Adv. Oper. Theory 2 (2017), no. 1, 17-20
http://doi.org/10.22034/aot.1610.1033
ISSN: 2538-225X (electronic)
http://aot-math.org

THE AHSP IS INHERITED BY E-SUMMANDS

FRANCISCO JAVIER GARCÍA-PACHECO
Communicated by M. Martín

Abstract

In this short note we prove that the Approximate Hyperplane Series property (AHSp) is hereditary to E-summands via characterizing the E-projections.

1. Introduction and basic definitions

A projection on a Banach space X is a continuous, linear and idempotent map $P: X \rightarrow X$. Its dual operator $P^{*}: X^{*} \rightarrow X^{*}$ is also a projection. The complementary projection of P is defined as $I-P$, which is also a projection. Every non-zero projection has norm greater than or equal to 1 . An M-projection is a projection of norm M and an (M, N)-projection is a projection of norm M whose complementary projection has norm N. A particular case of (1,1)-projections are the E-projections. A projection on X is said to be an E-projection if there exists a 2-dimensional Banach space $E:=\left(\mathbb{R}^{2},\|\cdot\|_{E}\right)$ such that $\{(1,0),(0,1)\}$ is a normalized 1-unconditional basis and $\|x\|=\|(\|P(x)\|,\|(I-P)(x)\|)\|_{E}$ for each $x \in X$. All ℓ_{p}-projections, for $1 \leq p \leq \infty$, are E-projections but the converse is not true.

The AHSp was originally studied in 2008. What follows is an equivalent formulation.

Definition 1.1. [1, Remark 3.2] Let X be a Banach space. We say that X satisfies the AHSp if for every $\varepsilon>0$ there exist $\gamma_{X}(\varepsilon)>0$ and $\eta_{X}(\varepsilon)>0$ with $\lim _{\varepsilon \rightarrow 0} \gamma_{X}(\varepsilon)=0$ such that for every sequence $\left(x_{k}\right)_{k \in \mathbb{N}} \subset S_{X}$ and every convex

[^0]series $\sum_{k=1}^{\infty} \alpha_{k}$ with
$$
\left\|\sum_{k=1}^{\infty} \alpha_{k} x_{k}\right\|>1-\eta_{X}(\varepsilon)
$$
there are a subset $A \subseteq \mathbb{N}$ with $\sum_{k \in A} \alpha_{k}>1-\gamma_{X}(\varepsilon)$, an element $x^{*} \in \mathrm{~S}_{X^{*}}$, and $\left(z_{k}\right)_{k \in A} \subseteq\left(x^{*}\right)^{-1}(1) \cap \mathrm{B}_{X}$ such that $\left\|z_{k}-x_{k}\right\|<\varepsilon$ for all $k \in A$.

The AHSp appears in the characterization of the Bishop-Phelps-Bollobás property for operators (BPBp) when the first space of the pair is fixed to ℓ_{1}. We refer the reader to $[1,2,3]$ for a wider perspective on the AHSp and the BPBp. In [2] it was shown that the AHSp is stable under finite ℓ_{p}-sums for $p \in[1, \infty]$. In particular, the AHSp is hereditary to ℓ_{p}-complemented subspaces (see [2, Proposition 2.1]). It was also shown (see [2, Remark 2.2]) that the AHSp is not hereditary to general closed subspaces. Here we will show that the AHSp is inherited by E-summands.

2. Main ReSults

To achieve our main result we need some lemmas.
Lemma 2.1. Let X be a Banach space and $P: X \rightarrow X$ a projection on X. The following conditions are equivalent:
(1) P is an E-projection.
(2) $\left\|m^{*}\right\|\|m\|+\left\|n^{*}\right\|\|n\| \leq\left\|m^{*}+n^{*}\right\|\|m+n\|$ for all $m \in P(X), n \in$ $\operatorname{ker}(P), m^{*} \in P^{*}\left(X^{*}\right), n^{*} \in \operatorname{ker}\left(P^{*}\right)$.

