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SOME RESULTS ABOUT FIXED POINTS IN THE COMPLETE
METRIC SPACE OF ZERO AT INFINITY VARIETIES AND

COMPLETE CONVEX METRIC SPACE OF VARIETIES

GHORBAN KHALILZADEH RANJBAR∗, TOORAJ AMIRI

Communicated by T. Schlumprecht

Abstract. This paper aims to study fixed points in the complete metric space
of varieties which are zero at infinity as a subspace of the complete metric space
of all varieties. Also, the convex structure of the complete metric space of all
varieties will be introduced.

1. Introduction and preliminaries

After the introduction of varieties of Banach algebras by P. G. Dixon, it was
shown that the space of all varieties is a complete metric space. This paper seeks
to introduce the space of varieties which are zero at infinity (we call them ”zero
at infinity varieties”) and some of its properties too. Also, some results about
its fixed points will be shown. Furthermore, the convex structure of complete
metric space of varieties of Banach algebras will be introduced and fixed points
of mappings on this space and some of its subspaces will be shown. Now we recall
some of the notions and concepts which will be used in this paper.

A non-empty class of complex associative algebras V is a variety if and only if
there is a set L of polynomials such that,

V = {A : p(x1, ..., xn) = 0, (x1, ..., xn ∈ A),∀p ∈ L}.
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Birkhoff proved a therom about varieties of algebras in 1935 [2]. Based on the
Birkhoff theorem, a variety of algebras is a non-empty class V of complex as-
sociative algebras which is closed under taking subalgebras, quotient algebras,
direct sum and isomorphic images. Dixon defined varieties of Banach algebras
and proved an analogue of Birkhoff’s theorem based on varieties of universal
algebras, for Banach algebras[4].

Definition 1.1. [4] IfA is a Banach algebra andA1 = {x ∈ A : ‖x‖ ≤ 1} then we
define ‖p‖A = sup{‖p(x1, ..., xn)‖ : xi ∈ A1, 1 ≤ i ≤ n} where p = p(X1, ..., Xn)
is a non-commuting polynomial without constant term.

By a law we mean the formal expression ‖p‖ ≤ K, where K ∈ R and p is a
polynomial. We say that A satisfies the above law if ‖p‖A ≤ K. Also, the law
‖p‖ ≤ K is homogeneous if p is a homogeneous polynomial.

Definition 1.2. [4] A non-empty class V of Banach algebras is said to be a
variety if there exists a non-negative real-valued function, p −→ f(p) on the set
of all polynomials, such that V is precisely the class of Banach algebras A for
which, ‖p‖A ≤ f(p) for each p = p(X1, ..., Xn).

Theorem 1.3. ([4] theorem 2.3 )If V is a non-empty class of Banach algebras
then V is closed under taking closed subalgebras, quotient algebras, products(direct
sums) and images under isometric isomorphisms if and only if V is a variety.

Definition 1.4. [5] For each n ∈ N such that n 6= 1, the variety determined by
the law ‖X1...Xn‖ = 0, is called Nn. If n = 2 then N2 is the variety determined
by the law ‖X1X2‖ = 0. It is the smallest variety of Banach algebras.

The variety of all Banach algebras is denoted by 1 and this variety is the largest
variety of Banach algebras.

Theorem 1.5. (Teorem 3.3 [5]) If L be the class of all varieties Then N2 is its
minimum and L\{N2, 1} has no maximum and minimum.

Definition 1.6. [5] Let C be a class of Banach algebras and V (C) the intersection
of all varieties containing C. Then, V (C) is a variety called the variety generated
by C. If C consists of a single Banach algebra A then V (C) is written as V (A)
and it is said to be singly generated.

Definition 1.7. [5] We define |P |V = sup{‖P‖A : A ∈ V } where V is a variety
and p a polynomial.

The following theorem shows that this supremum is always obtained.

Theorem 1.8. ([5], Theorem 2.4) For each variety V , there is an A ∈ V such
that, for all Polyomials p ∈ P , |p|V = ‖p‖A.
Corollary 1.9. ([5], Corollary 2.5) All varieties of Banach algebras are singly
generated.

Corollary 1.10. ([5], Corollary 2.6) Take V1 and V2, are varieties. Then, V1 ⊆
V2 if and only if |P |V1 ≤ |P |V2 for all polynomials p. Note that the class of all
varieties is a complete lattice by inclusion.
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Definition 1.11. [6] Let L be the lattice of all varieties and LH the lattice of all
H-varieties. Let P be the set of all polynomials, and PH the set of all homogeneous
polynomials. Let PNH be the set of all non-homogeneous polynomials. We define

P1 = {p ∈ P : |p| < 1}
PH1 = {p ∈ PH : |p| < 1}

PNH1 = {p ∈ PNH : |p| < 1}.
If V ∈ L then we define φV : P1 −→ C such that

φV (p) = |p|V .

