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Abstract. The least square solution of minimum norm of a rectangular linear
system of equations can be found out iteratively by using matrix splittings.
However, the convergence of such an iteration scheme arising out of a matrix
splitting is practically very slow in many cases. Thus, works on improving the
speed of the iteration scheme have attracted great interest. In this direction,
comparison of the rate of convergence of the iteration schemes produced by
two matrix splittings is very useful. But, in the case of matrices having many
matrix splittings, this process is time-consuming. The main goal of the current
article is to provide a solution to the above issue by using proper multisplittings.
To this end, we propose a few comparison theorems for proper weak regular
splittings and proper nonnegative splittings first. We then derive convergence
and comparison theorems for proper multisplittings with the help of the theory
of proper weak regular splittings.

1. Introduction

Let us consider a rectangular system of linear equations of the form

Ax = b, (1)

where A is a real, large and sparse matrix of order m × n, x is an unknown
real n-vector, and b is a given real m-vector. If (1) is inconsistent, then one
usually seeks the least square solution of minimum norm. This solution vector
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x is then computed by x = A†b, where A† is the Moore–Penrose inverse of A
(see Section 2, for its definition). In a wide variety of such problems, including
the Neumann problem and those for elastic bodies with free surfaces, the finite
difference formulations lead to a singular, consistent linear system of the form
(1), where A is large and sparse. In these situations, one can opt for an iterative
method for finding the least square solution of minimum norm. Such a method
where A is rectangular or (1) is inconsistent, is studied in [4]. In particular, the
authors of [4] have introduced the following iteration scheme to find the least
square solution of minimum norm of the system (1)

xi+1 = U †V xi + U †b, i = 0, 1, 2, . . . , (2)

where A = U − V is a proper splitting. A splitting A = U − V of A ∈ Rm×n

(the set of all real m× n matrices) is called a proper splitting [4] if R(U) = R(A)
and N(U) = N(A), where R(A) and N(A) denote the range space and the null
space of A, respectively. The iteration scheme (2) is said to be convergent if the
spectral radius of the iteration matrix U †V is less than 1. For the proper splitting
A = U − V , the same authors [4] proved that the iteration scheme (2) converges
to x = A†b, the least squares solution of minimum norm, for any initial vector x0

if and only if the iteration scheme (2) is convergent (see [4], Corollary 1). The
advantage of the iterative method for solving the rectangular system of linear
equations (1) is that it avoids the use of the normal system AT Ax = AT b, where
AT A is frequently ill-conditioned and influenced greatly by roundoff errors (see
[12]). (Here AT stands for the transpose of a matrix A.)

Berman and Plemmons [4] also proved a few convergence results for different
classes of proper splittings without calling them by any name. Later on, Climent
et al. [6], Climent and Perea [7] introduced different classes of proper splittings
and studied its convergence theory. Subsequently, it is carried forward by Mishra
and Sivakumar [16], Jena et al. [13], Mishra [15], Baliarsingh and Mishra [2], and
Giri and Mishra [11], to name a few. Comparison theorems between the spectral
radii of matrices are useful tools in the analysis of the rate of convergence of
iterative methods or for judging the efficiency of pre-conditioners. A matrix A
may have different matrix splittings (say A = U1 − V1 = U2 − V2). In practice,
we seek such an U which not only makes the computation xi+1(given xi) simpler
but also yields the spectral radius of U †V (which is of course less than 1) as
small as possible for the faster rate of convergence of the iteration scheme (2).
An accepted rule for preferring one iteration scheme to another is to choose the
iteration scheme having the smaller spectral radius. In this context, Jena et al.
[13], Giri and Mishra [11], Mishra [14, 15] and Baliarsingh and Mishra [2] obtained
various comparison results for different class of matrix splittings of rectangular
matrices. In this article, we propose a few more comparison results.

But one of the drawbacks of the above-discussed theory is that this process
needs more time when a matrix has many splittings as one can compare two
matrix splittings at a time. A natural question arises at this level is “can we
have a faster iteration scheme than (2)”. This is answered by O’Leary and White

A splitting of a real rectangular matrix A is an expression of the form A = U − V , where U
and V are matrices of the same order as in A.
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[17] who have introduced the concept of the multisplitting method for obtaining
the parallel solution of linear system of equations of the form (1), but in the
square nonsingular matrix setting. A real n× n matrix A is called monotone (or
a matrix of “monotone kind”) if Ax ≥ 0 ⇒ x ≥ 0. This notion was introduced
by Collatz, who has shown that A is monotone if and only if A−1 exists and
A−1 ≥ 0 (see Section 2, for meaning of B ≥ 0). The book by Collatz [8] has
details of how monotone matrices arise naturally in the study of finite difference
approximation methods for certain elliptic partial differential equations. The
problem of characterizing monotone (also referred as inverse positive) matrices in
terms of matrix splittings has been extensively dealt with in the literature. The
book by Berman and Plemmons [5] gives an excellent account of many of these
characterizations and its extension to rectangular matrices.