Proof. (1) \Rightarrow (2) Observe that

$$
\begin{aligned}
\left\|m^{*}\right\|\|m\|+\left\|n^{*}\right\|\|n\| & =\left\langle(\|m\|,\|n\|),\left(\left\|m^{*}\right\|,\left\|n^{*}\right\|\right)\right\rangle \\
& \leq\left\|\left(\left\|m^{*}\right\|,\left\|n^{*}\right\|\right)\right\|_{E^{*}}\|(\|m\|,\|n\|)\|_{E} \\
& =\left\|m^{*}+n^{*}\right\|\|m+n\|
\end{aligned}
$$

$(2) \Rightarrow(1)$ For an arbitrary $(a, b) \in \mathbb{R}^{2}$ denote

$$
\begin{aligned}
\|(a, b)\|_{E}:= & \sup \{\|m+n\|: m \in P(X), n \in \operatorname{ker}(P) \\
& \|m\|=|a|,\|n\|=|b|\}
\end{aligned}
$$

Evidently, we have $\|(a, b)\|_{E}=\|(|a|,|b|)\|_{E}$ for every $(a, b) \in \mathbb{R}^{2}$ and $\|(1,0)\|_{E}=$ $\|(0,1)\|_{E}=1$. Thus, $\{(1,0),(0,1)\}$ is a normalized 1 -unconditional basis. It remains to show that $\|x\|=\|(\|P(x)\|,\|(I-P)(x)\|)\|_{E}$ for all $x \in X$. The inequality $\|x\| \leq\|(\|P(x)\|,\|(I-P)(x)\|)\|_{E}$ follows directly from the definition of $\|(a, b)\|_{E}$. Fix an arbitrary $\varepsilon>0$. Choose $m \in P(X)$ and $n \in \operatorname{ker}(P)$ with $\|m\|=\|P(x)\|,\|n\|=\|(I-P)(x)\|$ and $\|(\|P(x)\|,\|(I-P)(x)\|)\|_{E}-\varepsilon \leq\|m+n\|$. Next, select a supporting functional $y^{*} \in \mathrm{~S}_{X^{*}}$ at $m+n$, that is, $y^{*}(m+n)=$
$\|m+n\|$. By hypothesis we have that

$$
\begin{aligned}
\|x\| & \geq\left\|P^{*}\left(y^{*}\right)\right\|\|P(x)\|+\left\|(I-P)^{*}\left(y^{*}\right)\right\|\|(I-P)(x)\| \\
& =\left\|P^{*}\left(y^{*}\right)\right\|\|m\|+\left\|(I-P)^{*}\left(y^{*}\right)\right\|\|n\| \\
& \geq P^{*}\left(y^{*}\right)(m)+(I-P)^{*}(n) \\
& =y^{*}(m+n) \\
& =\|m+n\| \\
& \geq\|(\|P(x)\|,\|(I-P)(x)\|)\|_{E}-\varepsilon .
\end{aligned}
$$

We say that a functional $x^{*} \in X^{*}$ attains its norm at $x \in X$ whenever $x^{*}(x)=$ $\left\|x^{*}\right\|\|x\|$.

Lemma 2.2. Let $P: X \rightarrow X$ be an E-projection on a Banach space X and $m \in P(X), n \in \operatorname{ker}(P), m^{*} \in P^{*}\left(X^{*}\right), n^{*} \in \operatorname{ker}\left(P^{*}\right)$. If $m^{*}+n^{*}$ attains its norm at $m+n$, then m^{*} and n^{*} attain their norm at m and n respectively.

Proof. In virtue of Lemma 2.1, we have that

$$
\begin{aligned}
\left\|m^{*}+n^{*}\right\|\|m+n\| & =\left(m^{*}+n^{*}\right)(m+n) \\
& =m^{*}(m)+n^{*}(n) \\
& \leq\left\|m^{*}\right\|\|m\|+\left\|n^{*}\right\|\|n\| \\
& \leq\left\|m^{*}+n^{*}\right\|\|m+n\|
\end{aligned}
$$

which implies that $m^{*}(m)=\left\|m^{*}\right\|\|m\|$ and $n^{*}(n)=\left\|n^{*}\right\|\|n\|$.
Theorem 2.3. Let X be a Banach space. If X has the $A H S p$, then every E summand subspace M of X also has the AHSp.