It is easy to show that the mapping φ : L −→ L∞(P1) with φ(V ) = φV is one
to one. So, the metric dL(V,W ) = d(φV , φW ) = ‖φV − φW‖∞ = supp∈P1

|φV (p)−
φW (p)| = supp∈P1

∣∣|p|V − |p|W
∣∣ on L∞(P1) is induced by L. Therefore, (L, dL)

is a metric space. Similarly, (LH , dH) is also a metric space with this met-
ric dH(V,W ) = supp∈PH1

∣∣|p|V − |p|W
∣∣. Also, (L, dNH) is a metric space with

dNH(V,W ) = supp∈PNH1

∣∣|p|V − |p|W ∣∣.
Definition 1.12. If x ∈ R≥0 and V 6= N2 be a variety then Vx is the variety that
is determined by these laws ‖p‖ ≤ x|p|V where p is a homogeneous polynomial.

2. Zero at infinity varieties and fixed points

Definition 2.1. [6] A variety V is said to be a ”zero at infinity variety” if for
each ε > 0 there exists N > 0 such that for all p ∈ PH1, if deg(p) > N then
|p|V ≤ ε. We show the set of all zero at infinity varieties by L0.

Definition 2.2. Suppose L is the complete metric space of varieties of Banach
algebras. We define L = {Vx : x ∈ R≥0, V ∈ L} =

⋃
V ∈L{Vx : x ∈ R≥0} and

LH = {Vx : x ∈ R≥0, V ∈ LH} =
⋃

V ∈LH
{Vx : x ∈ R≥0}. Also, we define

L0 = {Vx : x ∈ [0, 1], V ∈ L0} =
⋃

V ∈L0{Vx : x ∈ [0, 1]}.

Lemma 2.3. If L, LH and L0 are defined as above then we have L = L, LH = LH

and L0 = L0.

Proof. We show that L = L, other items are proved similarly. Let V be a variety
of Banach algebras, it is clear that Vx for all x ∈ R≥0 is a variety of Banach
algebras ( by Definition 1.11 ), then L ⊆ L. On the other hand, for each V ∈ L
it is clear that V = V1. �

Theorem 2.4. If V is a variety such that V 6= N2 then the mapping x −→ Vx

from [0, 1] into (LH , dH) is a strictly increasing injective continuous mapping.

Proof. If x = 0 then there is nothing to prove.
Let A be a Banach algebra and Ax the Banach algebra A with a new norm that
defined as x−

1
i times the norm of A , where i = deg(p) for all homogeneous

polynomial P in PH1. Suppose V = V (A) for some Banach algebra A, obviously
Vx = V (Ax) and

‖p‖Ax = sup{‖p(x1, ..., Xn)‖ : xj ∈ A (1 ≤ j ≤ n), x−
1
i ‖xj‖ ≤ 1}
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= sup{‖p(x1, ..., Xn)‖ : xj ∈ A (1 ≤ j ≤ n), ‖x−
1
i xj‖ ≤ 1}

= sup{x‖p(x−
1
i x1, ..., x

− 1
iXn)‖ : xj ∈ A (1 ≤ j ≤ n), ‖x−

1
i xj‖ ≤ 1}

= x sup{‖p(y1, ..., yn)‖ : yj ∈ A (1 ≤ j ≤ n), ‖yj‖ ≤ 1}
= x‖p‖A .

Thus for any homogeneous polynomial p of degree i, we have |p|Vx = x|p|V .
Moreover, if 0 < x1 < x2 < 1 then for any homogeneous p with |p|V 6= 0. If
deg(p) > 1 then |p|Vx1

< |p|Vx2
. So, the mapping x −→ Vx of [0, 1] into the

H-varieties is an injective. Now, take 0 < a < 1, xn ∈ (0, 1) and xn −→ a. Then:

dH(Vxn , Va) = sup
p∈PH1

∣∣|p|Vxn
− |p|Va

∣∣
= sup

p∈PH1

|xn − a||p|V

≤ |xn − a|.
Thus, Vxn −→ Va. Now, take xn ∈ [0, 1] and xn −→ 0. Put p ∈ PH1 and
deg(p) > 1,then: ∣∣|p|Vxn

− |p|N2

∣∣ = |p|Vxn
− |p|N2

≤ |p|Vxn

= xn|p|V ≤ xn

Since V0 = N2, the mapping is continuous. Let xn ∈ [0, 1] and xn −→ 1 and V be
a variety. Hence,|p|V is bounded for all p ∈ PH1. Also, there exists N > 0 such
that, if n > N then |xn − 1| < ε

|p|V
.

