x∗〉 ≥ 0, for all x ∈ F (T ).

[27] proved, under some condition on the real sequence {αn}, that the sequence
{xn} defined by x0 ∈ H chosen arbitrarily,

xn+1 = αnb + (I − αnA)Txn, n ≥ 0, (1.3)
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converges strongly to x∗ ∈ F (T ) which is the unique solution of the minimization
problem

min
x∈F (T )

1

2
〈Ax, x〉 − 〈x, b〉,

where A is a strongly positive bounded linear operator (i.e. ∃ γ̄ > 0 such that
〈Ax, x〉 ≥ γ̄||x||2, ∀x ∈ H).

Combining the iterative method (1.2) and (1.3), [12] studied the following general
iterative method:

xn+1 = αnf(xn) + (I − αnA)Txn, n ≥ 0, (1.4)

they proved that if the sequence {αn} of parameters satisfies appropriate condi-
tions, then the sequence {xn} generated by (1.4) converges strongly to x∗ ∈ F (T )
which solves the variational inequality problem

〈(γf − A)x∗, x− x∗〉 ≤ 0 ∀x ∈ F (T ),

which is the optimality condition for the minimization problem

min
x∈F (T )

1

2
〈Ax, x〉 − h(x),

where h is a potential function for γf (i.e. h′(x) = γf(x) for x ∈ H).

On the other hand, [28] introduced the following hybrid iterative method:

xn+1 = Txn − λnµGTxn, n ≥ 0, (1.5)

where G is a κ-Lipschitzian and η-strongly monotone operator with κ > 0, η > 0
and 0 < µ < 2η/κ2. Under some appropriate conditions, he proved that the
sequence {xn} generated by (1.5) converges strongly to the unique solution of the
variational inequality problem

〈Gx∗, x− x∗〉 ≥ 0, ∀x ∈ F (T ).

Recently, combining (1.4) and (1.5), [23] considered the following general iterative
method:

xn+1 = αnγf(xn) + (I − αnµG)T (xn), (1.6)

and proved that the sequence {xn} generated by (1.6) converges strongly to the
unique solution x∗ ∈ F (T ) of the variational inequality problem

〈(γf − µG)x∗, x− x∗〉 ≤ 0, ∀x ∈ F (T ).

[22] studied method of approximation of common solutions of fixed points of
continuous pseudo-contractive mappings and zero points of the sum of monotone
mappings. [24] considered method of approximation of common solutions of fixed
points of continuous pseudo-contractive mappings and solutions of a continuous
monotone variational inequality.
[9] considered the following split equilibrium problem. Let H1 and H2 be two real
Hilbert spaces. Let C be a closed convex subset of H1 and K be a closed convex
subset of H2. Let f : C × C → R and g : K ×K → R be two bifunctions, and
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A : H1 → H2 be a bounded linear operator. The split equilibrium problem (SEP,
in short) is defined as follows:

(SEP) find p ∈ C such that f(p, y) ≥ 0 ∀ y ∈ C and u := Ap satisfying g(u, v) ≥ 0,

for all v in K. The author established weak convergence algorithms and strong
convergence algorithms for SEP (see [9] for more details).

Motivated and inspired by the above results, in this paper, we introduce a new
algorithm for finding an element in the set of common fixed points of finite fam-
ily of continuous pseudocontractive mappings which is a unique solution of some
variational inequality problems such that its image under a given bounded linear
operator is a common solution of finite family of some equilibrium problems in a
real Hilbert space. Our result generalize and improve some well-known results. In
particular our result improve and extend the result in [25] and in [2] from family
of nonexpansive maps to finite family of continuous pseudocontractive maps, and
from equilibrium problem to the case of finite family of equilibrium problem.

Let K be a closed convex subset of a real Hilbert space H. The metric projection
from H onto K is the mapping PK : H → K for each x ∈ H, there exists a
unique point z = PK(x) such that

||x− z|| = inf
y∈K

||x− y||.

Lemma 1.1. Let x ∈ H and z ∈ K be any point. Then we have

(i) z = PK(x) if and only if the following relation holds

〈x− z, y − z〉 ≤ 0, ∀y ∈ K.

(ii) There holds the relation

〈PK(x)− PK(y), x− y〉 ≥ ||PK(x)− PK(y)||2, ∀x, y ∈ H.

(iii) For x ∈ H and y ∈ K

||y − PK(x)||2 + ||x− PK(x)||2 ≤ ||x− y||2.

A Banach space E is said to satisfy Opial’s condition if for each sequence {xn}
in E which converges weakly to a point x ∈ E, we have

lim inf
n→∞

||xn − x|| < lim inf
n→∞

||xn − y||, ∀y ∈ E, y 6= x.

It is well known that every Hilbert space satisfies Opial’s condition.
We shall make use of the following well known results.

Lemma 1.2. (see [1]) Let K be a nonempty closed, convex subset of H and g be
a bi-function of K ×K into R satisfying the following conditions;

(A1) g(x, x) = 0 for all x ∈ K;
(A2) g is monotone, that is g(x, y) + g(y, x) ≤ 0 for all x, y ∈ K;
(A3) for each x, y, z ∈ K, lim supt↓0 g(tz + (1− t)x, y) ≤ g(x, y);
(A4) for each x ∈ K, y 7→ g(x, y) is convex and lower semi-continuous.

