

Adv. Oper. Theory 2 (2017), no. 2, 98–107 http://doi.org/10.22034/aot.1612-1076 ISSN: 2538-225X (electronic) http://aot-math.org

SOME LOWER BOUNDS FOR THE NUMERICAL RADIUS OF HILBERT SPACE OPERATORS

ALI ZAMANI

Communicated by M. Martin

ABSTRACT. We show that if T is a bounded linear operator on a complex Hilbert space, then

$$\frac{1}{2}\|T\| \leq \sqrt{\frac{w^2(T)}{2} + \frac{w(T)}{2}\sqrt{w^2(T) - c^2(T)}} \leq w(T),$$

where $w(\cdot)$ and $c(\cdot)$ are the numerical radius and the Crawford number, respectively. We then apply it to prove that for each $t \in [0, \frac{1}{2})$ and natural number k,

$$\frac{(1+2t)^{\frac{1}{2k}}}{2^{\frac{1}{k}}}m(T) \le w(T)$$

where m(T) denotes the minimum modulus of T. Some other related results are also presented.

1. INTRODUCTION AND PRELIMINARIES

Let $\mathbb{B}(H)$ denote the C^* -algebra of all bounded linear operators on a complex Hilbert space H with an inner product $\langle \cdot, \cdot \rangle$ and the corresponding norm $\|\cdot\|$. If dim H = n, we identify $\mathbb{B}(H)$ with the space \mathcal{M}_n of all $n \times n$ matrices with entries in the complex field. For $T \in \mathbb{B}(H)$, let $\|T\|$ and m(T) denote the usual operator norm and the minimum modulus of T, respectively. Here m(T) is defined to be the largest number $\alpha \geq 0$ such that $\|Tx\| \geq \alpha \|x\|$ ($x \in H$). The numerical radius

Copyright 2016 by the Tusi Mathematical Research Group.

Date: Received: Dec. 9, 2016; Accepted: Jan. 30, 2017.

²⁰¹⁰ Mathematics Subject Classification. Primary 47A12; Secondary 47A30.

Key words and phrases. Numerical radius, operator norm, inequality, Cartesian decomposition.

and the Crawford number of $T \in \mathbb{B}(H)$ are defined by

$$w(T) = \sup\{|\langle Tx, x\rangle| : x \in H, ||x|| = 1\}$$

and

$$c(T) = \inf\{|\langle Tx, x \rangle| : x \in H, ||x|| = 1\},\$$

respectively. These concepts are useful in studying linear operators and have attracted the attention of many authors in the last few decades (e.g., see [4, 8], and their references). It is well known that $w(\cdot)$ defines a norm on $\mathbb{B}(H)$ such that for all $T \in \mathbb{B}(H)$,

$$\frac{1}{2} \|T\| \le w(T) \le \|T\|.$$
(1.1)

The inequalities in (1.1) are sharp. The first inequality becomes an equality if $T^2 = 0$. The second inequality becomes an equality if T is normal. Any operator $T \in \mathbb{B}(H)$ can be represented as T = H + iK, the so-called Cartesian decomposition, where $H = \operatorname{Re}(T) = \frac{T+T^*}{2}$ and $K = \operatorname{Im}(T) = \frac{T-T^*}{2i}$ are called the real and imaginary parts of T. It has been shown in [7] that,

$$\sup\left\{\|\alpha H + \beta K\| : \alpha, \beta \in \mathbb{R}, \alpha^2 + \beta^2 = 1\right\} = w(T).$$

In particular, $||H|| \le w(T)$ and $||K|| \le w(T)$.

Concerning the inequality (1.1), Kittaneh [6] has shown the following precise estimate of w(T) by using norm inequalities:

$$\frac{1}{\sqrt{2}}\sqrt{\|H^2 + K^2\|} \le w(T) \le \sqrt{\|H^2 + K^2\|}.$$
(1.2)

Obviously, (1.2) is sharper than the inequality of (1.1). Yamazaki [9] has used the Aluthge transform to improve the second inequality (1.1) so that

$$w(T) \le \frac{1}{2} \left(\|T\| + w(\widetilde{T}) \right)$$

Here \widetilde{T} (the Aluthge transform of T) is defined as $\widetilde{T} = |T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}$, where U is a partial isometry of the polar decomposition of T and $|T| = (T^*T)^{\frac{1}{2}}$ means the absolute value of T.