O’Leary and White [17] have provided the convergence theory of multisplit-
tings for the class of monotone matrices (see [8]). The triplet (Uk, Vk, Ek)

p
k=1 is

called a multisplitting of A ∈ Rn×n if
(i) A = Uk − Vk, for each k = 1, 2, . . . , p,
(ii) Ek ≥ 0 is a non-zero and diagonal matrix, for each k = 1, 2, . . . , p,

(iii)

p∑
k=1

Ek = I, where I is the identity matrix.

Using the multisplitting (Uk, Vk, Ek)
p
k=1, the authors of [17] considered the follow-

ing iteration scheme:

xi+1 = Hxi + Gb, i = 0, 1, 2, . . . , (3)

where H =

p∑
k=1

EkU
−1
k Vk and G =

p∑
k=1

EkU
−1
k . The same authors [17] proved that

if A = Uk − Vk, k = 1, 2, . . . , p is a weak regular splitting of a monotone matrix
A, then the iteration scheme (3) converges for any initial vector x0. In contrast
to the vast literature available on solving the square nonsingular system of linear
equations, iteratively, the researches on solving the rectangular system of linear
equations, iteratively are limited. In particular, the theory of multisplittings
has not been studied much for rectangular matrices. Climent and Perea [7] first
introduced the concept of a proper multisplitting. Thereafter, Baliarsingh and
Jena [1] applied the same theory to solve the square singular system of linear
equations. In this note, we revisit the same theory first and add a few more
results to the existing theory with the objective to solve the rectangular linear
systems. Some of the results obtained in this paper dealing with multisplittings
theory are completely new even for square nonsingular matrices.

The contents of this paper are organized in the following order. Next Section
includes some notation and fundamental concepts concerned in our study. In
Section 3, we introduce our main results. Section 3 further divided into three
subsections. In subsection 3.1, we establish a number of comparison results be-
tween two proper weak regular splittings of different types. This is a prelude
to subsection 3.2, in which we study similar results as of subsection 3.1, but for
proper nonnegative splittings of different types. Finally, subsection 3.3, is devoted
to the study of multisplittings of a rectangular matrix.
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2. Preliminaries

To present a reader-friendly convergence analysis of rectangular matrix split-
tings, we first explain some basic notation and definitions. In the subsequent
sections, Rn means an n-dimensional Euclidean space. If L ⊕ M = Rn, then
PL,M is referred as the projection onto L along M . So, PL,MA = A if and only
if R(A) ⊆ L and APL,M = A if and only if N(A) ⊇ M . If L ⊥ M , then PL,M

will be denoted by PL. For A ∈ Rm×n, the unique matrix X ∈ Rn×m is called the
Moore–Penrose inverse of A if it satisfies the following four equations:

AXA = A, XAX = X, (AX)T = AX and (XA)T = XA,

and is denoted by A†. It always exists, and A† = A−1 in the case of a nonsingular
matrix A. Properties of A† which will be frequently used in this paper are:
R(A†) = R(AT ); N(A†) = N(AT ); AA† = PR(A) and A†A = PR(AT ) (see [3] for
more details).

A matrix A ∈ Rm×n is called non-negative if A ≥ 0 and B ≥ C if B − C ≥ 0.
Here A ≥ 0 means all the entries of A are non-negative. Again, B  C means
B ≥ C and B 6= C. Similarly, a matrix A ∈ Rm×n is called positive if each element
of A is positive, and is denoted by A > 0. We also use the above notation for
vectors as vectors can be seen as n × 1 matrices. A matrix A ∈ Rm×n is called
semi-monotone if A† ≥ 0. For a matrix A = (aij) ∈ Rn×n, the set of indices
i, j = 1, 2, . . . , n will be denoted by S. A matrix A is reducible if there exists
a non-void index set R, R ⊂ S and R 6= S such that aij = 0 for i ∈ R and
j ∈ S −R, otherwise the matrix A is irreducible. Clearly, each positive matrix is
irreducible. The spectral radius of a matrix A ∈ Rn×n is denoted by ρ(A), and is
equal to the maximum of the moduli of the eigenvalues of A. Let A and B be two
matrices of appropriate order such that the products AB and BA are defined.
Then ρ(AB) = ρ(BA).