Let r > 0 and x ∈ H. Then there exists z ∈ K such that g(z, y)+ 1
r
〈y−z, z−x〉 ≥ 0

for all y ∈ K.
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Lemma 1.3. (see [7]) Let K be a nonempty closed and convex subset of H and
let g be a bi-function of K ×K into R satisfying (A1)-(A4). For r > 0, define a
mapping

T g
r x = {z ∈ K : g(z, y) +

1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ K}

for all x ∈ H. Then the following holds:

(i) T g
r is single-valued;

(ii) F (T g
r ) = EP (g) for r > 0;

(iii) EP (g) is closed and convex;
(iv) T g

r is firmly nonexpansive, that is, for any x, y ∈ H,

||T g
r (x)− T g

r (y)||2 ≤ 〈T g
r (x)− T g

r (y), x− y〉.

Lemma 1.4. (see,[9],[10]) Let the mapping T g
r be defined as in Lemma 1.3. Then,

for r, s > 0 and x, y ∈ H,

||T g
r (x)− T g

s (y)|| ≤ ||x− y||+ |s− r|
s

||T g
s (y)− y||.

In particular, ||T g
r (x)−T g

r (y)|| ≤ ||x− y|| for any r > 0 and x, y ∈ H, that is, T g
r

is nonexpansive for any r > 0.

Lemma 1.5. ([4]) Let H be a real Hilbert space. Then the following hold:

(a) ||x + y||2 ≤ ||y||2 + 2〈x, x + y〉;
(b) ||x− y||2 = ||x||2 + ||y||2 − 2〈x, y〉 for all x, y ∈ H;
(c) ||αx+(1−α)y||2 = α||x||2+(1−α)||y||2−α(1−α)||x−y||2 for all x, y ∈ H

and α ∈ [0, 1].

Lemma 1.6. ([29]) Let C be a nonempty closed convex subset of a real Hilbert
space H. Let T : C → H be a continuous pseudocontractive mapping. Then, for
r > 0 and x ∈ H, there exists z ∈ C such that

〈y − z, Tz〉 − 1

r
〈y − z, (1 + r)z − x〉 ≤ 0, ∀y ∈ C.

Lemma 1.7. ( [29]), Let C be a nonempty closed convex subset of a real Hilbert
space H. Let T : C → C be a continuous pseudocontractive mapping. Then, for
r > 0 and x ∈ H, define a mapping Tr : H → C as follows:

Trx := {z ∈ C : 〈y − z, Tz〉 − 1

r
〈y − z, (1 + r)z − x〉 ≤ 0, ∀y ∈ C}

for all x ∈ H. Then, the following holds:

(1) Tr is single valued;
(2) Tr is firmly nonexpansive type mapping, that is for all x, y ∈ H,

||Trx− Try||2 ≤ 〈Trx− Try, x− y〉;

(3) F (Tr) = F (T );
(4) F (T ) is closed and convex.
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Lemma 1.8. ( [15]) Let C be a nonempty closed convex subset of H and {rn} ⊂
(0, 1) be a sequence converging to r > 0, for a bi-function F : C × C → R,
satisfying condition (A1) - (A4), define T F

rn
and T F

r for n ∈ N as in Lemma 1.3.
Then for every x ∈ H, we have lim

n→∞
||T F

rn
x− T F

r x|| = 0.

Lemma 1.9. ([8]) Let C be a nonempty closed and convex subset of a Hilbert
space, and T be a nonexpansive mapping from C into itself. Then I − T is
demiclosed at zero, i.e., xn ⇀ x, xn − Txn → 0 as n →∞ implies x = Tx.

Lemma 1.10. ([18]) Let {xn} and {yn} be bounded sequences in a Banach space
E and let {βn} be a sequence in [0, 1] with 0 < lim inf βn ≤ lim sup βn < 1.
Suppose that xn+1 = βnyn + (1− βn)xn for all integer n ≥ 1 and lim sup

n→∞
(||yn+1 −

yn|| − ||xn+1 − xn||) ≤ 0. Then, lim
n→∞

||yn − xn|| = 0.

Lemma 1.11. ([26]) Let {an} be a sequence of nonnegative real numbers such
that

an+1 ≤ (1− bn)an + cn, n ≥ 0,

where {bn} is a sequences in (0, 1) and {cn} is a sequence satisfying the following
conditions:

(i)
∑∞

n=0 bn = ∞,
(ii) either lim supn→∞ cn/bn ≤ 0 or

∑∞
n=0 |cn| < ∞.

Then, limn→∞ an = 0.

Lemma 1.12. (Lemma 2.5 of [2])Let λ ∈ (0, 1), µ > 0, and F : C → H be
an κ−Lipschitzian and η−strongly monotone operator. In association with a
nonexpansive mapping T : C → C, define a mapping T λ : C → H by T λx =
Tx− λµFT (x), for all x ∈ C. Then T λ is a contraction provided µ < 2η

κ2 , that is

||T λx− T λy|| ≤ (1− λν)||x− y||, ∀x, y ∈ C,

where ν = 1−
√

1− µ(2η − µκ2).