On the other hand
∣∣|p|Vxn

− |p|H(V )

∣∣ = |p|V |xn− 1|. So we have |p|V |xn − 1| ≤ ε.

Thus, for all p ∈ PH1 and all n > N , we have
∣∣|p|Vxn

− |p|V
∣∣ < ε. Hence, Vxn −→

H(V ), because H(V ) = V1. �

Note that the following results are in [6].

Theorem 2.5. (Theorem 4.2) The set of all zero at infinity H-varieties L0 with
metric dH is a closed subspace of (L, dL).

Definition 2.6. If V is a zero at infinity variety then we define [N2, V ] = {W :
N2 ⊆ W ⊆ V,W ∈ L}. Obviously, each member of [N2, V ] is a zero at infinity
varieties.

Theorem 2.7. (Theorem 4.5 ) For each zero at infinity variety V the [N2, v] is
a closed set.

Corollary 2.8. suppose V ∈ L0. Then, [N2, V ] for all n ∈ N and n > 2 is a
complete metric subspace.

Theorem 2.9. (Theorem 5.2 ) Let α ∈ I and V α
a ∈ L0 . If Cα = {V α

a : 0 ≤ a ≤
1} then

⋃
α∈I Cα is connected.

Corollary 2.10. (Corollary 5.3 ) The set of all zero at infinity varieties is a
connected set.

The next theorem is proved in [6] (Theorem 5.1). Now, we intend to prove it
with some changes in its limitations.
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Theorem 2.11. Let V be zero at infinity variety. Then, {Vx : 0 ≤ x ≤ 1} is a
path-connected subspace of the metric space (LH , dH).

Proof. Take 0 ≤ a < a′ ≤ 1. Also, Va and Va′ are two zero at infinity varieties.
We define the mapping f : [0, 1] −→ {Va : 0 ≤ a ≤ 1} as follows:

f(t) = Va+t(a′−a).

Then, we have f(0) = Va and f(1) = Va′ . Now, we prove that f is a continuous
mapping of [0, 1] onto {Va : 0 ≤ a ≤ 1}. For all n ∈ N, if tn, t ∈ [0, 1] and tn −→ t
Then:

dH(f(tn), f(t)) = sup
p∈PH1

∣∣|p|Va+tn(a′−a) − |p|Va+t(a′−a)

∣∣
= sup

p∈PH1

∣∣[a+ tn(a′ − a)]|p|V − [a+ t(a′ − a)]|p|V
∣∣

= sup
p∈PH1

∣∣(a+ tn(a′ − a))− (a+ t(a′ − a))
∣∣|p|V

= sup
p∈PH1

|(tn − t)(a′ − a)||p|V

= sup
p∈PH1

|tn − t||a′ − a||p|V

Since |a′−a| is bounded and {|tn−t|}∞n=1 is convergent to 0, then dH(f(tn), f(t)) −→
0. �

Now, we know that, the class of all zero at infinity varieties is a complete,
compact, and connected subspace of L.

Theorem 2.12. If {xn} is a sequence in [0, 1] and V ∈ L0 then {xn} is a con-
vergent sequence if and only if {Vxn} is a convergent sequence in L0. If {xn}
convergs to x then the sequence {Vxn} is convergent to Vx.

Proof. It is obvious. �

Proposition 2.13. Let (L0, dH) be the complete metric space of zero at infinity
varieties. If {xn} ⊆ [0, 1] be a sequence and T : L0 −→ L0 is defined as T (Vxn) =
Vxn+1 for all Vxn , Vxn+1 ∈ L0, Then T is a Lipschitzian map.

Proof. Suppose that Vxn , Vyn ∈ L0 where {xn}, {yn} are sequences in [0, 1]. Then,
we have:

dH(T kVxn , T
kVyn) = dH(Vxn+k

, Vyn+k
)

= sup
p∈PH1

|xn+k − yn+k||p|V

≤ L sup
p∈PH1

|xn − yn||p|V

= LdL(Vxn , Vyn)

By Archimedean property, existance of L is clear. �
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Proposition 2.14. Let (L0, dH) be the complete metric space of zero at infinity
varieties and T : L0 −→ L0 be a Lipschitzian mapping with constant k 6= 1,
defined as above. Also, let ψ : L0 −→ (0,∞) defined as ψ(Vx) = 1

1−k
dH(Vx, TVx)

for all Vx ∈ L0. If {Vxn} is a sequence in L0 such that Vxn+1 = TVxn and
{xn} ⊆ [0, 1]. Then, we have:
i) ψ is continuous.
ii) dH(Vxn , Vxn+1) = ψ(Vxn)− ψ(Vxn+1) for all n ∈ N0.
iii) For all n ∈ N0, dH(Vxn , Vx) = ψ(Vxn)− ψ(Vx).

