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THE AHSP IS INHERITED BY E-SUMMANDS

FRANCISCO JAVIER GARCÍA-PACHECO

Communicated by M. Mart́ın

Abstract. In this short note we prove that the Approximate Hyperplane
Series property (AHSp) is hereditary to E-summands via characterizing the
E-projections.

1. Introduction and basic definitions

A projection on a Banach space X is a continuous, linear and idempotent map
P : X → X. Its dual operator P ∗ : X∗ → X∗ is also a projection. The comple-
mentary projection of P is defined as I − P , which is also a projection. Every
non-zero projection has norm greater than or equal to 1. An M -projection is a
projection of norm M and an (M, N)-projection is a projection of norm M whose
complementary projection has norm N . A particular case of (1, 1)-projections are
the E-projections. A projection on X is said to be an E-projection if there ex-
ists a 2-dimensional Banach space E := (R2, ‖ · ‖E) such that {(1, 0), (0, 1)} is a
normalized 1-unconditional basis and ‖x‖ = ‖(‖P (x)‖, ‖(I − P )(x)‖)‖E for each
x ∈ X. All `p-projections, for 1 ≤ p ≤ ∞, are E-projections but the converse is
not true.

The AHSp was originally studied in 2008. What follows is an equivalent for-
mulation.

Definition 1.1. [1, Remark 3.2] Let X be a Banach space. We say that X
satisfies the AHSp if for every ε > 0 there exist γX (ε) > 0 and ηX (ε) > 0 with
limε→0 γX (ε) = 0 such that for every sequence (xk)k∈N ⊂ SX and every convex
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series
∑∞

k=1 αk with ∥∥∥∥∥
∞∑

k=1

αkxk

∥∥∥∥∥ > 1− ηX (ε) ,

there are a subset A ⊆ N with
∑

k∈A αk > 1− γX (ε), an element x∗ ∈ SX∗ , and

(zk)k∈A ⊆ (x∗)−1 (1) ∩ BX such that ‖zk − xk‖ < ε for all k ∈ A.

The AHSp appears in the characterization of the Bishop-Phelps-Bollobás prop-
erty for operators (BPBp) when the first space of the pair is fixed to `1. We refer
the reader to [1, 2, 3] for a wider perspective on the AHSp and the BPBp. In [2] it
was shown that the AHSp is stable under finite `p-sums for p ∈ [1,∞]. In partic-
ular, the AHSp is hereditary to `p-complemented subspaces (see [2, Proposition
2.1]). It was also shown (see [2, Remark 2.2]) that the AHSp is not hereditary
to general closed subspaces. Here we will show that the AHSp is inherited by
E-summands.

2. Main results

To achieve our main result we need some lemmas.

Lemma 2.1. Let X be a Banach space and P : X → X a projection on X. The
following conditions are equivalent:

(1) P is an E-projection.
(2) ‖m∗‖ ‖m‖ + ‖n∗‖ ‖n‖ ≤ ‖m∗ + n∗‖ ‖m + n‖ for all m ∈ P (X), n ∈

ker(P ), m∗ ∈ P ∗(X∗), n∗ ∈ ker(P ∗).

Proof. (1)⇒(2) Observe that

‖m∗‖ ‖m‖+ ‖n∗‖ ‖n‖ = 〈(‖m‖, ‖n‖), (‖m∗‖, ‖n∗‖)〉
≤ ‖(‖m∗‖, ‖n∗‖)‖E∗‖(‖m‖, ‖n‖)‖E

= ‖m∗ + n∗‖ ‖m + n‖ .

(2)⇒(1) For an arbitrary (a, b) ∈ R2 denote

‖(a, b)‖E := sup{‖m + n‖ : m ∈ P (X), n ∈ ker(P )

‖m‖ = |a|, ‖n‖ = |b|}.