2. Main results

Lemma 2.1. Let C be a nonempty closed convex subset of H. For x ∈ H, let
the mapping Tr be the same as in Lemma 1.7. Then for r, s > 0 and F (Tr) 6= ∅,
for any x, y ∈ H, and p ∈ F (Tr)

(i) ||Tr(x)− Ts(y)|| ≤ ||y − x||+ |s−r|
s
||Ts(y)− y||;

(ii) ||Tr(x)− x||2 ≤ ||x− p||2 − ||Tr(x)− p||2.
In particular, ||Tr(x)− Tr(y)|| ≤ ||x− y|| for any r > 0 and x, y ∈ H, that is, Tr

is nonexpansive for any r > 0.

Proof. For r, s > 0 and x, y ∈ H, by (1) of Lemma 1.7, let z1 = Tr(x) and
z2 = Ts(y). By the definition of Tr, we have

〈u− z1, T z1〉 −
1

r
〈u− z1, (1 + r)z1 − x〉 ≤ 0, ∀u ∈ C (2.1)
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and

〈u− z2, T z2〉 −
1

s
〈u− z2, (1 + s)z2 − y〉 ≤ 0, ∀u ∈ C (2.2)

Putting u := z2 in (2.1) and u := z1 in (2.2), we have

〈z2 − z1, T z1〉 −
1

r
〈z2 − z1, (1 + r)z1 − x〉 ≤ 0, (2.3)

and

〈z1 − z2, T z2〉 −
1

s
〈z1 − z2, (1 + s)z2 − y〉 ≤ 0, (2.4)

Adding (2.3) and (2.4), we have

〈z2 − z1, T z1 − Tz2〉 − 〈z2 − z1,
(1 + r)z1 − x

r
− (1 + s)z2 − y

s
〉 ≤ 0,

⇔ 〈z2 − z1, (I − T )z2 − (I − T )z1〉 − 〈z2 − z1,
z1 − x

r
− z2 − y

s
〉 ≤ 0.

Since T is pseudocontractive, we have

〈z2 − z1,
z1 − x

r
− z2 − y

s
〉 ≥ 0,

and hence

〈z2 − z1, z1 − x− r

s
(z2 − y)〉 ≥ 0,

which implies

〈z2 − z1, z2 − z1〉 ≤ 〈z2 − z1, z2 − x− r

s
(z2 − y)〉,

therefore

||z2 − z1||2 ≤ ||z2 − z1||||z2 − x− r

s
(z2 − y)||

then

||z2 − z1|| ≤ ||z2 − x− r

s
(z2 − y)||

= ||(z2 − y) + (y − x)− r

s
(z2 − y)||

= ||(y − x) + (1− r

s
)(z2 − y)||

≤ ||y − x||+ |s− r|
s

||z2 − y||.

Thus ||Tr(x)− Ts(y)|| ≤ ||y− x||+ |s−r|
s
||Ts(y)− y||, and this complete the proof.

We show that (ii) is satisfied. By (2) of Lemma 1.7 and (b) of Lemma 1.5; since
p = Tr(p)

||Tr(x)− p||2 = ||Tr(x)− Tr(p)||2 ≤ 〈Tr(x)− Tr(p), x− p〉

=
1

2

(
||Tr(x)− Tr(p)||2 + ||x− p||2 − ||Tr(x)− x||2

)
,

which show that ||Tr(x)−x||2 ≤ ||x−p||2−||Tr(x)−p||2, this complete the proof
of (ii). �
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Let C be nonempty closed convex subsets of Hilbert space. Let Ti : C →
C, i = 1, 2, · · · , N be a finite family of continuous pseudocontractive mapping.
For the rest of this paper, let T[n]rn be a mapping defined as follows: for x ∈
H, rn ∈ (0,∞)

T[n]rnx := {z ∈ C : 〈y − z, T[n]z〉 −
1

rn

〈y − z, (1 + rn)z − x〉 ≤ 0, ∀y ∈ C}

where T[n] := TnmodN , which satisfies Lemma 1.7.

Theorem 2.2. Let H1 and H2 be two real Hilbert spaces. Let C ⊂ H1, K ⊂ H2

be two nonempty closed convex sets. Let Ti : C → C, for i = 1, 2, · · · , N be
continuous pseudocontractive mappings such thatF := ∩N

i=1F (Ti) 6= ∅,
F = F (TNTN−1TN−2 · · ·T2T1) 6= ∅ and G = {gk : K×K → R, k = 1, 2, 3, · · · , M}
be finite family of bi-function satisfying the conditions (A1)-(A4). Let G : H1 →
H1 be an η-strongly monotone and κ-Lipschitzian with 0 < µ < 2η