Further, it has been shown in [1] that,

$$\frac{1}{2}\sqrt{\left\||T|^{2}+|T^{*}|^{2}\right\|+2c(T^{2})} \le w(T) \le \frac{1}{2}\sqrt{\left\||T|^{2}+|T^{*}|^{2}\right\|+2w(T^{2})}.$$

For more material about the numerical radius and other results on numerical radius inequality, see, e.g., [3], [5], and the references therein.

For $T \in \mathbb{B}(H)$, let us recall the abbreviated notations

$$|\cos|T = \inf\left\{\frac{|\langle Tx, x\rangle|}{\|Tx\|\|x\|} : x \in H, \|Tx\| \neq 0\right\}$$

and

$$|\sin|T = \sqrt{1 - |\cos|^2 T}.$$

A. ZAMANI

In the next section, we establish some considerable improvement of the first inequality (1.1). More precisely, we prove that

$$\frac{1}{2}||T|| \le \sqrt{\frac{w^2(T)}{2} + \frac{w(T)}{2}}\sqrt{w^2(T) - c^2(T)} \le w(T)$$

and

$$\frac{1}{2}\|T\| \le \max\left\{|\sin|T, \frac{\sqrt{2}}{2}\right\}w(T) \le w(T)$$

Next, we will give some applications. Particularly, for each $t \in [0, \frac{1}{2})$ and natural number k, we show that

$$\frac{(1+2t)^{\frac{1}{2k}}}{2^{\frac{1}{k}}}m(T) \le w(T).$$

2. Main results

In this section we present some lower bounds for the numerical radii of Hilbert space operators. We start our work with the following result.

Theorem 2.1. Let $T \in \mathbb{B}(H)$. Then

$$\frac{1}{2}||T|| \le \sqrt{\frac{w^2(T)}{2} + \frac{w(T)}{2}\sqrt{w^2(T) - c^2(T)}} \le w(T).$$

Proof. Clearly, $\sqrt{\frac{w^2(T)}{2} + \frac{w(T)}{2}}\sqrt{w^2(T) - c^2(T)} \leq w(T)$. On the other hand, let $x \in H$ with $||x|| \leq 1$. Let $\langle Tx, x \rangle = \lambda_x |\langle Tx, x \rangle|$ for some unit $\lambda_x \in \mathbb{C}$. Hence $\langle \overline{\lambda}_x Tx, x \rangle = |\langle Tx, x \rangle| \geq 0$. Let H + iK be the Cartesian decomposition of $\overline{\lambda}_x T$. Then $\langle Hx, x \rangle + i \langle Kx, x \rangle = \langle \overline{\lambda}_x Tx, x \rangle \geq 0$. Hence

$$\langle \overline{\lambda}_x Tx, x \rangle = \langle Hx, x \rangle, \qquad \langle Kx, x \rangle = 0.$$

We have

$$\frac{1}{4} \|Tx\|^{2} = \frac{1}{4} \left(\|\overline{\lambda}_{x}Tx - \langle \overline{\lambda}_{x}Tx, x \rangle x\|^{2} + |\langle Tx, x \rangle|^{2} \right)
= \frac{1}{4} \left(\|Hx - \langle Hx, x \rangle x + iKx\|^{2} + |\langle Tx, x \rangle|^{2} \right) \quad (\text{since } \langle Kx, x \rangle = 0)
\leq \frac{1}{4} \left(\left(\|Hx - \langle Hx, x \rangle x\| + \|Kx\|\right)^{2} + |\langle Tx, x \rangle|^{2} \right)
\leq \frac{1}{4} \left(\left(\sqrt{\|Hx\|^{2} - |\langle Hx, x \rangle|^{2}} + \|Kx\|\right)^{2} + |\langle Tx, x \rangle|^{2} \right)
\leq \frac{1}{4} \left(\left(\sqrt{w^{2}(T) - |\langle Tx, x \rangle|^{2}} + w(T)\right)^{2} + |\langle Tx, x \rangle|^{2} \right) \quad (2.1)
\qquad (\text{since } \|Hx\|, \|Kx\| \leq w(T) \text{ and } |\langle Tx, x \rangle| = |\langle Hx, x \rangle|)
= \frac{w^{2}(T)}{2} + \frac{w(T)}{2} \sqrt{w^{2}(T) - |\langle Tx, x \rangle|^{2}}.$$