Evidently, we have ‖(a, b)‖E = ‖(|a|, |b|)‖E for every (a, b) ∈ R2 and ‖(1, 0)‖E =
‖(0, 1)‖E = 1. Thus, {(1, 0), (0, 1)} is a normalized 1-unconditional basis. It
remains to show that ‖x‖ = ‖(‖P (x)‖, ‖(I − P )(x)‖)‖E for all x ∈ X. The
inequality ‖x‖ ≤ ‖(‖P (x)‖, ‖(I − P )(x)‖)‖E follows directly from the definition
of ‖(a, b)‖E. Fix an arbitrary ε > 0. Choose m ∈ P (X) and n ∈ ker(P ) with
‖m‖ = ‖P (x)‖, ‖n‖ = ‖(I−P )(x)‖ and ‖(‖P (x)‖, ‖(I − P )(x)‖)‖E−ε ≤ ‖m+n‖.
Next, select a supporting functional y∗ ∈ SX∗ at m + n, that is, y∗(m + n) =
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‖m + n‖. By hypothesis we have that

‖x‖ ≥ ‖P ∗(y∗)‖‖P (x)‖+ ‖(I − P )∗(y∗)‖‖(I − P )(x)‖
= ‖P ∗(y∗)‖‖m‖+ ‖(I − P )∗(y∗)‖‖n‖
≥ P ∗(y∗)(m) + (I − P )∗(n)

= y∗(m + n)

= ‖m + n‖
≥ ‖(‖P (x)‖, ‖(I − P )(x)‖)‖E − ε.

�

We say that a functional x∗ ∈ X∗ attains its norm at x ∈ X whenever x∗(x) =
‖x∗‖‖x‖.

Lemma 2.2. Let P : X → X be an E-projection on a Banach space X and
m ∈ P (X), n ∈ ker(P ), m∗ ∈ P ∗(X∗), n∗ ∈ ker(P ∗). If m∗+ n∗ attains its norm
at m + n, then m∗ and n∗ attain their norm at m and n respectively.

Proof. In virtue of Lemma 2.1, we have that

‖m∗ + n∗‖ ‖m + n‖ = (m∗ + n∗) (m + n)

= m∗ (m) + n∗ (n)

≤ ‖m∗‖ ‖m‖+ ‖n∗‖ ‖n‖
≤ ‖m∗ + n∗‖ ‖m + n‖ ,

which implies that m∗(m) = ‖m∗‖‖m‖ and n∗(n) = ‖n∗‖‖n‖. �

Theorem 2.3. Let X be a Banach space. If X has the AHSp, then every E-
summand subspace M of X also has the AHSp.

Proof. We will show that M satisfies the AHSp with γM(ε) := γX(ε/2) and
ηM(ε) := ηX(ε/2) for all ε > 0. So, fix an arbitrary 0 < ε < 1 and consider
(xk)k∈N ⊂ SM and a convex series

∑∞
k=1 αk satisfying∥∥∥∥∥

∞∑
k=1

αkxk

∥∥∥∥∥ > 1− ηM(ε) = 1− ηX

(ε

2

)
.

Since X enjoys the AHSp, there exist A ⊆ N, x∗ ∈ SX∗ , and (zk)k∈A ⊂ (x∗)−1 (1)∩
BX such that∑

k∈A

αk > 1− γX

(ε

2

)
= 1− γM(ε) and ‖zk − xk‖ <

ε

2
for all k ∈ A.

For every k ∈ A we can write zk = mk + nk with mk ∈ M and nk ∈ N , where N
denotes the E-summand complement of M in X. Suppose that mk = 0 for some
k ∈ A. Then

1 = ‖xk‖ ≤ ‖nk − xk‖ = ‖zk − xk‖ <
ε

2
,

which contradicts our assumption on ε. Observe also that for every k ∈ A we
have
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∥∥∥∥xk −
mk

‖mk‖

∥∥∥∥ ≤ ‖xk −mk‖+

∥∥∥∥mk −
mk

‖mk‖

∥∥∥∥
≤ ‖xk −mk‖+ |1− ‖mk‖|
= ‖xk −mk‖+ |‖xk‖ − ‖mk‖|
≤ 2 ‖xk −mk‖
≤ 2 ‖xk − zk‖
< ε.

Now, since X∗ = M∗ ⊕ N∗, we can write x∗ = m∗ + n∗ where m∗ ∈ M∗ and
n∗ ∈ N∗. Suppose now that m∗ = 0. Then for every k ∈ A we have

1 = x∗ (zk)− x∗ (xk) ≤ ‖zk − xk‖ <
ε

2
,

which is impossible. Finally, Lemma 2.2 applies to ensure that m∗ (mk) =

‖m∗‖ ‖mk‖ for every k ∈ A. As a consequence, m∗

‖m∗‖ ∈ SM∗ and
{

mk

‖mk‖
: k ∈ A

}
⊆

SM satisfy the conditions of Definition 1.1.
�
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