κ2 , and let
f : H1 → H1 be a contraction with α ∈ (0, 1). Assume that 0 < γ < τ

α
, where

τ := 1−
√

1− µ(2η − µκ2). Let A : H1 → H2 be a bounded linear operator with
its adjoint B. Let {xn} be a sequence generated by

x1 ∈ H1

yn = PC(xn + λB(JM
n − I)Axn)

zn = βyn + (1− β)T[n]rnyn

xn+1 = αnγf(xn) + δnxn + ((1− δn)I − αnµG)zn, ∀n ∈ N,

(2.5)

where JM
n = T gM

sM,n
T

gM−1
sM−1,n · · ·T g2

s2,n
T g1

s1,n
, and J0

n = I for all n ∈ N, β ∈ (0, 1), 0 <

lim inf
n→∞

δn ≤ lim sup
n→∞

δn < 1, {rn} ∈ (0, +∞) with lim infn→+∞ rn > 0, and λ ∈

(0, 1
||B||2 ) and {sk,n}M

k=1 ⊂ (0, +∞) with lim infn→+∞ sk,n > 0, for every k ∈
{1, 2, 3, · · · , M} and

(C1) lim
n→∞

αn = 0,
∑∞

n=1 αn = ∞,

(C2) lim
n→∞

|rn−rn+1| = 0 and lim
n→∞

|sk,n−sk,n+1| = 0 for each k ∈ {1, 2, 3, · · · , M},

PC is a projection operator from H1 onto C. Suppose that Ω = {p ∈ F : Ap ∈
EP (G)} 6= ∅. Assume ∀ n ∈ N for any bounded set D ⊂ C the relation

lim
n→∞

sup
x∈D

||T[n+1]x− T[n]x|| = 0 (2.6)

holds, then xn → p ∈ Ω, where p is the unique solution of the variational inequal-
ity problem

〈γf(p)− µGp, x̂− p〉 ≤ 0, ∀x̂ ∈ Ω. (2.7)

Proof. From the choice of γ and µ, (µG − γf) is strongly monotone, then the
variational inequality (2.7) has a unique solution in Ω. Now we show that {xn}
is bounded. Let p ∈ Ω, then

||T[n]rnyn − T[n]rnp|| ≤ ||yn − p||. (2.8)

By taking Jk
n = T gk

sk,n
T

gk−1
sk−1,n · · ·T g2

s2,n
T g1

s1,n
, for each k ∈ {1, 2, 3, · · · , M} and

J0
n = I for all n, from the nonexpansive of T gk

sk,n
for each k = 1, 2, · · · , M implies
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that Jk
n is nonexpansive, it follows that

||Jk
nAxn − Ap|| ≤ ||Axn − Ap||. (2.9)

And also, from (b) of Lemma 1.5, we have

2λ〈xn − p, B(JM
n − I)Axn〉 = 2λ〈A(xn − p), (JM

n − I)Axn〉
= 2λ〈A(xn − p) + (JM

n − I)Axn − (JM
n − I)Axn, (J

M
n − I)Axn〉

= 2λ〈(JM
n Axn − Ap)− (JM

n − I)Axn, (J
M
n − I)Axn〉

= 2λ
(
〈JM

n Axn − Ap, (JM
n − I)Axn〉 − ||(JM

n − I)Axn||2
)

= 2λ
(1

2
||JM

n Axn − Ap||2 +
1

2
||(JM

n − I)Axn||2

−1

2
||Axn − Ap||2 − ||(JM

n − I)Axn||2
)

≤ 2λ
(1

2
||Axn − Ap||2 +

1

2
||(JM

n − I)Axn||2

−1

2
||Axn − Ap||2 − ||(JM

n − I)Axn||2
)

= −λ||(JM
n − I)Axn||2. (2.10)

We also have

||B(JM
n − I)Axn||2 ≤ ||B||2||(JM

n − I)Axn||2. (2.11)

By using (2.8)-(2.11), and (b) of Lemma 1.5 we obtain

||yn − p||2 = ||PC(xn + λB(JM
n − I)Axn)− p||2

≤ ||xn + λB(JM
n − I)Axn − p||2

= ||xn − p||2 + ||λB(JM
n − I)Axn||2 + 2λ〈xn − p, B(JM

n − I)Axn〉
≤ ||xn − p||2 + ||λB(JM

n − I)Axn||2 − λ||(JM
n − I)Axn||2

= ||xn − p||2 − λ(1− λ||B||2)||(JM
n − I)Axn||2

≤ ||xn − p||2. (2.12)

Notice λ ∈ (0, 1
||B||2 ), λ(1− λ||B||2) > 0. It follows from (2.12) that

||yn − p|| ≤ ||xn − p||,

and

||zn − p|| = β||yn − p||+ (1− β)||T[n]rnyn − p||
≤ ||yn − p|| ≤ ||xn − p||. (2.13)
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Using (2.13), we obtain

||xn+1 − p|| = ||αnγf(xn) + δnxn + ((1− δn)I − αnµG)zn − p||
= ||αnγf(xn)− αnµG(p) + αnµG(p) + δnxn − δnp + δnp

+((1− δn)I − αnµG)zn − p||
= ||αnγf(xn)− αnµG(p) + δnxn − δnp + ((1− δn)I − αnµG)zn

+αnµG(p)− p + δnp||
= ||αnγf(xn)− αnµG(p) + δnxn − δnp + ((1− δn)I − αnµG)zn

−((1− δn)I − αnµG)p||
≤ αn||γf(xn)− µG(p)||+ δn||xn − p||

+(1− δn)||(I − αn

(1− δn)
µG)(zn)− (I − αn

(1− δn)
µG)(p)||

≤ αn||γf(xn)− γf(p) + γf(p)− µG(p)||+ δn||xn − p||
+(1− δn − αnτ)||zn − p||

≤ αnγα||xn − p||+ αn||γf(p)− µG(p)||+ δn||xn − p||
+(1− δn − αnτ)||zn − p||

≤ αnγα||xn − p||+ αn||γf(p)− µG(p)||+ (1− αnτ)||xn − p||

= (1− αn(τ − αγ))||xn − p||+ αn(τ − αγ)
||γf(p)− µG(p)||

τ − αγ

≤ max
{
||xn − p||, ||γf(p)− µG(p)||

τ − αγ

}
.