Proof. i) Suppose {Vxn} is a sequence in L0 such that Vxn −→ Vx, so dH(Vxn , Vx) −→
0. Then, we have:

|ψ(Vxn)− ψ(Vx)| = | 1

1− k
dH(Vxn , TVxn)− 1

1− k
dH(Vx, TVx)|

=
∣∣ 1

1− k

∣∣∣∣ sup
p∈PH1

||p|Vxn
− |p|TVxn

| − sup
p∈PH1

||p|Vx − |p|TVx|
∣∣

≤
∣∣ 1

1− k

∣∣ sup
p∈PH1

∣∣|p|Vxn
− |p|TVxn

− |p|Vx + |p|TVx

∣∣
≤

∣∣ 1

1− k

∣∣( sup
p∈PH1

∣∣|p|Vxn
− |p|Vx

∣∣ + sup
p∈PH1

∣∣|p|TVxn
− |p|TVx

∣∣)
=

∣∣ 1

1− k

∣∣(dH(Vxn , Vx) + dH(TVxn , TVx))

=
∣∣1 + k

1− k

∣∣dH(Vxn , Vx).

Therefore, ψ(Vxn) −→ ψ(Vx) and consequently ψ is continuous.
ii) If Vxn , Vxn+1 ∈ L0 then:

ψ(Vxn)− ψ(Vxn+1) =
1

1− k
dH(Vxn , TVxn)− 1

1− k
dH(Vxn+1 , TVxn+1)

=
1

1− k
(dH(Vxn , TVxn)− dH(Vxn+1 − TVxn+1))

=
1

1− k
(dH(Vxn , TVxn)− dH(TVxn − T (TVxn)))

=
1

1− k
(dH(Vxn , TVxn)− kdH(Vxn − TVxn))

= dH(Vxn , TVxn).

iii) According to Corollary 2.9, it is concluded that there exists a Vx ∈ L0 such
that Vxn −→ Vx. In proof (i) it is proved that ψ is continuous, therefore:

ψ(Vxn) −→ ψ(Vx).

Also, we have dH(Vxn , Vx) = ψ(Vxn)− limn→∞ ψ(Vxm) = ψ(Vxn)− ψ(Vx). �

Theorem 2.15. Let L0 be the complete metric space of zero at infinity varieties
and ψ : L0 −→ (−∞,∞) is a proper, bounded below and lower semicontinuous
function. Suppose that for each Vu ∈ L0 with infVx∈L0 ψ(Vx) < ψ(Vu) there exists
a Vw ∈ L0 such that Vw 6= Vu and dH(Vu, Vw) ≤ ψ(Vu)− ψ(Vw). Then, there is a
Vx0 ∈ L0 such that ψ(Vx0) = infVx∈L0 ψ(Vx)
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Proof. See theorem (2.1)’ in [3]. �

Corollary 2.16. Let L0 be the complete metric space of zero at infinity varieties
and T : L0 −→ L0 a Lipschitzian map with constant k 6= 1. Let ψ : L0 −→
(∞,∞] be defined as ψ(Vx) = 1

1−k
dH(Vx, TVx) for all Vx ∈ L0. Then, we have

ψ(Vx0) = infVx∈L0 ψ(Vx) where ψ(Vx0) = limn→∞ ψ(T n(Vx0)

Theorem 2.17. Let L0 be the complete metric space of zero at infinity varieties
and ψ : L0 −→ (∞,∞] be a proper bounded below and lower semicontinuous
function. Let T : L0 −→ L0 be a mapping such that, dH(Vx, TVx) ≤ ψ(Vx) −
ψ(TVx) for all Vx ∈ L0. Then, there exists a Vy ∈ L0 such that Vy = TVy and
ψ(Vy) <∞.

Proof. It is similar to the proof of Theorem 4.1.3 in [1]. �

Remark 2.18. The fixed point of the mapping T in previous theorem does not
need to be unique.

Example 2.19. Suppose L0 is the complete metric space of zero at infinity
varieties and ψ : L0 −→ (−∞,∞] be defined as ψ(Vx) = f(x) where f : [0, 1] −→
(−∞,∞] is a continuous bijection. Also, let T : L0 −→ L0 be defined as TVx = Vy

such that |x − y| < f(x)−f(y)
supp∈PH1

|p|V
where y ∈ [0, 1]. Then, T has a fixed point.

Because:
dH(Vx, Vy) = sup

p∈PH1

|x− y||p|V

≤ f(x)− f(y)

supp∈PH1
|p|V

sup
p∈PH1

|p|V

≤ f(x)− f(y)

= ψ(Vx)− ψ(Vy)

= ψ(Vx)− ψ(TVx).

According to theorem 2.16, there is Vx0 ∈ L0 such that TVx0 = Vx0 .

