Adv. Oper. Theory 2 (2017), no. 2, 108-113
http://doi.org/10.22034/aot.1612-1067
ISSN: 2538-225X (electronic)
http://aot-math.org

ON MAPS COMPRESSING THE NUMERICAL RANGE BETWEEN C^{*}-ALGEBRAS

ASHWAQ FAHAD ALBIDEEWI ${ }^{1}$ and MOHAMED MABROUK ${ }^{1,2 *}$
Communicated by A. Sims

Abstract

In this paper, we deal with the problem of characterizing linear maps compressing the numerical range. A counterexample is given to show that such a map need not be a Jordan $*$-homomorphism in general even if the C^{*}-algebras are commutative. Next, under an auxiliary condition we show that such a map is a Jordan $*$-homomorphism.

1. Introduction

Let \mathcal{A} and \mathcal{B} be unital complex Banach algebras. Denote by $\mathbf{1}_{\mathcal{A}}$ and $\mathbf{1}_{\mathcal{B}}$ the units of \mathcal{A} and \mathcal{B} respectively (or simply $\mathbf{1}$ if no confusion can arise). Define the set of normalized states

$$
S(\mathcal{A})=\left\{f \in \mathcal{A}^{\prime}: f(\mathbf{1})=\|f\|=1\right\},
$$

where \mathcal{A}^{\prime} denotes the dual space. For any element $a \in \mathcal{A}$, the algebraic numerical range $V(a)$ and numerical radius $v(a)$ of a are defined by

$$
V(a)=\{f(a): f \in S(\mathcal{A})\} \text { and } v(a)=\sup _{z \in V(a)}|z| .
$$

It is well known that V is a compact and convex set of the complex plane, $v($. is a norm on \mathcal{A} and this norm is equivalent to the usual operator norm. The suggested references on numerical ranges are [2, 10]. A linear map $T: \mathcal{A} \longrightarrow \mathcal{B}$ is said to be numerical range (resp. numerical radius) preserving if $V(T(a))=V(a)$

[^0](resp. $v(T(a))=v(a))$ for every $a \in \mathcal{A}$. Also, we shall say that T compresses the numerical range if $V(T(a)) \subset V(a)$ for every $a \in \mathcal{A}$.

There has been considerable interest in studying maps between C^{*}-algebras leaving invariant the numerical range or the numerical radius. A nice survey of earlier known results relating to the preserving problem can be found in [4, 14]. In 1975, Pellegrini [16] studied numerical range preserving operators on a Banach algebra. Particularly, when \mathcal{A} and \mathcal{B} are two C^{*}-algebras, it was shown that a linear isomorphism $T: \mathcal{A} \longrightarrow \mathcal{B}$ is a Jordan $*$-isomorphism if and only if it is numerical range preserving. Later, Chan [5] showed that a linear isomorphism $T: \mathcal{A} \longrightarrow \mathcal{A}$ is numerical radius preserving if and only if $c T$ is a Jordan $*-$ isomorphism for some central and unitary element $c \in \mathcal{A}$. Surjective nonlinear maps $T: \mathcal{A} \longrightarrow \mathcal{B}$ between unital C^{*}-algebras that satisfy $v(T(a)-T(b))=$ $v(a-b)$ for all $a, b \in \mathcal{A}$ were characterized in [1] under a mild condition that $T(\mathbf{1})-T(0)$ belongs to the center of \mathcal{B}. Recently, in [3], the assumption $T(\mathbf{1})-T(0)$ belongs to the center of \mathcal{B} is successfully removed.

The aim of this paper, is to study maps between C^{*}-algebras compressing the numerical range. Firstly, we shall give an example showing that such a map need not to be a Jordan $*$-homomorphism. Next, We will show that under some supplementary condition such a map is a Jordan $*$-homomorphism.