By induction, we obtain

||xn − p|| ≤ max
{
||x1 − p||, ||γf(p)− µG(p)||

τ − αγ

}
, n ≥ 1.

Hence {xn} is bounded, also {yn}, {Axn}, {zn} and {T[n]rnyn} are all bounded.
Next show that lim

n→∞
||xn+1 − xn|| = 0.

From Lemma 1.3, using the method of Step 2 in Colao et al. [6], since Jk
nAxn ∈ K

for k ∈ {1, 2, · · · , M}, we obtain

gk(J
k
nAxn, y) +

1

sk,n

〈y − Jk
nAxn, J

k
nAxn − Axn〉 ≥ 0, ∀y ∈ K,

and

gk(J
k
n+1Axn, y) +

1

sk,n+1

〈y − Jk
n+1Axn, J

k
n+1Axn − Axn〉 ≥ 0, ∀y ∈ K,

In particular, we have

gk(J
k
nAxn, J

k
n+1Axn)

+
1

sk,n+1

〈Jk
n+1Axn − Jk

nAxn, J
k
nAxn − Axn〉 ≥ 0, (2.14)
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and

gk(J
k
n+1Axn, J

k
nAxn)

+
1

sk,n+1

〈Jk
nAxn − Jk

n+1Axn, J
k
n+1Axn − Axn〉 ≥ 0, (2.15)

Adding (2.14) and (2.15) and using the monotonicity of gk for k ∈ {1, 2, · · · , M},
we obtain

0 ≤ 〈Jk
nAxn − Jk

n+1Axn,
Jk

n+1Axn − Axn

sk,n+1

− Jk
nAxn − Axn

sk,n

〉.

This implies that

0 ≤ 〈Jk
nAxn − Jk

n+1Axn,
Jk

n+1Axn − Axn

sk,n+1

− Jk
nAxn − Axn

sk,n

〉

= 〈Jk
nAxn − Jk

n+1Axn, J
k
n+1Axn − Axn −

sk,n+1

sk,n

(
Jk

nAxn − Axn

)
〉

= 〈Jk
nAxn − Jk

n+1Axn, J
k
n+1Axn

−Jk
nAxn + Jk

nAxn − Axn −
sk,n+1

sk,n

(
Jk

nAxn − Axn

)
〉

= 〈Jk
nAxn − Jk

n+1Axn, J
k
n+1Axn − Jk

nAxn

+
(
1− sk,n+1

sk,n

)(
Jk

nAxn − Axn

)
〉

≤
∣∣∣1− sk,n+1

sk,n

∣∣∣||Jk
nAxn − Jk

n+1Axn||(||Jk
nAxn||+ ||Axn||)

−||Jk
nAxn − Jk

n+1Axn||2.

Thus

||Jk
nAxn − Jk

n+1Axn|| ≤
∣∣∣sk,n − sk,n+1

sk,n

∣∣∣(||Jk
nAxn||+ ||Axn||).

Hence from (C2), we obtain

lim
n→∞

||Jk
nAxn − Jk

n+1Axn|| = 0. (2.16)

Set θn := αn

1−δn
and un := θnγf(xn) + (I − θnµG)zn. Then

xn+1 = δnxn + (1− δn)un and lim
n→∞

θn = 0. (2.17)

Therefore

||un+1 − un|| = ||θn+1γf(xn+1) + (I − θn+1µG)zn+1

−θnγf(xn)− (I − θnµG)zn||
≤ θn+1(||γf(xn+1)||+ ||µG(zn+1)||)

+θn(||γf(xn)||+ ||µG(zn)||)
+||zn+1 − zn|| (2.18)
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and

||zn+1 − zn|| = β||yn+1 − yn||+ (1− β)||T[n+1]rn+1yn+1 − T[n]rnyn||

≤ β||yn+1 − yn||+ (1− β)
[
||yn − yn+1||

+||T[n+1]rn+1yn − T[n+1]rnyn||+ ||T[n+1]rnyn − T[n]rnyn||
]

≤ ||yn+1 − yn||+
|rn − rn+1|

rn

||T[n]rnyn − yn||

+||T[n+1]rnyn − T[n]rnyn|| (2.19)