Before proceeding to our main results, we first revisit the theory of proper
regular splittings and proper weak regular splittings, introduced by Jena et al.
[13].

Definition 2.1. ([13], Definition 1.1)
A proper splitting A = U − V of A ∈ Rm×n is called a proper regular splitting if
U † ≥ 0 and V ≥ 0.

The same authors [13] proved the following comparison theorem for proper reg-
ular splittings in order to improve the convergence speed of the iteration scheme
(2).

Theorem 2.2. ([13], Theorem 3.3)
Let A = U1 − V1 = U2 − V2 be two proper regular splittings of a semimonotone
matrix A ∈ Rm×n. If U †

1 ≥ U †
2 , then

ρ(U †
1V1) ≤ ρ(U †

2V2) < 1.

We next reproduce the definition of a larger class of matrices than the class of
proper regular splittings.
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Definition 2.3. ([13], Definition 1.2)
A proper splitting A = U−V of A ∈ Rm×n is called a proper weak regular splitting
if U † ≥ 0 and U †V ≥ 0.

Berman and Plemmons [4] obtained the following convergence result for a
proper weak regular splitting without specifying the name of this class.

Theorem 2.4. ([4], Corollary 4)
Let A = U − V be a proper weak regular splitting of A ∈ Rm×n. Then A† ≥ 0 if
and only if ρ(U †V ) < 1.

One can find that, there exists a convergent splitting which is not a proper weak
regular splitting. To address convergence theory in this situation, we now have
the following definition from [6], where the authors call it as a weak nonnegative
splitting of second type. However, we call here as a proper weak regular splitting
of type II.

Definition 2.5. ([6], Definition 2)
A proper splitting A = U−V of A ∈ Rm×n is called a proper weak regular splitting
of type II if U † ≥ 0 and V U † ≥ 0.

Note that the proper weak regular splitting of type I is same as the proper
weak regular splitting. Another remark drawn from the above definition is that
it cannot be ensured convergence of all splittings by the known convergence results
for the proper weak regular splitting of type I. To overcome this issue, Mishra
and Sivakumar [16] proved the following convergence result for the proper weak
regular splitting of type II. Note that the same authors call it as the weak pseudo
regular splitting, but we call it here as the proper weak regular splitting of type
II.

Theorem 2.6. ([16], Remark 3.5)
Let A = U − V be a proper weak regular splitting of type II of A ∈ Rm×n. Then
A† ≥ 0 if and only if ρ(U †V ) < 1.

Observe that Theorem 2.4 and Theorem 2.6 together extend [10], Theorem 3.4
(i) for rectangular matrices while the other part is extended in the next section.
We next recall the definition of proper nonnegative splitting of type I (or proper
nonnegative splitting) which is more general than proper weak regular splitting
of type I.

Definition 2.7. ([15], Definition 3.1)
A proper splitting A = U−V of A ∈ Rm×n is called a proper nonnegative splitting
if U †V ≥ 0.

We remark that earlier, Climent et al. [6] also introduced the above definition
but they call this as weak splitting. For later use, we record first the following
convergence result.

Lemma 2.8. ([6], Theorem 2 & [15], Lemma 3.5)
Let A = U − V be a proper nonnegative splitting of A ∈ Rm×n. Then A†V ≥ 0 if

and only if ρ(U †V ) =
ρ(A†V )

1 + ρ(A†V )
< 1.
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Next, we recollect the definition of a proper nonnegative splitting of type II
proposed by Climent et al. [6]. Note that the proper nonnegative splitting of
type I is same as the proper nonnegative splitting.

Definition 2.9. ([6], Definition 2 & [2], Definition 3.14)
A proper splitting A = U−V of A ∈ Rm×n is called a proper nonnegative splitting
of type II if V U † ≥ 0.

A convergence result for a proper nonnegative splitting of type II is stated next.

Lemma 2.10. ([6], Remark 2)
Let A = U − V be a proper nonnegative splitting of type II of A ∈ Rm×n. Then

V A† ≥ 0 if and only if ρ(V U †) =
ρ(V A†)

1 + ρ(V A†)
< 1.

3. Main Results

3.1. Proper Weak Regular Splitting of Different Types. The first main
result, presented below partially generalizes the other part of [10], Theorem 3.4.

Lemma 3.1. Let A = U − V be a proper weak regular splitting of type II of a
semimonotone matrix A ∈ Rm×n. Suppose that ρ(U †V ) > 0. Then there exists a
vector x  0 such that U †V x = ρ(U †V )x, Ax  0 and V x  0.