We close this Introduction with some definitions and properties of the numerical range needed in the sequel. In the case of C^{*}-algebra, a linear functional $f \in \mathcal{A}^{\prime}$ is said to be positive $(f \geq 0)$ if $f\left(x x^{*}\right) \geq 0$ for all $x \in \mathcal{A}$. Note that the set of normalized states $S(\mathcal{A})$ is nothing but

$$
S(\mathcal{A})=\left\{f \in \mathcal{A}^{\prime}: f \geq 0 \text { and } f(\mathbf{1})=1\right\}
$$

Recall also that a positive linear functional f on \mathcal{A} is said to be pure if for every positive functional g on \mathcal{A} satisfying $g\left(x x^{*}\right) \leq f\left(x x^{*}\right)$ for all $x \in \mathcal{A}$, there is a scalar $0 \leq \lambda \leq 1$ such that $g=\lambda f$. The set of pure states on \mathcal{A} is denoted by $P(\mathcal{A})$. It is well known that $P(\mathcal{A})$ coincides with the set of all extremal points of $S(\mathcal{A})$.

For any element $a \in \mathcal{A}$ and any scalars $\alpha, \beta \in \mathbb{C}$, we have: $V(a) \subset \mathbb{R}$ (resp. $V(a) \subset[0,+\infty))$ if and only if $a=a^{*}($ resp. $a \geq 0)$. Also $V(\alpha 1+\beta a)=\alpha+\beta V(a)$ and $V(a)=\{\alpha\} \Longleftrightarrow a=\alpha 1$. The numerical radius v is a norm and satisfies $\frac{1}{e}\|a\| \leq v(a) \leq\|a\|$, where $e=\exp (1)$. See [2] and [11] for further details.

2. Main result

Let \mathcal{A} and \mathcal{B} be two unital complex C^{*}-algebras. Let $T: \mathcal{A} \longrightarrow \mathcal{B}$ be a linear map. Recall that T is numerical range compressing if

$$
\begin{equation*}
V(T(a)) \subset V(a), \quad \forall a \in \mathcal{A} \tag{2.1}
\end{equation*}
$$

Note that if T compresses the numerical range then $T(\mathbf{1})=\mathbf{1}$, since the numerical range is a nonempty set of \mathbb{C} and $V(T(\mathbf{1})) \subset V(\mathbf{1})=\{1\}$. Let us begin by the following example, which shows that a linear map which compresses the numerical range need not to be a Jordan $*$-homomorphism.

Example 2.1. Consider the C^{*}-algebra $\mathcal{A}=\mathcal{M}_{2}(\mathbb{C})$ and define the map T : $\mathcal{A} \longrightarrow \mathcal{A}$ for any matrix $A=\left(a_{i j}\right)_{1 \leq i, j \leq 2} \in \mathcal{A}$ by

$$
T(A)=\frac{1}{2} A+\frac{1}{4} \operatorname{tr}(A) \mathbf{1}
$$

where tr denotes the usual function trace. Clearly, we have $f \circ T \in S(\mathcal{A})$ whenever $f \in S(\mathcal{A})$. Hence according to [16, Theorem 2.2], T satisfies condition (2.1). Consider the two matrices $A=\left(\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right)$ and $B=\left(\begin{array}{cc}i & 0 \\ 0 & 1\end{array}\right)$. An easy calculation will convince the reader that B is unitary, but $T\left(A^{2}\right) \neq T(A)^{2}$ and $T(B)$ is not unitary. This shows that T is not neither a Jordan $*$-homomorphism nor a unitary preserving map.

At the $4^{\text {th }}$ Seminar on Functional analysis and its applications, which was held in University of Mashhad in March 2016 it is shown that in [9] that if \mathcal{A} and \mathcal{B} are commutative and T is a numerical range compressing, then T is a unital *-homomorphism, see [9, Theorem $2.5 \& 2.6]$. In fact, in his proof, the author shows that such a map is completely positive and preserves unitary elements. But we remark that this proof is based on the fact that if an element u is unitary in \mathcal{A}, then $|f(u)|=1$ for any $f \in S(\mathcal{A})$. But this fails to be true even if the C^{*}-algebras \mathcal{A} and \mathcal{B} are commutative. It is in fact true only when f is a pure state, see for instance [5, Proposition 1]. To see why this, let $\mathcal{A}=C(\mathbb{T})$ be the C^{*}-algebra of all continuous functions on the unit circle \mathbb{T} and let m be the normalised arc length measure on \mathbb{T}. Then the linear functional φ, defined by $\varphi(f)=\int f d m=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{i t}\right) d t$ is a state of \mathcal{A}. The element $u \in \mathcal{A}$ defined by $u(z)=z, \forall z \in \mathbb{T}$ is unitary but $\varphi(u)=0<1$. Finally observe that φ is not a *-homomorphism although that $V(\varphi(a)) \subset V(a)$ for all $a \in \mathcal{A}$, since φ is a state. Therefore, the main result [9, Theorem $2.5 \& 2.6]$ is wrong in general.