Also

||yn+1 − yn|| = ||(xn+1 + λB(JM
n+1 − I)Axn+1)− (xn + λB(JM

n − I)Axn)||
= ||xn+1 − xn − λBA(xn+1 − xn) + λB(JM

n+1Axn+1 − JM
n Axn)||

≤ ||xn+1 − xn − λBA(xn+1 − xn)||+ λ||B||||JM
n+1Axn+1 − JM

n Axn||

=
(
||xn+1 − xn||2 − 2λ||BA||||xn+1 − xn||2 + λ2||BA||2||xn+1 − xn||2

) 1
2

+λ||B||||JM
n+1Axn+1 − JM

n Axn||

=
(
1− 2λ||BA||+ λ2||BA||2

) 1
2 ||xn+1 − xn||

+λ||B||||JM
n+1Axn+1 − JM

n Axn||
= (1− λ||BA||)||xn+1 − xn||+ λ||B||||JM

n+1Axn+1 − JM
n Axn||

≤ (1− λ||BA||)||xn+1 − xn||+ λ||B||||JM
n+1Axn+1 − JM

n+1Axn||
+λ||B||||JM

n+1Axn − JM
n Axn||

≤ (1− λ||BA||)||xn+1 − xn||+ λ||B||||A||||xn+1 − xn||
+λ||B||||JM

n+1Axn − JM
n Axn||

= ||xn+1 − xn||+ λ||B||||JM
n+1Axn − JM

n Axn||. (2.20)

From (2.18), (2.19) and (2.20) we obtain

||un+1 − un|| − ||xn+1 − xn|| ≤ θn+1(||γf(xn+1)||+ ||µG(zn+1)||)
+θn(||γf(xn)||+ ||µG(zn)||) + λ||B||||JM

n+1Axn − JM
n Axn||

+
|rn − rn+1|

rn

(
||T[n]rnyn − yn||+ (||T[n]rnyn||+ ||yn||)

)
+||T[n+1]rn(yn)− T[n]rn(yn)||.

this implies from (C1), (C2), (2.6) and (2.16), that

lim sup
n→∞

(||un+1 − un|| − ||xn+1 − xn||) ≤ 0

from Lemma 1.10, we obtain

lim
n→∞

||un − xn|| = 0. (2.21)
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From (2.17) and (2.21), we obtain

lim
n→∞

||xn+1 − xn|| = 0. (2.22)

But

||xn+N − xn|| ≤ ||xn+N − xn+N−1||+ · · ·+ ||xn+1 − xn|| → 0

as n →∞. Hence

lim
n→∞

||xn+N − xn|| = 0. (2.23)

Also, from (2.5), we obtain

||zn − xn|| ≤ ||xn+1 − xn||+ ||xn+1 − zn||
= ||xn+1 − xn||+ ||αnγf(xn) + δnxn + ((1− δn)I − αnµG)zn − zn||
≤ ||xn+1 − xn||+ δn||xn − zn||+ αn(||µG(zn)||+ ||γf(xn)||).

It follows that

||xn − zn|| ≤
1

1− δn

(
||xn+1 − xn||+ αn(||µG(zn)||+ ||γf(xn)||)

)
which implies, from (2.22) that

lim
n→∞

||xn − zn|| = 0. (2.24)

Next we show that lim
n→∞

||Jk+1
n Axn − Jk

nAxn|| = 0, ∀k ∈ {0, 1, 2, ...,M − 1}.
Let p ∈ F and k ∈ {0, 1, 2, ...,M − 1}. Since T

gk+1
sk+1,n is firmly nonexpansive, we

obtain

||Jk+1
n Axn − Ap||2 = ||T gk+1

sk+1,n
Jk

nAxn − T gk+1
sk+1,n

Ap||2

≤ 〈T gk+1
sk+1,n

Jk
nAxn − Ap, Jk

nAxn − Ap〉

=
1

2

(
||T gk+1

sk+1,n
Jk

nAxn − Ap||2 + ||Jk
nAxn − Ap||2

−||T gk+1
sk+1,n

Jk
nAxn − Jk

nAxn||2
)

=
1

2

(
||Jk+1

n Axn − Ap||2 + ||Jk
nAxn − Ap||2

−||Jk+1
n Axn − Jk

nAxn||2
)
.

It follows that

||Jk+1
n Axn − Ap||2 ≤ ||Axn − Ap||2 − ||Jk+1

n Axn − Jk
nAxn||2. (2.25)

Also, from (2.5) and using (c) of Lemma 1.5, we obtain

||zn − p||2 = ||β(yn − p) + (1− β)(T[n]rnyn − p)||2

= β||yn − p||2 + (1− β)||T[n]rnyn − p||2

−β(1− β)||T[n]rnyn − yn||2

≤ ||yn − p||2 − β(1− β)||T[n]rnyn − yn||2

≤ ||xn − p||2 − β(1− β)||T[n]rnyn − yn||2
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this implies

β(1− β)||T[n]rnyn − yn||2 ≤ (||xn − p||+ ||zn − p||)||xn − zn||
since β(1− β) > 0 from (2.24), we obtain

lim
n→∞

||T[n]rnyn − yn|| = 0. (2.26)

Also, from (2.5), we have

||xn − yn|| ≤ ||xn − zn||+ ||zn − yn||
≤ ||xn − zn||+ ||βyn + (1− β)T[n]rnyn − yn||
= ||xn − zn||+ (1− β)||T[n]rnyn − yn||

from (2.24) and (2.26), we obtain

lim
n→∞

||xn − yn|| = 0. (2.27)