Theorem 2.20. Let L0 be the complete metric space of zero at infinity varieties
and T : L0 −→ L0 be defined as TVx = Vα(x) where α : [0, 1] −→ [0, 1] is a
function. Then, T has a fixed point if and only if α has a fixed point. Also, if
x0 ∈ [0, 1] is a fixed point for α then Vx0 is a fixed point for T .

Proof. If T has a fixed point as Vx ∈ L0 then TVx = Vx. Therefore, Vx = Vα(x)

and Vx ⊆ Vα(x) so, |p|Vx ≤ |p|Vα(x)
. As a result supp∈PH1

x|p|V ≤ supp∈PH1
α(x)|p|V

and x ≤ α(x). Similarly, it is obtained that α(x) ≤ x. Hence α(x) = x and α
has a fixed point. Inverse is obvious. �

Theorem 2.21. Let L0 be the complete metric space of zero at infinity varieties
and T : L0 −→ L0 a contraction mapping with Lipschitzian constant k ∈ (0, 1).
Then, we have the followings:
i) There exists a unique fixed point Vx ∈ L0 for T .
ii) For arbitrary Vx ∈ L0 the picard iteration process is defined by

Vxn+1 = TVxn
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for all n ∈ N converge to Vx.
iii) For all n ∈ N we have dH(Vxn , Vx0) ≤ kn

1−k
dH(Vx1 , Vx0).

Proof. Its proof is similar to the proof of Theorem 4.1.5 in [1]. �

Lemma 2.22. Let {xn} be a increasing (decreasing) sequence in R and for each
n ∈ N we have xn > xn+1+xn−1

2
(xn < xn+1+xn−1

2
). Then, for each m, l ∈ N we

have, |xm+n − xl+n| < |xm − xl| such that n ∈ N.

Proof. It is obvious by induction. �

Theorem 2.23. Let L0 be the complete metric space of zero at infinity varieties
and {xn} ⊆ [0, 1] be a decreasing sequence such that xn < xn+1+xn−1

2
for each

n ∈ N. If T : L0 −→ L0 is defined as TVxn = Vxn+1 where {Vxn} is a sequnce in
L0 then we have:
i) T is a contraction.
ii) There exists a unique fixed point Vx ∈ L0 for T where x = limn→∞ xn.
iii) For arbitrary Vx0 ∈ L0 the picard iteration process is convergent to Vx.
iv) For all n ∈ N, it is proved that dH(Vxn , Vx) ≤ kn

1−k
dH(Vx0 , Vx1) where k ∈ (0, 1)

is the Lipschitz constant of T .

Proof. Part (i) must be proved, and the rest of the cases according to the pre-
vious theorem are obvious. Let n ∈ N and Vxm , Vxl

∈ L0 where m, l are natural
numbers.Then:

dH(T nVxm , T
nVxl

) = dH(Vxm+n , Vxl+n
)

= sup
p∈PH1

∣∣|p|Vxm+n
− |p|Vxl+n

∣∣
= sup

p∈PH1

|xm+n − xl+n||p|V

< sup
p∈PH1

|xm − xl||p|V

= sup
p∈PH1

∣∣|p|Vxm
− |p|Vxl

∣∣
= dH(Vxm , Vxl

).

So, there exists k ∈ (0, 1) such that

dH(T nVxm , T
nVxl

) ≤ kdH(Vxm , Vxl
).

Therefore, T is a contraction mapping. �

Example 2.24. Let L0 be the complete metric space of zero at infinity varieties
and T : L0 −→ L0 be a mapping defined as

TVx = Vx
2
.

Then, T is a contraction, because

dH(TVx, TVy) = dH(Vx
2
, V y

2
)

= sup
p∈PH1

∣∣x
2
|p|V −

y

2
|p|V

∣∣
=

1

2
sup

p∈PH1

∣∣x|p|V − y|p|V
∣∣
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=
1

2
dH(Vx, Vy).

Also, T is a uniformely Lipschitzian mapping. Hence, by previous theorem it has
a fixed point in L0.

Example 2.25. Let T : L0 −→ L0 be a mapping defined as

TVx = V1−x2

for all x ∈ [0, 1]. Then, T is non-contraction but it has a fixed point. Because

dH(TVx, TVy) = dH(V1−x2 , V1−y2)

= sup
p∈PH1

|x2 − y2||p|V

= sup
p∈PH1

|x− y||x+ y||p|V .

If x > 1
2
, y > 1

2
then:

dH(TVx, TVy) = sup
p∈PH1

|x− y||x+ y||p|V

> sup
p∈PH1

|x− y||p|V

according to previous relations dH(TVx, TVy) > dH(Vx, Vy). Therefore, T is non-
contraction but it has a fixed point, because

TV√
5−1
2

= V√
5−1
2

.

3. convex structure of L

In this section, we try to show that L is a convex metric space, also we introduce
its convex structure.