Based on the aforesaid a natural question arises. Namely, what additional condition on a linear map T compressing the numerical range which forces T to be a Jordan $*$-homomorphism? To that end, we shall impose the following additional requirement on the map T.

Assumption 2.2. For any $a, b \in \mathcal{A}^{+}$such that $a b=0$, we have $T(a) \geq T(b)$ implies that $T(a) T(b)=0$.

We establish the following.
Theorem 2.3. Let \mathcal{A} and \mathcal{B} be two unital C^{*}-algebras. Any surjective linear map $T: \mathcal{A} \longrightarrow \mathcal{B}$ compressing the numerical range and satisfying Assumption 2.2 is a unital Jordan $*$-homomorphism.

Before turning to the proof of Theorem 2.3, few remarks can be made.
Remark 2.4. If T preserves the numerical range then Assumption 2.2 is already satisfied. Indeed, let $a, b \in \mathcal{A}^{+}$such that $a b=0$ and $T(a) \geq T(b)$. Since $V(T(a-b))=V(a-b)$ and $T(a-b) \geq 0$, then $a-b \geq 0$. By [15, Theorem 2.2.5], $0 \leq b^{3} \leq b a b=0$. Accordingly $b^{3}=b=0$. Therefore $T(a)=T(b)=0$.

Remark 2.5. Conditions (2.1) and Assumption 2.2 do not imply in general that T is linear as the following example quoted from [12] shows. Let $\mathcal{A}=\mathcal{B}=\mathcal{M}_{2}(\mathbb{C})$. Consider the mapping $T: \mathcal{A} \longrightarrow \mathcal{A}$ defined as

$$
T(A)= \begin{cases}A & \text { if } A \text { is invertible } \\ 0 & \text { otherwise }\end{cases}
$$

Straightforward computations show that T satisfies assumptions (2.1) and Assumption 2.2 but is not additive.

Remark 2.6. In [6], it was been shown that if $T: \mathcal{A} \longrightarrow \mathcal{B}$ is a bounded linear map between unital C^{*}-algebras preserving the zero products of self-adjoint elements in \mathcal{A} then $T=T(\mathbf{1}) J$ for a Jordan $*$-homomorphism J from \mathcal{A} into the bidual $B^{* *}$ of \mathcal{B}. Note that Assumption 2.2 does not imply in general that T preserves the zero product of self-adjoint elements or a Jordan $*$-homomorphism. To see why this consider the C^{*}-algebra $\mathcal{A}=C([0,1])$ and the map $T: \mathcal{A} \longrightarrow \mathcal{A}$ given by $T(f)=2 f-f(1)$. Clearly, T is surjective and unital. But then $(T(f))^{2}-$ $T\left(f^{2}\right)=2 f^{2}-4 f(1) f+2 f(1)^{2}$ is not always zero. Hence T is not a Jordan $*-$ homomorphism. Next, let $f, g \in \mathcal{A}^{+}$be such that $f g=0$ and $T(f) \geq T(g)$. Since $T(f) \geq T(g)$, then $f(1) \geq g(1)$ and $f(x) \geq g(x)+\frac{1}{2}(f(1)-g(1))$, for any $x \in[0,1]$. This together with the fact $f g=0$ yields that $g=0$. Therefore $T(f) T(g)=0$. Accordingly T satisfies Assumption 2.2. On the other hand, one can check easily that T does not preserve the zero product of self-adjoint elements.