Hence

$$\frac{1}{2}\|Tx\| \le \sqrt{\frac{w^2(T)}{2} + \frac{w(T)}{2}}\sqrt{w^2(T) - |\langle Tx, x\rangle|^2} \qquad (\|x\| \le 1).$$
(2.2)

If we replace x by $\frac{x}{\|x\|}$ in the above inequality, then we obtain

$$\begin{split} \frac{1}{2} \|Tx\| &\leq \|x\| \sqrt{\frac{w^2(T)}{2} + \frac{w(T)}{2} \sqrt{w^2(T) - \left| \langle T(\frac{x}{\|x\|}), \frac{x}{\|x\|} \rangle \right|^2}} \\ &\leq \sqrt{\frac{w^2(T)}{2} + \frac{w(T)}{2} \sqrt{w^2(T) - \left| \langle T(\frac{x}{\|x\|}), \frac{x}{\|x\|} \rangle \right|^2}} \\ &\leq \sqrt{\frac{w^2(T)}{2} + \frac{w(T)}{2} \sqrt{w^2(T) - c^2(T)}}. \end{split}$$

Thus

$$\frac{1}{2}\|Tx\| \le \sqrt{\frac{w^2(T)}{2} + \frac{w(T)}{2}}\sqrt{w^2(T) - c^2(T)}.$$

Taking the supremum over $x \in H$ with $||x|| \le 1$ in the above inequality we deduce the desired inequality.

Remark 2.2. Let
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
. Then $||A|| = w(A) = c(A) = 1$. Thus
$$\frac{1}{2}||A|| = \frac{1}{2} < \sqrt{\frac{w^2(A)}{2} + \frac{w(A)}{2}}\sqrt{w^2(A) - c^2(A)} = \frac{\sqrt{2}}{2} < w(A) = 1$$

Hence the inequalities in Theorem 2.1 can be strict.

Corollary 2.3. Let $T \in \mathbb{B}(H)$. Then

$$||Tx||^2 + |\langle Tx, x \rangle|^2 \le 4w^2(T)$$
 $(x \in H, ||x|| \le 1).$

Proof. Let $x \in H$ with $||x|| \leq 1$. By (2.1) it follows that

$$\frac{1}{4} \|Tx\|^{2} \leq \frac{1}{4} \left(\left(\sqrt{w^{2}(T) - |\langle Tx, x \rangle|^{2}} + w(T) \right)^{2} + |\langle Tx, x \rangle|^{2} \right)$$
$$\leq \frac{1}{4} \left(2 \left(\sqrt{w^{2}(T) - |\langle Tx, x \rangle|^{2}} \right)^{2} + 2w^{2}(T) + |\langle Tx, x \rangle|^{2} \right)$$

(by the arithmetic geometric mean inequality)

$$= \frac{1}{4} \left(4w^2(T) - \left| \langle Tx, x \rangle \right|^2 \right),$$

which gives $||Tx||^2 + |\langle Tx, x \rangle|^2 \le 4w^2(T)$.

Corollary 2.4. Let $A = [a_{ij}] \in \mathcal{M}_n$. Then

$$\frac{\sum_{k=1}^{n} |a_{ki}|^2}{2} \le w^2(A) + w(A)\sqrt{w^2(A) - |a_{ii}|^2} \qquad (1 \le i \le n).$$

101

Proof. Let $x = [0, \dots, 0, 1, 0, \dots, 0]^t$ with 1 in place of i. Then $Ax = [a_{1i}, a_{2i}, \dots, a_{ni}]^t$ and $\langle Ax, x \rangle = a_{ii}$. So, by (2.2) we obtain

$$\frac{1}{2}\sqrt{\sum_{k=1}^{n}|a_{ki}|^{2}} = \frac{1}{2}||Ax|| \leq \sqrt{\frac{w^{2}(A)}{2} + \frac{w(A)}{2}\sqrt{w^{2}(A) - |\langle Ax, x\rangle|^{2}}}$$
$$= \sqrt{\frac{w^{2}(A)}{2} + \frac{w(A)}{2}\sqrt{w^{2}(A) - |a_{ii}|^{2}}}.$$