Proof. We will show that M satisfies the AHSp with $\gamma_{M}(\varepsilon):=\gamma_{X}(\varepsilon / 2)$ and $\eta_{M}(\varepsilon):=\eta_{X}(\varepsilon / 2)$ for all $\varepsilon>0$. So, fix an arbitrary $0<\varepsilon<1$ and consider $\left(x_{k}\right)_{k \in \mathbb{N}} \subset \mathrm{~S}_{M}$ and a convex series $\sum_{k=1}^{\infty} \alpha_{k}$ satisfying

$$
\left\|\sum_{k=1}^{\infty} \alpha_{k} x_{k}\right\|>1-\eta_{M}(\varepsilon)=1-\eta_{X}\left(\frac{\varepsilon}{2}\right) .
$$

Since X enjoys the AHSp, there exist $A \subseteq \mathbb{N}, x^{*} \in \mathrm{~S}_{X^{*}}$, and $\left(z_{k}\right)_{k \in A} \subset\left(x^{*}\right)^{-1}(1) \cap$ B_{X} such that

$$
\sum_{k \in A} \alpha_{k}>1-\gamma_{X}\left(\frac{\varepsilon}{2}\right)=1-\gamma_{M}(\varepsilon) \text { and }\left\|z_{k}-x_{k}\right\|<\frac{\varepsilon}{2} \text { for all } k \in A
$$

For every $k \in A$ we can write $z_{k}=m_{k}+n_{k}$ with $m_{k} \in M$ and $n_{k} \in N$, where N denotes the E-summand complement of M in X. Suppose that $m_{k}=0$ for some $k \in A$. Then

$$
1=\left\|x_{k}\right\| \leq\left\|n_{k}-x_{k}\right\|=\left\|z_{k}-x_{k}\right\|<\frac{\varepsilon}{2}
$$

which contradicts our assumption on ε. Observe also that for every $k \in A$ we have

$$
\begin{aligned}
\left\|x_{k}-\frac{m_{k}}{\left\|m_{k}\right\|}\right\| & \leq\left\|x_{k}-m_{k}\right\|+\left\|m_{k}-\frac{m_{k}}{\left\|m_{k}\right\|}\right\| \\
& \leq\left\|x_{k}-m_{k}\right\|+\left|1-\left\|m_{k}\right\|\right| \\
& =\left\|x_{k}-m_{k}\right\|+\mid\left\|x_{k}\right\|-\left\|m_{k}\right\| \| \\
& \leq 2\left\|x_{k}-m_{k}\right\| \\
& \leq 2\left\|x_{k}-z_{k}\right\| \\
& <\varepsilon
\end{aligned}
$$

Now, since $X^{*}=M^{*} \oplus N^{*}$, we can write $x^{*}=m^{*}+n^{*}$ where $m^{*} \in M^{*}$ and $n^{*} \in N^{*}$. Suppose now that $m^{*}=0$. Then for every $k \in A$ we have

$$
1=x^{*}\left(z_{k}\right)-x^{*}\left(x_{k}\right) \leq\left\|z_{k}-x_{k}\right\|<\frac{\varepsilon}{2}
$$

which is impossible. Finally, Lemma 2.2 applies to ensure that $m^{*}\left(m_{k}\right)=$ $\left\|m^{*}\right\|\left\|m_{k}\right\|$ for every $k \in A$. As a consequence, $\frac{m^{*}}{\left\|m^{*}\right\|} \in \mathrm{S}_{M^{*}}$ and $\left\{\frac{m_{k}}{\left\|m_{k}\right\|}: k \in A\right\} \subseteq$ S_{M} satisfy the conditions of Definition 1.1.

Acknowledgments. The author was supported by MTM2014-58984-P (Spain MECC and EU FEDER) and he would like to express his deepest gratitude towards the referee for valuable comments, remarks and suggestions.

References

1. M. D. Acosta, R. M. Aron, D. García, and M. Maestre, The Bishop-Phelps-Bollobás Theorem for operators, J. Funct. Anal. 254 (2008), no. 11, 2780-2799.
2. M. D. Acosta, R. M. Aron, and F. J. García-Pacheco, The approximate hyperplane series property and related properties, Banach J. Math. Anal. (to appear).
3. Y. S. Choi, S. K. Kim, H. J. Lee, and M. Martín, On Banach spaces with the approximate hyperplane series property, Banach J. Math. Anal. 9 (2015), no. 4, 243-258.

Department of Mathematics, University of Cadiz, Puerto Real, 11510, Spain. E-mail address: garcia.pacheco@uca.es

[^0]: Copyright 2017 by the Tusi Mathematical Research Group.
 Date: Received: Oct. 15, 2016; Accepted: Dec. 30, 2016.
 2010 Mathematics Subject Classification. Primary 46B20; Secondary 46B07, 46B03.
 Key words and phrases. Projection, complemented, norm-attaining.