3. Proof of Theorem 2.3:

We present now the proof of Theorem 2.3. Our arguments are influenced by ideas from the proof of [7, Theorem 5] but by using properties of the numerical range. We divide the proof into three steps.

Step 1. T is unital and positive. Moreover, for each $b \geq 0$ in \mathcal{B} there is an $a \geq 0$ in \mathcal{A} such that $T(a)=b$.

Firstly, note that $T(\mathbf{1})=\mathbf{1}$, since $V(T(\mathbf{1})) \subset V(\mathbf{1})=\{1\}$. Now, let $a \in \mathcal{A}^{+}$. Then $V(a) \subset[0, \infty)$. Since $V(T(a)) \subset V(a)$ we infer that $T(a) \in \mathcal{B}^{+}$and in particular T is self adjoint, that is $T(a)^{*}=T(a), \forall a=a^{*} \in \mathcal{A}$. Now, let $b \geq 0$ and $a \in \mathcal{A}$ such that $T(a)=b$. Without loss of generality we may assume that $a=a^{*}$ (otherwise take $\frac{a+a^{*}}{2}$ instead of a). By [8, Proposition 12.5], there exist $a_{+}, a_{-} \geq 0$ such that $a=a_{+}-a_{-}$and $a_{+} a_{-}=a_{-} a_{+}=0$. Then $b=T\left(a_{+}\right)-T\left(a_{-}\right)$with $T\left(a_{+}\right) \geq 0$ and $T\left(a_{-}\right) \geq 0$. Assumption 2.2 entails that $T\left(a_{+}\right) T\left(a_{-}\right)=T\left(a_{-}\right) T\left(a_{+}\right)=0$. Since every self adjoint element in a $C^{*}-$ algebra can be uniquely written as the difference of two positive elements with zero product, we infer that $T\left(a_{-}\right)=0$. This completes the proof of the first step.

Step 2. The kernel of T is a closed ideal of \mathcal{A}.
Firstly observe that by the proof of Step 1, we have that if $T(a)=0$ and $a=a_{+}-a_{-}$with $a_{+} a_{-}=a_{-} a_{+}=0$ and $a_{ \pm} \geq 0$, then $T\left(a_{+}\right)=T\left(a_{-}\right)=0$. Thus each element in $\operatorname{ker} T$ is a linear combination of positive elements in ker T. Now, Lemma 5.1 of [17] can be used to deduce that $\operatorname{ker} T$ is a two sided ideal. However,
for the sake of completeness we sketch a different proof of this fact. To that end it suffices to show that $a \geq 0$ and $T(a)=0$ imply that $T(a x)=T(x a)=0$ for all positive element $x \in \mathcal{A}$. Fix such an $a \in \mathcal{A}$, a similar reasoning to that of [7, Theorem 5] entails that $T(a x)^{*}=T(x a)=-T(a x)$. By keeping in mind that $T(x) \geq 0$ for any $x \in \mathcal{A}^{+}$, we infer that the linear functional $f \circ T$ is positive and unital, for any $f \in S(\mathcal{B})$. Accordingly $f \circ T \in S(\mathcal{A})$. Hence, applying the Cauchy-Schwarz inequality to $f \circ T$ yields

$$
|f \circ T(a x)|^{2}=\left|f \circ T\left(a^{\frac{1}{2}} a^{\frac{1}{2}} x\right)\right|^{2} \leq f \circ T(a) f \circ T(x a x)=0
$$

Accordingly, $f(T(a x))=0$, for all $f \in S(\mathcal{B})$ and so $T(a x)=T(x a)=0$ as desired. The kernel of T is therefore an ideal. Since $v(T(a)) \leq v(a), \forall a \in \mathcal{A}, v$ and $\|\cdot\|$ are two equivalent norms, then T is bounded and so the kernel of T is closed.