This yields

$$\frac{\sum_{k=1}^{n} |a_{ki}|^2}{2} \le w^2(A) + w(A)\sqrt{w^2(A) - |a_{ii}|^2}.$$

(2.4)

Theorem 2.5. Let $T \in \mathbb{B}(H)$. Then

$$\frac{1}{2}||T|| \le \max\left\{|\sin||T, \frac{\sqrt{2}}{2}\right\}w(T) \le w(T).$$

Proof. Clearly, $\max\left\{|\sin|T, \frac{\sqrt{2}}{2}\right\} w(T) \le w(T)$. On the other hand, let $x \in H$ with $||x|| \le 1$. By (2.2) we have

$$\frac{1}{2}||Tx|| \le \sqrt{\frac{w^2(T)}{2} + \frac{w(T)}{2}\sqrt{w^2(T) - |\langle Tx, x \rangle|^2}}.$$

Hence

$$\frac{1}{2}\|Tx\| \le \sqrt{\frac{w^2(T)}{2} + \frac{w(T)}{2}}\sqrt{w^2(T) - \|Tx\|^2 |\cos|^2 T},$$

or equivalently,

$$||Tx||^{2} - 2w^{2}(T) \le 2w(T)\sqrt{w^{2}(T) - ||Tx||^{2}|\cos|^{2}T}.$$
(2.3)

We consider two cases.

Case 1. $||Tx||^2 - 2w^2(T) \le 0$. So we get $||Tx|| \le \sqrt{2}w(T)$ and hence $\frac{1}{2}||T|| \le \frac{\sqrt{2}}{2}w(T).$

Case 2. $||Tx||^2 - 2w^2(T) > 0$. It follows from (2.3) that

$$||Tx||^4 - 4||Tx||^2w^2(T) + 4w^4(T) \le 4w^4(T) - 4w^2(T)||Tx||^2|\cos|^2T.$$

This implies

$$||Tx||^{2} \le 4\left(1 - |\cos|^{2}T\right)w^{2}(T)$$

which yields

$$\frac{1}{2}||Tx|| \le |\sin|Tw(T).$$

Taking the supremum over $x \in H$ with $||x|| \leq 1$ in the above inequality we get

$$\frac{1}{2}||T|| \le |\sin|Tw(T).$$
(2.5)

Finally, by (2.4) and (2.5) we conclude the desired inequality. \Box Remark 2.6. Let $A = \begin{bmatrix} 1 & 0 \\ 0 & 1+i \end{bmatrix}$. Simple computations show that $||A|| = w(A) = \sqrt{2}$ and $|\sin|A| = \sqrt{2} - 1$. Thus

$$\frac{1}{2}||A|| = \frac{\sqrt{2}}{2} < \max\left\{|\sin|A, \frac{\sqrt{2}}{2}\right\}w(A) = \frac{\sqrt{2}}{2} \times \sqrt{2} = 1 < w(A) = \sqrt{2}.$$

Hence the inequalities in Theorem 2.5 can be strict.

As a consequence of Theorem 2.5 we have the following result.

Corollary 2.7. Let $T, S \in \mathbb{B}(H)$. Then

$$w(TS) \le 4 \max\left\{ |\sin|T, \frac{\sqrt{2}}{2} \right\} \max\left\{ |\sin|S, \frac{\sqrt{2}}{2} \right\} w(T)w(S) \le 4w(T)w(S).$$

Proof. Applying the second inequality of (1.1) and Theorem 2.5, we get

$$w(TS) \leq ||TS||$$

$$\leq ||T|| ||S||$$

$$\leq 2 \max\left\{ |\sin|T, \frac{\sqrt{2}}{2} \right\} w(T) \times 2 \max\left\{ |\sin|S, \frac{\sqrt{2}}{2} \right\} w(S)$$

$$= 4 \max\left\{ |\sin|T, \frac{\sqrt{2}}{2} \right\} \max\left\{ |\sin|S, \frac{\sqrt{2}}{2} \right\} w(T)w(S) \leq 4w(T)w(S).$$

A fundamental inequality for the numerical radius is the power inequality, which says that for $T \in \mathbb{B}(H)$,

 $w(T^k) \le w^k(T)$

for $k = 1, 2, \cdots$ (see, e.g., [5]). We are now in a position to establish one of our main results.