Definition 3.1. [1] Let C be a non-empty subset of a metric space X and T :
C −→ C a mapping. Then, the sequence {xn} in C is said to be an approximating
fixed point sequence of T if limn−→∞ d(xn, Txn) = 0.

Henceforth, approximating fixed point sequence is denoted by AFPS, in short.

Example 3.2. Let V ∈ L and C = {Vx : x ∈ R≥0}. If {xn} is a cauchy sequence
in R≥0 and T : C −→ C defined as TVxn = Vxn+1 then {xn} is a AFPS of T .

Based on the Banach contraction principale theorem, every contraction map-
ping has an AFPS in a metric space. In fact, this AFPS is the picard iterative
sequence of contraction mapping T . But the picard iterative sequence is not
necessarily an AFPS of non-expansive mappings.

Example 3.3. Let X = L and T : L −→ L be a mapping defined by

TVx = V1−x

for all Vx ∈ L. Clearly, T is non-expansive mapping with F (T ) = {V 1
2
}. However,

for all Vx0 6= V 1
2

the iterative sequence of the Picard iteration process is

Vxn+1 = TVxn = V1−xn , n ∈ N.
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Now,

dL(Vxn , TVxn) = dL(T nVx0 , T
n+1Vx0)

= sup
p∈P1

|1− x0 − x0||p|V

= |1− 2x0| sup
p∈P1

|p|V 9 0, n −→∞.

Definition 3.4. [7] Suppose (X, d) is a metric space. A continuous mapping
W : X ×X × [0, 1] −→ X is said to be a convex structure on X if for all x, y ∈ R
and λ ∈ [0, 1] the following condition is satisfied:

d
(
u,W (x, y;λ)

)
≤ λd(x, y) + (1− λ)d(x, y). for all u ∈ X

A metric space X with convex structure is called a convex metric space.

Also, a subset C of a convex metric space X with convex structure W on it is
said to be convex if W (x, y;λ) ∈ C for all x, y ∈ C and λ ∈ [0, 1]. A convex metric
space X is said to have property (B) if d(W (u, x;λ),W (u, y;λ)) = (1− λ)d(x, y)
for all u, x, y ∈ X and λ ∈ (0, 1).

Theorem 3.5. The metric space X = (L, dL) is a convex metric space.

Proof. Let X = L. For all Vx, Vy ∈ X and λ ∈ [0, 1], we define W : X × X ×
[0, 1] −→ X such that ,

W (Vx, Vy;λ) = Vλx+(1−λ)y.

Obviously W is continuous. For each Vu ∈ X and Vx, Vy ∈ X,λ ∈ [0, 1], we will
have:

dL(Vu,W (Vx, Vy;λ)) = dL(Vu, Vλx+(1−λ)y)

= sup
p∈P1

|u− (λx+ (1− λ)y)||p|V

≤ λ sup
p∈P1

|u− x||p|V + (1− λ) sup
p∈P1

|u− y||p|V

= λdL(Vu, Vx) + (1− λ)dL(Vu, Vy)

�

Corollary 3.6. Subspaces (LH , dH) and (L0, dH) of cmplete convex metric space
(L, dL) are convex.

Proof. Let X = LH(orL0), if Vx, Vy ∈ LH(orL0) and λ ∈ [0, 1] then we define
W : X ×X × [0, 1] −→ X such that W (Vx, Vy;λ) = Vλx+(1−λ)y. Obviously W is
the convex structure of LH(orL0). �

Proposition 3.7. Let X = L. The following are established:
i) For all Vx, Vy ∈ L we have dL(Vx, Vy) = dL(V|x−y|, N2).
ii) For all Vx, Vy ∈ L and λ ∈ [0, 1] it is concluded that:

dL(Vλx+(1−λ)y, N2) = λdL(Vx, N2) + (1− λ)dL(Vy, N2).
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Proof. i) Take Vx, Vy ∈ L. Then:

dL(Vx, Vy) = sup
p∈P1

∣∣|p|Vx − |p|Vy

∣∣
= sup

p∈P1

|x− y||p|V

= sup
p∈P1

∣∣|x− y| − 0
∣∣|p|V

= sup
p∈P1

∣∣|p||x−y| − |p|V0

∣∣
= dL(V|x−y|, N2).

ii) For each Vx, Vy ∈ L and λ ∈ [0, 1], we have:

dL(Vλx+(1−λ)y, N2) = sup
p∈P1

∣∣|p|Vλx+(1−λ)y
− |p|N2

∣∣
= sup

p∈P1

|λx+ (1− λ)y − 0||P |V

= λ sup
p∈P1

x|P |V + (1− λ) sup
p∈P1

y|P |V

= λdL(Vx, N2) + (1− λ)dL(Vy, N2).