Using the same argument of (2.12), we obtain

λ(1− λ||B||2)||Jk+1
n Axn − Axn|| ≤ ||xn − p||2 − ||yn − p||2

≤ (||xn − p||+ ||yn − p||)||xn − yn||
since λ(1− λ||B||2) > 0, it follows from (2.27) that

lim
n→∞

||Jk+1
n Axn − Axn|| = 0. (2.28)

Also, from (2.25), we obtain

||Jk+1
n Axn − Jk

nAxn||2 ≤ ||Axn − Ap||2 − ||Jk+1
n Axn − Ap||2

≤ (||Axn − Ap||+ ||Jk+1
n Axn − Ap||)||Jk+1

n Axn − Axn||
it follows from (2.28) that

lim
n→∞

||Jk+1
n Axn − Jk

nAxn|| = 0. (2.29)

Since

||T[n]rnxn − xn|| ≤ ||T[n]rnxn − T[n]rnyn||+ ||T[n]rnyn − yn||
+||yn − xn||

≤ 2||xn − yn||+ ||T[n]rnyn − yn||
then, from (2.26) and (2.27), we obtain

lim
n→∞

||T[n]rnxn − xn|| = 0. (2.30)

Also, using the fact that T(i)r is nonexpansive for r > 0 and each i, we obtain

||xn − T[n+1]rn+1xn|| ≤ ||xn − xn+1||+ ||xn+1 − T[n+1]rn+1xn+1||
+||T[n+1]rn+1xn+1 − T[n+1]rn+1xn||

≤ 2||xn − xn+1||+ ||xn+1 − T[n+1]rn+1xn+1||
from (2.22), (2.30), we have

lim
n→∞

||xn − T[n+1]rn+1xn|| = 0.
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Also, from (2.22) and (2.30), we obtain

lim
n→∞

||xn+1 − T[n+1]rn+1xn|| = 0.

Using the nonexpansivity of T(i)r for each i and r > 0 , we obtain the following
finite table

xn+N − T(n+N)rn+N
xn+N−1 → 0 as n →∞

T(n+N)rn+N
xn+N−1 − T(n+N)rn+N

T(n+N−1)rn+N−1
xn+N−2 → 0 as n →∞

...

T(n+N)rn+N
· · ·T(n+2)rn+2xn+1 − T(n+N)rn+N

· · ·T(n+1)rn+1xn → 0 as n →∞
and adding up the table yields

xn+N − T(n+N)rn+N
T(n+N−1)rn+N−1

· · ·T(n+1)rn+1xn → 0 as n →∞.

Using this and (2.23), we obtain

lim
n→∞

||xn − T(n+N)rn+N
T(n+N−1)rn+N−1

· · ·T(n+1)rn+1xn|| = 0. (2.31)

Let {xnk
} be a subsequence of {xn} such that

lim sup
n→∞

〈(γf − µG)p, xn − p〉 = lim
m→∞

〈(γf − µG)p, xnm − p〉

Since {xn} is bounded, without loss of generality, we may assume that xnm ⇀ x̂
for some x̂ ∈ H1. Since the pool of mappings of T[n]rn is finite, passing to a further
subsequence if necessary, we may further assume that, for some i ∈ {1, 2, · · · , N},

T(ni)rni
≡ T(i)rni

, for all i ≥ 1.

It follows from (2.31) that

xni
− T(i+N)rni+N

· · ·T(i+1)rni+1
xni

→ 0 as i →∞.

It follows from Lemma 1.7 that T(i)rni
for each i ∈ {1, 2, · · · , N} is firmly nonex-

pansive and hence nonexpansive, then demiclosedness principle of nonexpansive
Lemma 1.9 ensures that the weak limit x̂ of {xni

} is a fixed point point of the

mapping T(i+N)ri+N
· · ·T(i+1)ri+1

, this implies that x̂ ∈
⋂N

i=1 F (Tirn) =
⋂N

i=1 F (Ti).

Moreover, note that by (A2) and given Ay ∈ K and k ∈ {0, 1, · · · , M − 1}, we
have

1

sk+1,n

〈Ay − Jk+1
n Axn, J

k+1
n Axn − Jk

nAxn〉 ≥ gk+1(Ay, Jk+1
n Axn).

Thus

〈Ay − Jk+1
nm

Axnm ,
Jk+1

nm
Axnm − Jk

nm
Axnm

sk+1,nm

〉 ≥ gk+1(Ay, Jk+1
nm

Axnm). (2.32)

By condition (A4), gk(Ay, .), ∀k is lower semicontinuous and convex, and thus
weakly lower semicontinuous. From (2.29) and condition lim infn→+∞ sk,n > 0 we
have that

Jk+1
nm

Axnm − Jk
nm

Axnm

sk+1,nm

→ 0,
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in norm. By definition of A and the fact that xnm ⇀ x̂, then Axnm ⇀ Ax̂ ∈ K

as m → ∞. Now set ν
(k+1)
nm = Axnm − Jk+1

nm
Axnm , it follows from (2.28) that

ν
(k+1)
nm ⇀ 0 for each k = 1, 2, · · · , M and Axnm − ν

(k+1)
nm = Jk+1

nm
Axnm . Therefore

from (2.32), we have

(2.33)

〈Ay − (Axnm − ν(k+1)
nm

),
Jk+1

nm
Axnm − Jk

nm
Axnm

sk+1,nm

〉 ≥ gk+1(Ay, Axnm − ν(k+1)
nm

).