Theorem 2.8. Let $T \in \mathbb{B}(H)$. For each $t \in [0, \frac{1}{2})$ and natural number k,

$$\frac{(1+2t)^{\frac{1}{2k}}}{2^{\frac{1}{k}}}m(T) \le w(T).$$

Proof. Let $t \in [0, \frac{1}{2})$ and $k \in \mathbb{N}$. Let $x \in H$ with $||x|| \leq 1$. We consider two cases.

Case 1. $||Tx||^2 - 2w^2(T) \le 0$. So we have

$$w^{2}(T) - 2tw(T)\operatorname{Re}\langle Tx, x \rangle + (t^{2} - \frac{1}{4}) ||Tx||^{2}$$

$$\geq w^{2}(T) - 2tw(T)\operatorname{Re}\langle Tx, x \rangle + 2(t^{2} - \frac{1}{4})w^{2}(T)$$

$$= 2w^{2}(T) \left| t - \frac{\langle Tx, x \rangle}{2w(T)} \right|^{2} + \frac{w^{2}(T) - |\langle Tx, x \rangle|^{2}}{2} \geq 0$$

A. ZAMANI

Hence

$$w^{2}(T) - 2tw(T)\operatorname{Re}\langle Tx, x \rangle + (t^{2} - \frac{1}{4})||Tx||^{2} \ge 0.$$
 (2.6)

Case 2. $||Tx||^2 - 2w^2(T) > 0$. It follows from (2.2) that

$$\frac{1}{2}||Tx|| \le \sqrt{\frac{w^2(T)}{2} + \frac{w(T)}{2}}\sqrt{w^2(T) - |\langle Tx, x \rangle|^2}.$$

This implies

$$\left(\frac{1}{4}\|Tx\|^2 - \frac{w^2(T)}{2}\right)^2 \le \frac{w^2(T)}{4} \left(w^2(T) - |\langle Tx, x \rangle|^2\right)$$

which yields

$$4w^{2}(T)||Tx||^{2} - ||Tx||^{4} - 4w^{2}(T)|\langle Tx, x \rangle|^{2} \ge 0.$$
(2.7)

By (2.7), we get

$$w^{2}(T) - 2tw(T)\operatorname{Re}\langle Tx, x \rangle + (t^{2} - \frac{1}{4})||Tx||^{2}$$

= $||Tx||^{2} \left| t - \frac{w(T)\langle Tx, x \rangle}{||Tx||^{2}} \right|^{2} + \frac{4w^{2}(T)||Tx||^{2} - ||Tx||^{4} - 4w^{2}(T)|\langle Tx, x \rangle|^{2}}{4||Tx||^{2}} \ge 0,$

whence

$$w^{2}(T) - 2tw(T)\operatorname{Re}\langle Tx, x \rangle + (t^{2} - \frac{1}{4})||Tx||^{2} \ge 0.$$
(2.8)

By (2.6) and (2.8), we obtain

$$2tw(T) \operatorname{Re}\langle Tx, x \rangle \le w^2(T) + (t^2 - \frac{1}{4}) ||Tx||^2.$$

If we replace T by $\frac{\operatorname{Re}\langle Tx,x\rangle}{|\operatorname{Re}\langle Tx,x\rangle|}T$ in the above inequality, then we get

$$2tw(T) |\operatorname{Re}\langle Tx, x\rangle| \le w^2(T) + (t^2 - \frac{1}{4}) ||Tx||^2 \qquad (||x|| \le 1).$$
(2.9)

Furthermore, if we replace T by $e^{i\theta}T$ in (2.9), then we deduce

$$2tw(T) \left| \operatorname{Re}\left(e^{i\theta} \langle Tx, x \rangle \right) \right| \le w^2(T) + (t^2 - \frac{1}{4}) \|Tx\|^2.$$

Since $\sup \{ |\operatorname{Re}(e^{i\theta}\langle Tx, x\rangle)| : \theta \in \mathbb{R} \} = |\langle Tx, x\rangle|$, by taking the supremum over $\theta \in \mathbb{R}$ in the above inequality we reach

$$2tw(T)|\langle Tx,x\rangle| \le w^2(T) + (t^2 - \frac{1}{4})||Tx||^2.$$
(2.10)

By (2.10), we get

$$2tw(T)|\langle Tx,x\rangle| \le w^2(T) + (t^2 - \frac{1}{4})||Tx||^2 \le w^2(T) + (t^2 - \frac{1}{4})m^2(T).$$