�

Definition 3.8. Suppose X = L. For all Vx ∈ L the open ball Br(Vx) and the
closed ball Br[Vx] of L are defined as follows:

Br(Vx) = {Vy ∈ L : dL(Vx, Vy) < r}
and

Br[Vx] = {Vy ∈ L : dL(Vx, Vy) ≤ r}

Theorem 3.9. Open and closed balls in L are its convex subsets.

Proof. If Vu, Vw ∈ Br(Vx) and λ ∈ [0, 1] then:

dL(Vx,W (Vu, Vw;λ)) ≤ λdL(Vx, Vu) + (1− λ)dL(Vx, Vw)

< λr + (1− λ)r = r.

Therefore, W (Vu, Vw) ∈ Br(Vx) it means that Br(Vx) is convex. Similarly, Br[Vx]
is convex. �

Theorem 3.10. If X = L then L has (B) property.

Proof. Let W : X×X× [0, 1] −→ X be determined by W (Vx, Vy;λ) = Vλx+(1−λ)y.
For each Vx, Vy, Vu ∈ L and λ ∈ (0, 1) it is concluded that:

dL(W (Vu, Vx;λ),W (Vu, Vy;λ) = dL(Vλu+(1−λ)x, Vλu+(1−λ)y)

= sup
p∈P1

|(λu+ (1− λ)x)− (λu+ (1− λ)y)||p|V

= (1− λ) sup
p∈P1

|x− y||p|V

= (1− λ)dL(Vx, Vy).

�
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Proposition 3.11. Let X = L. Then, for all Vx, Vy ∈ L and λ ∈ [0, 1] we have:

dL(Vx, Vy) = dL(Vx,W (Vx, Vy;λ)) + dL(W (Vx, Vy;λ), Vy).

Proof. Refer to Proposition 3 in [7]. �

Definition 3.12. For each subset C of the convex metric space (L, dL), we define

diam(C) = sup{dL(Vx, Vy) : Vx, Vy ∈ C}.

Proposition 3.13. Suppose X = L and C is a non-empty closed convex subset
of L, also T : C −→ C be a non-expansive mapping. Then:
i) take Vu ∈ C and t ∈ (0, 1). There exists exactly one point Vxt ∈ C such that
Vxt = W (Vu, TVxt ; 1− t).
ii) If C is bounded then dL(Vxt , TVxt) → 0 as t→ 1; namely, T has an AFPS.

Proof. i) Let t ∈ (0, 1) and Tt : C −→ C is defined as TtVx = W (Vu, TVx; 1− t).
Regarding to Theorem 3.10, we have:

dL(TtVx, TtVy) = tdL(TVx, TVy) ≤ tdL(Vx, Vy).

Therefore, Tt is a contraction and by Banach contraction principle theorem, it
has a unique fixed point as Vxt in C. So Vxt = W (Vu, TVxt ; 1− t).
ii)According to boundedness of C, we have:

dL(Vxt , TVxt) = dL(TVxt ,W (Vu, TVxt ; 1− t))

≤ (1− t)dL(TVxt , Vu)

≤ (1− t)diam(C) → 0 as t→ 1.

�

Theorem 3.14. Take X = L and C as a non-empty complete convex subset of
L. If T : C −→ C is a non-expansive mapping then T has a fixed point in C.

Proof. Based on Proposition 3.13, there exists an AFPS as {Vxn} in C. By
compactness of C, we have a subsequnce of {Vxn} as {Vxnk

} such that Vxnk
−→

V ∈ C. therefore, V = TV . �

Example 3.15. If V ∈ L0 and C = {Vx : x ∈ [a, b]} then C is a non-empty
complete convex subset of L0 and each non-expansive mapping as T : C −→ C
has a fixed point on C.

Definition 3.16. [1] Let X be a metric space and C a subset of X. Then, for
x ∈ C we define:

rx(C) = sup{d(x, y) : y ∈ C}.
r(C) = inf{rx(C) : x ∈ C}.
ZC = {x ∈ C : rx(C) = r(C)}.

A point x0 ∈ C is said to be a diametral point of C if sup{d(x0, y) : y ∈ C} =
diam(C).

Lemma 3.17. Take C ⊆ L. if Ψ : C −→ R≥0 is defined as Ψ(Vx) = x then Ψ is
a homeomorphism between C and Ψ(C).
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Proposition 3.18. Let C ⊆ L and C0 = Ψ(C) where Ψ : C −→ R≥0 is deter-
mined by Ψ(Vx) = x. The followings are satisfied:
i) For each Vx ∈ C we have rVx(C) = rx(C0). supp∈P1

|p|V .
ii) r(C) = r(C0). supp∈P1

|p|V .
iii) ZC = {Vx : x ∈ ZC0} .