Therefore, letting m →∞ in (2.33), we obtain

gk+1(Ay, Ax̂) ≤ 0,

for all Ay ∈ K and k ∈ {0, 1, 2, · · · , M − 1}. Replacing Ay with
Ayt := tAy + (1− t)Ax̂ with t ∈ (0, 1) and using (A1) and (A4), we obtain

0 = gk+1(Ayt, Ayt) ≤ tgk+1(Ayt, Ay) + (1− t)gk+1(Ayt, Ax̂) ≤ tgk+1(Ayt, Ay).

Hence, gk+1(tAy + (1 − t)Ax̂, Ay) ≥ 0, for all t ∈ (0, 1) and Ay ∈ K. Letting
t → 0+ and using (A3), we conclude gk+1(Ax̂, Ay) ≥ 0, for all Ay ∈ K and

k ∈ {0, 1, 2, · · · , M − 1}. Therefore Ax̂ ∈
⋂M

k=1 F (T gk
sk,n

).

Therefore

lim sup
n→∞

〈(γf − µG)p, xn − p〉 = lim
m→∞

〈(γf − µG)p, xnm − p〉

= 〈(γf − µG)p, x̂− p〉 ≤ 0.

We finally show that xn → p as n →∞. From (2.5), we obtain

||xn+1 − p||2 = 〈αnγf(xn) + δnxn + ((1− δn)I − αnµG)zn − p, xn+1 − p〉
= αnγ〈f(xn)− f(p), xn+1 − p〉+ αn〈γf(p)− µG(p), xn+1 − p〉

+δn〈xn − p, xn+1 − p〉+ 〈((1− δn)I − αnµG)(zn − p), xn+1 − p〉
≤ αnγα||xn − p||||xn+1 − p||+ δn||xn − p||||xn+1 − p||

+(1− δn − αnτ)||zn − p||||xn+1 − p||
+αn〈γf(p)− µG(p), xn+1 − p〉

≤ αnγα||xn − p||||xn+1 − p||+ (1− αnτ)||xn − p||||xn+1 − p||
+αn〈γf(p)− µG(p), xn+1 − p〉

= [1− αn(τ − γα)]||xn − p||||xn+1 − p||
+αn〈γf(p)− µG(p), xn+1 − p〉

≤ [1− αn(τ − γα)]
||xn − p||2 + ||xn+1 − p||2

2
+αn〈γf(p)− µG(p), xn+1 − p〉

This implies

||xn+1 − p||2 ≤ [1− αn(τ − γα)]

[1 + αn(τ − γα)]
||xn − p||2

+
2αn〈γf(p)− µG(p), xn+1 − p〉

[1 + αn(τ − γα)]
.
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Thus

||xn+1 − p||2 ≤
[
1− 2αn(τ − γα)

[1 + αn(τ − γα)]

]
||xn − p||2

+
2αn〈γf(p)− µG(p), xn+1 − p〉

[1 + αn(τ − γα)]
.

Let bn := 2αn(τ−γα)
[1+αn(τ−γα)]

and ζn := 2αn〈γf(p)−µG(p),xn+1−p〉
[1+αn(τ−γα)]

.

But
∑∞

n=1 αn = ∞ and lim supn→∞〈γf(p)− µG(p), xn+1 − p〉 ≤ 0.

It follows that
∑∞

n=1 bn = ∞ and lim sup
n→∞

ζn

αn
≤ 0.

Applying Lemma 1.11, we conclude that xn → p as n →∞.
�

2.1. Numerical Example. Here, we discuss the direct application of Theorem
2.2 on a typical example on a real line. Consider the following:

H = R, C = [0, 1/2], g(z, y) = y2 + yz − 2z2, Gx = 2x, Tx =
x

2
, Ax = 3x = Bx,

T g
s x = {z ∈ C : g(z, y) +

1

s
〈y − z, z − x〉 ≥ 0, ∀y ∈ C},

Trx := {z ∈ C : 〈y − z, Tz〉 − 1

r
〈y − z, (1 + r)z − x〉 ≤ 0, ∀y ∈ C},

T g
s x =

1

1 + 3s
x, Trx =

2x

2 + r
.

Choose s = 1 = r, αn = 1
2n

, δn = n
2n+1

, f(xn) = 1
4
xn, β = 1

2
, λ = 1

10
∈ (0, 1/||B||2),

κ = 2, η = 3
2
, µ = 1

2
, γ = 1

14
,

then the scheme (2.5) can be simplified as

yn =
13

40
xn,

zn =
13

48
xn,

xn+1 =
112n2 + 2n + 1

112n(2n + 1)
xn +

13(2n2 − 1)

96n(2n + 1)
xn.

Take the initial point x1 = 0.5, the numerical experiment result using MATLAB
is given in Figure 1, which shows the iteration process of the sequence {xn}
converges to 0.
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Figure 1. x1 = 0.5, the convergence process of the sequence {xn}.
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