Thus

$$2tw(T)|\langle Tx, x\rangle| \le w^2(T) + (t^2 - \frac{1}{4})m^2(T).$$
(2.11)

By taking the supremum over $x \in H$ with ||x|| = 1 in (2.11), we obtain

$$2tw^{2}(T) \le w^{2}(T) + (t^{2} - \frac{1}{4})m^{2}(T),$$

or equivalently,

$$\frac{(1+2t)^{\frac{1}{2}}}{2}m(T) \le w(T).$$

Replacing T by T^k in the last inequality gives

$$\frac{(1+2t)^{\frac{1}{2}}}{2}m(T^k) \le w(T^k).$$

Since $m^k(T) \leq m(T^k)$ and $w(T^k) \leq w^k(T)$, the above inequality becomes

$$\frac{(1+2t)^{\frac{1}{2}}}{2}m^{k}(T) \le w^{k}(T).$$

Thus $\frac{(1+2t)^{\frac{1}{2k}}}{2^{\frac{1}{k}}}m(T) \le w(T).$

Remark 2.9. Recall that an operator $T \in \mathbb{B}(H)$ is said to be idempotent if $T^2 = T$ and an involution if $T^2 = I$. It is well-known that, if T is idempotent such that $T \neq 0$, then $w(T) = \frac{1}{2}(1 + ||T||)$ and if T is involution then, $w(T) = \frac{1}{2}(||T|| + ||T||^{-1})$ (see, e.g., [1]). So, by Theorem 2.8 for each $t \in [0, \frac{1}{2})$ and $k \in \mathbb{N}$, the following statements hold:

(i) If T is an idempotent operator such that $T \neq 0$, then

$$2^{1-\frac{1}{k}}(1+2t)^{\frac{1}{2k}}m(T) \le 1 + \|T\|.$$

(ii) If T is an involution operator, then

$$2^{1-\frac{1}{k}}(1+2t)^{\frac{1}{2k}}m(T) \le ||T|| + ||T||^{-1}.$$

Corollary 2.10. Let $T \in \mathbb{B}(H)$. For each $t \in [0, \frac{1}{2})$,

$$\frac{\|T\|}{2} \le \sqrt{\frac{w^2(T) - 2tw(T)\mu(T)}{1 - 4t^2}},$$

where $\mu(T) = \inf \{ |Re\langle Tx, x\rangle| : x \in H, ||x|| \le 1 \}.$

Proof. Let $t \in [0, \frac{1}{2})$ and let $x \in H$ with $||x|| \leq 1$. By (2.9), we have

$$2tw(T) |\operatorname{Re}\langle Tx, x\rangle| \le w^2(T) + (t^2 - \frac{1}{4}) ||Tx||^2.$$

Since $\mu(T) = \inf \{ |\operatorname{Re}\langle Tx, x\rangle | : x \in H, ||x|| \le 1 \}$, so by the above inequality we obtain

$$w^{2}(T) - 2tw(T)\mu(T) \ge w^{2}(T) - 2tw(T) |\operatorname{Re}\langle Tx, x\rangle| \ge (\frac{1}{4} - t^{2})||Tx||^{2}.$$

Hence

$$(\frac{1}{4} - t^2) \|Tx\|^2 \le w^2(T) - 2tw(T)\mu(T).$$

By taking the supremum over $x \in H$ with ||x|| = 1 in the above inequality, we wet

$$\left(\frac{1}{4} - t^2\right) \|T\|^2 \le w^2(T) - 2tw(T)\mu(T).$$

Now, by the last inequality, we deduce the desired inequality.

Let us recall that by [2, Lemma 2.1] we have

$$w(x \otimes y) = \frac{1}{2} (|\langle x, y \rangle| + ||x|| ||y||),$$

for all $x, y \in H$. Here, $x \otimes y$ denotes the rank one operator in $\mathbb{B}(H)$ defined by $(x \otimes y)(z) := \langle z, y \rangle x$ for all $z \in H$. The following result is a reverse the Cauchy-Schwarz inequality in the setting of Hilbert spaces.

Corollary 2.11. Let $x, y \in H$. For each $t \in [0, \frac{1}{2})$ and $k \in \mathbb{N}$, the following statements hold.