Proof. We have V U † ≥ 0. By [20], Theorem 2.20, there exists an eigenvector
z ≥ 0 such that

V U †z = ρ(V U †)z. (4)

Therefore, z ∈ R(V ) ⊆ R(U). Define x = U †z. Then x ≥ 0. Pre-multiplying (4)
by U †, we obtain

U †V x = ρ(V U †)x. (5)

Suppose that x = 0. Then U †z = 0 so that z ∈ R(U) ∩ N(UT ). Thus, z = 0, a
contradiction. So x 6= 0. Now we prove the inequality Ax ≥ 0. Theorem 2.6 and
[6], Theorem 1 (4) yield

0 ≤ (1− ρ(V U †))z = (I − V U †)z = (I − V U †)Ux = Ax.

Clearly, Ax 6= 0 otherwise Ax = 0 implies x = 0, a contradiction. From (4),
we have V x ≥ 0. Pre-multiplying (5) by U , we get V x = ρ(U †V )Ux, i.e.,

Ux =
V x

ρ(U †V )
. Therefore, we get

0 ≤ Ax = U(I − U †V )x = (1− ρ(U †V ))Ux =
(1− ρ(U †V ))

ρ(U †V )
V x.

So V x 6= 0. If V x = 0, then Ax = 0, again a contradiction. �

Convergence of an iteration scheme is usually accelerated by a pre-conditioner.
It is a square matrix Q of order m which on pre-multiplication makes the con-
vergence of the iterative method for the system with the matrix QA faster than
the original system with the matrix A. Hence, instead of solving (1), we solve

QAx = Qb, i.e., A1x = c.
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The method of finding an effective pre-conditioner Q for general problems is a
mathematical challenge. Nevertheless, many specific problems are being success-
fully solved using preconditioned iterative solvers. But the problem is how to
choose an effective pre-conditioner. This is settled next, with a comparison result
of the rate of convergence of two different linear systems which is a generalization
of the [10], Theorem 3.5 for rectangular matrices. However, the assumptions are
not exactly the same.

Theorem 3.2. Let A1, A2 ∈ Rm×n. Let A1 = U1 − V and A2 = U2 − V be two
proper weak regular splittings of different types. Suppose that ρ(U †

1V ) > 0 and

ρ(U †
2V ) > 0. If V 6= 0 and A†

2 > A†
1 ≥ 0, then

ρ(U †
1V ) < ρ(U †

2V ) < 1.

Proof. By Theorem 2.4 and Theorem 2.6, it follows that ρ(U †
i V ) < 1 for each

i = 1, 2. Define G1 = A†
1V, G2 = A†

2V, G̃1 = V A†
1 and G̃2 = V A†

2. Using [4],
Theorem 1 (3) and [6], Theorem 1 (6), we have

Gi = A†
iV = (I − U †

i V )−1U †
i V, i = 1, 2

and G̃i = V A†
i = V U †

i (I − V U †
i )
−1, i = 1, 2.

Let us first assume that A1 = U1 − V is a proper weak regular splitting of type I
and A2 = U2 − V is a proper weak regular splitting of type II. Then G1 and G̃2

are non-negative matrices and

ρ(Gi) = ρ(G̃i) =
ρ(U †

i V )

1− ρ(U †
i V )

=
ρ(V U †

i )

1− ρ(V U †
i )

for each i = 1, 2.

We only need to show that ρ(G1) < ρ(G2). By Lemma 3.1, there exists an

eigenvector x ≥ 0, such that U †
2V x = ρ(U †

2V )x and V x ≥ 0. Using A†
2 > A†

1 ≥ 0,
we get

ρ(G2)x = G2x = A†
2V x > A†

1V x = G1x. (6)

Hence, by [5], Theorem 2.1.11, the strict inequality ρ(G1) < ρ(G2) follows directly.
If A1 = U1 − V is a proper weak regular splitting of type II and A2 = U2 − V
is a proper weak regular splitting of type I, then G̃1 and G2 are non-negative
matrices. Again, by Lemma 3.1, there exists an eigenvector z ≥ 0 such that
U †

1V z = ρ(U †
1V )z and V z ≥ 0. Thus

G2z = A†
2V z > A†

1V z = G1z = ρ(G1)z. (7)

The strict inequality ρ(G1) < ρ(G2) then follows from [5], Theorem 2.1.11 which
yields the desired claim. �

In the above result, one cannot drop the assumption A†
2 > A†

1 ≥ 0 which can
be seen from the example illustrated next.

