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Abstract. In this paper, we deal with the problem of characterizing linear
maps compressing the numerical range. A counterexample is given to show
that such a map need not be a Jordan ∗-homomorphism in general even if
the C∗-algebras are commutative. Next, under an auxiliary condition we show
that such a map is a Jordan ∗-homomorphism.

1. Introduction

Let A and B be unital complex Banach algebras. Denote by 1A and 1B the
units of A and B respectively ( or simply 1 if no confusion can arise). Define the
set of normalized states

S(A) = {f ∈ A′ : f(1) = ‖f‖ = 1},
where A′ denotes the dual space. For any element a ∈ A, the algebraic numerical
range V (a) and numerical radius v(a) of a are defined by

V (a) = {f(a) : f ∈ S(A)} and v(a) = sup
z∈V (a)

|z|.

It is well known that V is a compact and convex set of the complex plane, v(.)
is a norm on A and this norm is equivalent to the usual operator norm. The
suggested references on numerical ranges are [2, 10]. A linear map T : A −→ B is
said to be numerical range (resp. numerical radius) preserving if V (T (a)) = V (a)
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(resp. v(T (a)) = v(a)) for every a ∈ A. Also, we shall say that T compresses the
numerical range if V (T (a)) ⊂ V (a) for every a ∈ A.

There has been considerable interest in studying maps between C∗-algebras
leaving invariant the numerical range or the numerical radius. A nice survey of
earlier known results relating to the preserving problem can be found in [4, 14].
In 1975, Pellegrini [16] studied numerical range preserving operators on a Banach
algebra. Particularly, when A and B are two C∗-algebras, it was shown that a
linear isomorphism T : A −→ B is a Jordan ∗-isomorphism if and only if it is
numerical range preserving. Later, Chan [5] showed that a linear isomorphism
T : A −→ A is numerical radius preserving if and only if cT is a Jordan ∗-
isomorphism for some central and unitary element c ∈ A. Surjective nonlinear
maps T : A −→ B between unital C∗-algebras that satisfy v(T (a) − T (b)) =
v(a − b) for all a, b ∈ A were characterized in [1] under a mild condition that
T (1)−T (0) belongs to the center of B. Recently, in [3], the assumption T (1)−T (0)
belongs to the center of B is successfully removed.

The aim of this paper, is to study maps between C∗-algebras compressing the
numerical range. Firstly, we shall give an example showing that such a map
need not to be a Jordan ∗-homomorphism. Next, We will show that under some
supplementary condition such a map is a Jordan ∗-homomorphism.

We close this Introduction with some definitions and properties of the numerical
range needed in the sequel. In the case of C∗-algebra, a linear functional f ∈ A′

is said to be positive (f ≥ 0) if f(xx∗) ≥ 0 for all x ∈ A. Note that the set of
normalized states S(A) is nothing but

S(A) = {f ∈ A′ : f ≥ 0 and f(1) = 1}.

Recall also that a positive linear functional f on A is said to be pure if for every
positive functional g on A satisfying g(xx∗) ≤ f(xx∗) for all x ∈ A, there is a
scalar 0 ≤ λ ≤ 1 such that g = λf . The set of pure states on A is denoted by
P (A). It is well known that P (A) coincides with the set of all extremal points of
S(A).

For any element a ∈ A and any scalars α, β ∈ C, we have: V (a) ⊂ R (resp.
V (a) ⊂ [0, +∞) ) if and only if a = a∗ (resp. a ≥ 0). Also V (α1+βa) = α+βV (a)
and V (a) = {α} ⇐⇒ a = α1. The numerical radius v is a norm and satisfies
1
e
‖a‖ ≤ v(a) ≤ ‖a‖, where e = exp(1). See [2] and [11] for further details.