(i)
$$\left(\frac{1}{\max\left\{\sqrt{1-\inf\left\{\frac{|\langle x,z\rangle|^2}{\|x\|^2\|z\|^2}:z\in H,\langle z,y\rangle\neq 0\right\}},\frac{\sqrt{2}}{2}\right\}}-1\right)\|x\|\|y\|\leq |\langle x,y\rangle|.$$

(ii) $\left(2^{1-\frac{1}{k}}(1+2t)^{\frac{1}{2k}}\inf\left\{|\langle z,y\rangle|:z\in H,\|z\|=1\}-\|y\|\right)\|x\|\leq |\langle x,y\rangle|.$

Proof. Simple computations show that

$$\sin |(x \otimes y) = \sqrt{1 - \inf\left\{\frac{|\langle x, z \rangle|^2}{\|x\|^2 \|z\|^2} : z \in H, \langle z, y \rangle \neq 0\right\}}$$
(2.12)

and

$$m(x \otimes y) = \|x\| \inf \{ |\langle z, y \rangle| : z \in H, \|z\| = 1 \}.$$
 (2.13)

So, by Theorem 2.5 and (2.12), we obtain

$$\frac{1}{2} \|x\| \|y\| \le \max\left\{ |\sin|(x \otimes y), \frac{\sqrt{2}}{2} \right\} \frac{1}{2} \left(|\langle x, y \rangle| + \|x\| \|y\| \right),$$

or equivalently,

$$\left(\frac{1}{\max\left\{\sqrt{1-\inf\left\{\frac{|\langle x,z\rangle|^2}{\|x\|^2\|z\|^2}:z\in H, \langle z,y\rangle\neq 0\right\}}}, \frac{\sqrt{2}}{2}\right\}} - 1\right)\|x\|\|y\| \le |\langle x,y\rangle|.$$

Furthermore, for each $t \in [0, \frac{1}{2})$ and $k \in \mathbb{N}$, by Theorem 2.8 and (2.13) we get

$$\frac{(1+2t)^{\frac{1}{2k}}}{2^{\frac{1}{k}}} \|x\| \inf \left\{ |\langle z, y \rangle| : z \in H, \|z\| = 1 \right\} \le \frac{1}{2} \left(|\langle x, y \rangle| + \|x\| \|y\| \right),$$

or equivalently,

$$\left(2^{1-\frac{1}{k}}(1+2t)^{\frac{1}{2k}}\inf\{|\langle z,y\rangle|:z\in H, \|z\|=1\}-\|y\|\right)\|x\|\leq |\langle x,y\rangle|.$$

Acknowledgments. The author expresses his gratitude to the referee for his/her comments towards an improved version of the paper.

106

References

- 1. A. Abu-Omar and F. Kittaneh, Upper and lower bounds for the numerical radius with an application to involution operators, Rocky Mountain J. Math. 45 (2015), no. 4, 1055–1064.
- M. T. Chien, H. L. Gau, C. K. Li, M. C. Tsai, and K. Z. Wang, Product of operators and numerical range, Linear Multilinear Algebra 64 (2016), no. 1, 58–67.
- S. S. Dragomir, A survey of some recent inequalities for the norm and numerical radius of operators in Hilbert spaces, Banach J. Math. Anal. 1 (2007), no. 2, 154–175.
- M. El-Haddad and F. Kittaneh, Numerical radius inequalities for Hilbert space operators, II. Studia Math. 182 (2007), no. 2, 133–140.
- 5. K. E. Gustafson and D. K. M. Rao, Numerical range. The field of values of linear operators and matrices, Universitext. Springer-Verlag, New York, 1997.
- F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math. 168 (2005), no. 1, 73–80.
- F. Kittaneh, M.S. Moslehian, and T. Yamazaki, *Cartesian decomposition and numerical radius inequalities*, Linear Algebra Appl. 471 (2015), 46–53.
- M.S. Moslehian and M. Sattari, Inequalities for operator space numerical radius of 2 × 2 block matrices, J. Math. Phys. 57 (2016), no. 1, 015201, 15pp.
- T. Yamazaki, On upper and lower bounds of the numerical radius and an equality condition, Studia Math. 178 (2007), no. 1, 83–89.

DEPARTMENT OF MATHEMATICS, FARHANGIAN UNIVERSITY, IRAN. *E-mail address:* zamani.ali85@yahoo.com