Proof. i) If Vx ∈ C then:

rVx(C) = sup{dL(Vx, Vy) : Vy ∈ C}

= sup{sup
p∈P1

|x− y||p|V : y ∈ C0}

= sup
p∈P1

|p|V (sup{d(x, y) : y ∈ C0})

= sup
p∈P1

|p|V .rx(C0)

where x ∈ C0.
ii) The proof is similar to that of (i).
iii) It is concluded from (i) and (ii). �

Proposition 3.19. Suppose C ⊆ L. Then, Vx0 ∈ C is a diametral point of C if
and only if x0 is a diametral point of C0.

Proof. Each point of C as Vx0 is a diametral point iff rVx0
(C) = diam(C) iff

rx0(C). supp∈P1
|p|V = diam(C0). supp∈P1

|p|V iff rx0(C0) = diam(C0). iff x0 is a
diametral point of C0. �

Definition 3.20. [7] A convex metric space X is said to have normal structure if
for each closed convex bounded subset C of X that contains at least two points,
there exists x0 ∈ C such that, it is not a diametral point of C.

Theorem 3.21. the metric space of varieties of Banach algebras L has normal
structure.

Proof. Suppose that L does not have normal structure. Then, there exists a
closed convex bounded subset C of L with at least two points such that every
point of it is diametral. So, for each Vx ∈ C, it is a diametral point of C.
By Proposition 3.19, x is a diametral point of C0 where C0 = Ψ(C) and Ψ :
C −→ R≥0 is determined by Ψ(Vx) = x. We know that Ψ is a homeomorphism
between C and C0, it means that C0 is a closed convex bounded subset of R≥0

such that, it has at least two points. Therefore, C0 = [a, b] where a, b ∈ R≥0 and
a 6= b. However sup{d(x, y) : y ∈ C0} = diam(C0). So

sup
y∈C0

|x− y| = sup
z,t∈C0

|z − t| (3.1)

for each x ∈ C0. If x = b+a
2

then supy∈[a,b] |x− y| = supy∈[a,b] | b+a
2
− y| = b−a

2
and

sup
z,t∈[a,b]

|z − t| = b− a. (3.2)

According to (3.1) and (3.2), we have b− a = b−a
2

and it is a contradiction. �
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Proposition 3.22. ( [7] proposition 5 ) Let C be a non-empty compact subset of
a convex metric space X and D be the least closed convex set containing C. If
diam(C) > 0 then there exists an element X0 ∈ D such that

sup{d(x, x0) : x ∈ C} < diam(C).

Theorem 3.23. Every compact convex metric space has normal structure.

Proof. Suppose X is a compact convex metric space and C is an arbitrary closed
convex bounded subset of X contains at least two points. Take x, y ∈ C, So
diam(C) > d(x, y) ≥ 0. However, C is a compact subset of X and according to
previous proposition C has a point as x0 such that diam(C) > sup{d(x, x0);x ∈
C}. �

Example 3.24. It is clear that L0 is a compact convex metric subspace of L, so
by previous theorem it has normal structure.

Definition 3.25. [7] A convex metric space X is said to have property(C) if every
bounded decreasing net of non-empty closed convex subset of X has a non-empty
intersection.

Example 3.26. It is clear that L,L0 have property(C), Since all bounded de-
creasing net of non-empty closed convex subsets of L or L0 as {Cα}α∈Λ such that⋂

α∈ΛCα = φ. Define Ψ : L −→ R≥0 with Ψ(Vx) = x. Then {Ψ(Cα)}α∈Λ is a
bounded decreasing net of non-empty closed convex subsets of R≥0 and we have⋂

α∈Λ Ψ(Cα) = Ψ(
⋂

α∈ΛCα) = Ψ(φ) = φ and it is a contradiction.

Proposition 3.27. ([7] proposition 4) If convex metric space X has property(C)
then ZC is a non-empty closed and convex.

Example 3.28. Regarding L, we have:

ZL = {Vx : rx(Ψ(L)) = r(Ψ(L))}
= {Vx : rx(R≥0) = ∞}.

Therefore, ZL = L.
Also for L0 we have:

ZL0 = {Vx : rx(Ψ(L0)) = r(Ψ(L0))}.
On the other hand,

r(Ψ(L0)) = r([0, 1])

= inf{rx([0, 1]); x ∈ [0, 1]}
= inf

x∈[0,1]
( sup
y∈[0,1]

|x− y|)

= inf
x∈[0,1]

[
1

2
, 1] =

1

2
.

Therefore,

ZL0 = {Vx : rx([0, 1]) =
1

2
}

= {Vx : sup
y∈[0,1]

|x− y| = 1

2
}
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= {Vx : sup
y∈[0,1]

|x− y| = 1

2
} = {V 1

2
}.
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