2. Main result

Let A and B be two unital complex C∗-algebras. Let T : A −→ B be a linear
map. Recall that T is numerical range compressing if

V (T (a)) ⊂ V (a), ∀a ∈ A, (2.1)

Note that if T compresses the numerical range then T (1) = 1, since the numerical
range is a nonempty set of C and V (T (1)) ⊂ V (1) = {1}. Let us begin by the
following example, which shows that a linear map which compresses the numerical
range need not to be a Jordan ∗-homomorphism.
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Example 2.1. Consider the C∗-algebra A = M2(C) and define the map T :
A −→ A for any matrix A = (aij)1≤i,j≤2 ∈ A by

T (A) =
1

2
A +

1

4
tr(A)1

where tr denotes the usual function trace. Clearly, we have f◦T ∈ S(A) whenever
f ∈ S(A). Hence according to [16, Theorem 2.2], T satisfies condition (2.1).

Consider the two matrices A =

(
2 0
0 0

)
and B =

(
i 0
0 1

)
. An easy calculation

will convince the reader that B is unitary, but T (A2) 6= T (A)2 and T (B) is not
unitary. This shows that T is not neither a Jordan ∗-homomorphism nor a unitary
preserving map.

At the 4th Seminar on Functional analysis and its applications, which was held
in University of Mashhad in March 2016 it is shown that in [9] that if A and
B are commutative and T is a numerical range compressing, then T is a unital
∗-homomorphism, see [9, Theorem 2.5 & 2.6]. In fact, in his proof, the author
shows that such a map is completely positive and preserves unitary elements.
But we remark that this proof is based on the fact that if an element u is unitary
in A, then |f(u)| = 1 for any f ∈ S(A). But this fails to be true even if the
C∗-algebras A and B are commutative. It is in fact true only when f is a pure
state, see for instance [5, Proposition 1]. To see why this, let A = C(T) be
the C∗-algebra of all continuous functions on the unit circle T and let m be the
normalised arc length measure on T. Then the linear functional ϕ, defined by
ϕ(f) =

∫
f dm = 1

2π

∫ 2π

0
f(eit) dt is a state of A. The element u ∈ A defined by

u(z) = z, ∀z ∈ T is unitary but ϕ(u) = 0 < 1. Finally observe that ϕ is not a
∗-homomorphism although that V (ϕ(a)) ⊂ V (a) for all a ∈ A, since ϕ is a state.
Therefore, the main result [9, Theorem 2.5 & 2.6] is wrong in general.

Based on the aforesaid a natural question arises. Namely, what additional
condition on a linear map T compressing the numerical range which forces T
to be a Jordan ∗-homomorphism? To that end, we shall impose the following
additional requirement on the map T .

Assumption 2.2. For any a, b ∈ A+ such that ab = 0, we have T (a) ≥ T (b)
implies that T (a)T (b) = 0.

We establish the following.

Theorem 2.3. Let A and B be two unital C∗-algebras. Any surjective linear map
T : A −→ B compressing the numerical range and satisfying Assumption 2.2 is
a unital Jordan ∗-homomorphism.

Before turning to the proof of Theorem 2.3, few remarks can be made.

Remark 2.4. If T preserves the numerical range then Assumption 2.2 is already
satisfied. Indeed, let a, b ∈ A+ such that ab = 0 and T (a) ≥ T (b). Since
V (T (a− b)) = V (a− b) and T (a− b) ≥ 0, then a− b ≥ 0. By [15, Theorem 2.2.5],
0 ≤ b3 ≤ bab = 0. Accordingly b3 = b = 0. Therefore T (a) = T (b) = 0.
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Remark 2.5. Conditions (2.1) and Assumption 2.2 do not imply in general that T
is linear as the following example quoted from [12] shows. Let A = B = M2(C).
Consider the mapping T : A −→ A defined as

T (A) =

{
A if A is invertible
0 otherwise.

Straightforward computations show that T satisfies assumptions (2.1) and As-
sumption 2.2 but is not additive.

Remark 2.6. In [6], it was been shown that if T : A −→ B is a bounded linear map
between unital C∗-algebras preserving the zero products of self-adjoint elements
in A then T = T (1)J for a Jordan ∗-homomorphism J from A into the bidual
B∗∗ of B. Note that Assumption 2.2 does not imply in general that T preserves
the zero product of self-adjoint elements or a Jordan ∗-homomorphism. To see
why this consider the C∗-algebra A = C([0, 1]) and the map T : A −→ A given
by T (f) = 2f − f(1). Clearly, T is surjective and unital. But then (T (f))2 −
T (f 2) = 2f 2 − 4f(1)f + 2f(1)2 is not always zero. Hence T is not a Jordan ∗-
homomorphism. Next, let f, g ∈ A+ be such that fg = 0 and T (f) ≥ T (g). Since
T (f) ≥ T (g), then f(1) ≥ g(1) and f(x) ≥ g(x)+ 1

2
(f(1)−g(1)), for any x ∈ [0, 1].