Step 3. T is a Jordan $*$-homomorphism.
Firstly, note that by Step 1 we have $T(\mathbf{1})=\mathbf{1}$ and T is positive. By Step 2, $\operatorname{ker} T$ is a closed ideal of \mathcal{A}. Then T induces the unital and positive bijective linear map $\widetilde{T}: \mathcal{A} / \operatorname{ker} T \longrightarrow \mathcal{B}$ defined by $\widetilde{T}(a+\operatorname{ker} T)=T(a)$. Again Step 1, entails that \widetilde{T}^{-1} is also positive. So, by [13, Corollary 5] we have \widetilde{T} is a Jordan *-isomorphism. Thus T, the composition of the natural quotient map and \widetilde{T}, is a Jordan $*$-homomorphism.

Acknowledgments. The authors wish to express their thanks to the referee for carefully reading the paper and for giving valuable suggestions.

References

1. Z. Bai, J. Hou, and Z. Xu, Maps preserving numerical radius distance on C^{*}-algebras, Studia Math. 162 (2004), no. 2, 97-104.
2. F. F Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and elements of normed algebras, Cambridge Univ. Press, London, 1971.
3. A. Bourhim and M. Mabrouk, On maps preserving the numerical radius distance between C^{*}-algebras, preprint.
4. A. Bourhim and J. Mashreghi, A survey on preservers of spectra and local spectra, Invariant Subspaces of the Shift Operator, Contemp. Math., Amer. Math. Soc., Providence, RI, 2015, pp. 45-98.
5. J. T. Chan, Numerical radius preserving operators on C^{*}-algebras, Arch. Math. (Basel) 70 (1998), no. 6, 486-488.
6. M. A. Chebotar, W.-F. Ke, P.-H. Lee, and N.-C. Wong, Mappings preserving zero products, Studia Math. 155, no. 1, 77-94.
7. M. D. Choi, D. Hadwin, E. Nordgren, H. Radjavi, and P. Rosenthal, On positive linear maps preserving invertibility, J. Funct. Anal. 59 (1984), 462-469.
8. R. S. Doran and V. A. Belfi, Characterizations of C^{*}-algebras. The Gelfand-Naimark theorems, Monographs and Textbooks in Pure and Applied Mathematics, 101. Marcel Dekker, Inc., New York, 1986.
9. F. Golfarshchi, Numerical range compressing linear maps on C^{*}-algebras, The 4 th Seminar on Functional Analysis and its Applications 2016, Mashhad, Iran, 1-4.
10. K. E. Gustafson and D. K. M. Rao, Numerical range: the field of values of linear operators and matrices., Springer, New york, 1997.
11. P. R. Halmos, A Hilbert space problem book 2nd ed., Springer, New York, 1982.
12. R. El Harti and M. Mabrouk, Maps compressing and expanding the numerical range on C^{*}-algebras, Linear Multilinear Algebra 63 (2015), no. 11, 2332-2339.
13. R. V. Kadison, A generalized Schwarz inequality and algebraic invariants for operator algebras, Ann. of Math (2) 56 (1952), 494-503.
14. C.-K. Li, A survey on linear preservers of numerical ranges and radii, Taiwanese J. Math. 5 (2001), no. 3, 477-496.
15. G. J. Murphy, C^{*}-algebras and operator theory, Academic Press, 1990.
16. V. Pellegrini, Numerical range preserving operators on a Banach algebra, Studia Math. 54 (1975), no. 2, 143-147.
17. E. Størmer, On partially ordered vector spaces and their duals, with applications to simplexes and C^{*}-algebras,Proc. London Math. Soc. (3) 18 (1968), no. 2, 245-265.

1 Department of Mathematics, College of Applied Sciences, P. O. Box 715, Makkah 21955, Saudi Arabia.

E-mail address: Ashwaq.F.B@hotmail.com
${ }^{2}$ Department of Mathematics, Faculty of Sciences Cité Erriadh, 6072 Zrig, Gabès, Tunisia.

E-mail address: mohamed.mabrouk@fsg.rnu.tn

[^0]: Copyright 2016 by the Tusi Mathematical Research Group.
 Date: Received: Dec. 2, 2016; Accepted: Feb. 16, 2017.
 *Corresponding author.
 2010 Mathematics Subject Classification. Primary 15A86, 47A12; Secondary 46L05, 47B49.
 Key words and phrases. Numerical Range; C^{*}-algebra, compressing the numerical range, Jordan *-homomorphism.