This together with the fact fg = 0 yields that g = 0. Therefore T (f)T (g) = 0.
Accordingly T satisfies Assumption 2.2. On the other hand, one can check easily
that T does not preserve the zero product of self-adjoint elements.

3. Proof of Theorem 2.3:

We present now the proof of Theorem 2.3. Our arguments are influenced by
ideas from the proof of [7, Theorem 5] but by using properties of the numerical
range. We divide the proof into three steps.

Step 1. T is unital and positive. Moreover, for each b ≥ 0 in B there is an a ≥ 0
in A such that T (a) = b.

Firstly, note that T (1) = 1, since V (T (1)) ⊂ V (1) = {1}. Now, let a ∈ A+.
Then V (a) ⊂ [0,∞). Since V (T (a)) ⊂ V (a) we infer that T (a) ∈ B+ and
in particular T is self adjoint, that is T (a)∗ = T (a),∀a = a∗ ∈ A. Now, let
b ≥ 0 and a ∈ A such that T (a) = b. Without loss of generality we may
assume that a = a∗ (otherwise take a+a∗

2
instead of a). By [8, Proposition 12.5],

there exist a+, a− ≥ 0 such that a = a+ − a− and a+a− = a−a+ = 0. Then
b = T (a+) − T (a−) with T (a+) ≥ 0 and T (a−) ≥ 0. Assumption 2.2 entails
that T (a+)T (a−) = T (a−)T (a+) = 0. Since every self adjoint element in a C∗-
algebra can be uniquely written as the difference of two positive elements with
zero product, we infer that T (a−) = 0. This completes the proof of the first step.

Step 2. The kernel of T is a closed ideal of A.

Firstly observe that by the proof of Step 1, we have that if T (a) = 0 and
a = a+ − a− with a+a− = a−a+ = 0 and a± ≥ 0, then T (a+) = T (a−) = 0. Thus
each element in kerT is a linear combination of positive elements in kerT . Now,
Lemma 5.1 of [17] can be used to deduce that kerT is a two sided ideal. However,
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for the sake of completeness we sketch a different proof of this fact. To that end
it suffices to show that a ≥ 0 and T (a) = 0 imply that T (ax) = T (xa) = 0 for
all positive element x ∈ A. Fix such an a ∈ A, a similar reasoning to that of
[7, Theorem 5] entails that T (ax)∗ = T (xa) = −T (ax). By keeping in mind that
T (x) ≥ 0 for any x ∈ A+, we infer that the linear functional f ◦ T is positive
and unital, for any f ∈ S(B). Accordingly f ◦ T ∈ S(A). Hence, applying the
Cauchy-Schwarz inequality to f ◦ T yields

|f ◦ T (ax)|2 = |f ◦ T (a
1
2 a

1
2 x)|2 ≤ f ◦ T (a) f ◦ T (xax) = 0.

Accordingly, f(T (ax)) = 0, for all f ∈ S(B) and so T (ax) = T (xa) = 0 as
desired. The kernel of T is therefore an ideal. Since v(T (a)) ≤ v(a),∀a ∈ A, v
and ‖.‖ are two equivalent norms, then T is bounded and so the kernel of T is
closed.

Step 3. T is a Jordan ∗-homomorphism.

Firstly, note that by Step 1 we have T (1) = 1 and T is positive. By Step 2,
ker T is a closed ideal of A. Then T induces the unital and positive bijective

linear map T̃ : A/kerT −→ B defined by T̃ (a + kerT ) = T (a). Again Step 1,

entails that T̃−1 is also positive. So, by [13, Corollary 5] we have T̃ is a Jordan

∗-isomorphism. Thus T , the composition of the natural quotient map and T̃ , is
a Jordan ∗-homomorphism.
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