Example 3.3. Let A1 =

(
7 −7/2 7
0 1 0

)
=

(
8 −4 8
0 2 0

)
−

(
1 −1/2 1
0 1 0

)
=

U1−V and A2 =

(
3 −3/2 3
0 1 0

)
=

(
4 −2 4
0 2 0

)
−

(
1 −1/2 1
0 1 0

)
= U2−V .

Then A1 = U1−V is a proper weak regular splitting of type I and A2 = U2−V is
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a proper weak regular splitting of type II. We have A†
2 =

 0.1667 0.2500
0 1

0.1667 0.2500

 ≥

A†
1 =

 0.0714 0.2500
0 1

0.0714 0.2500

 ≥ 0. But ρ(U †
1V ) = ρ(U †

2V ) = 0.5.

We conclude this section with another comparison theorem for two different
linear systems having two different types of proper weak regular splittings.

Theorem 3.4. Let A1, A2 ∈ Rm×n. Let A1 = U1 − V1 and A2 = U2 − V2 be two
proper weak regular splittings of different types. Suppose that ρ(U †

1V1) > 0 and

ρ(U †
2V2) > 0. Assume that V1 6= 0, V2 6= 0 and A†

2 > A†
1 ≥ 0. If V1 ≤ V2, then

ρ(U †
1V1) < ρ(U †

2V2) < 1.

Proof. By Theorem 2.4 and Theorem 2.6, we obtain ρ(U †
i Vi) < 1, i = 1, 2. The

remaining proof is similar to the proof of Theorem 3.2, with the exception that
in place of (6) we have to use one additional inequality

ρ(G2)x = G2x = A†
2V2x > A†

1V1x = G1x,

and in place of (7), we need G2z = A†
2V2z > A†

1V1z = G1z = ρ(G1)z. �

Note that Theorem 3.2 is a special case of the above result as the assumption
V1 ≤ V2 is automatically fulfilled when V1 = V2.

The example given below demonstrates that the converse of the above theorem
is not true.

Example 3.5. Let A1 =

(
2 −2 4
2 4 −2

)
and A2 =

(
1 −2 3
1 3 −2

)
. Then

A†
2 =

 0.3333 0.3333
0.0667 0.2667
0.2667 0.0667

 > A†
1 =

 0.1667 0.1667
0 0.1667

0.1667 0

 ≥ 0.

Let U1 =

(
3 −3 6
2 4 −2

)
and U2 =

(
2 −2 4
2 4 −2

)
. Then A1 = U1 − V1 is

a proper weak regular splitting of type I and A2 = U2 − V2 is a proper weak
regular splittings of type II. We have 0.3 = ρ(U †

1V1) < 0.5 = ρ(U †
2V2) < 1. But

V1 =

(
1 −1 2
0 0 0

)
� V2 =

(
1 0 1
1 1 0

)
.

3.2. Proper Nonnegative Splittings of Different Types. The plan of this
section is to obtain new comparison results for proper nonnegative splittings
of different types in order to speed up the rate of convergence of the iteration
scheme (2). The class of proper nonnegative splittings contains earlier two classes
of splittings, and hence study of this class of matrices assumes significance. We
now prove the following comparison result which partially extends [19], Theorem
2.11 to rectangular matrices.
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Theorem 3.6. Let A = U1− V1 = U2− V2 be two convergent proper nonnegative
splittings of the same type of a semi-monotone matrix A ∈ Rm×n. If there exists
α, 0 < α ≤ 1, such that V1 ≤ αV2 and ρ(A†Vi) > 0, i = 1 or 2, then

ρ(U †
1V1) ≤ ρ(U †

2V2) < 1,

whenever α = 1 and

ρ(U †
1V1) < ρ(U †

2V2) < 1,

whenever 0 < α < 1.

Proof. Assume that the given splittings are convergent proper nonnegative split-
tings of type I. So, we have ρ(U †

1V1) < 1. By Lemma 2.8, we get A†V1 ≥ 0. The
conditions A† ≥ 0 and V1 ≤ αV2 together imply

0 ≤ A†V1 ≤ αA†V2.

It then follows from [20], Theorem 2.21 that

ρ(A†V1) ≤ αρ(A†V2). (8)

Since f(η) =
η

1 + η
is a strictly increasing function for η ≥ 0, so

ρ(A†V1)

1 + ρ(A†V1)
≤ αρ(A†V2)

1 + αρ(A†V2)
.

For α = 1, the required result follows from [14], Lemma 2.8, since ρ(U †
i Vi) =

ρ(A†Vi)

1 + ρ(A†Vi)
> 0 for i = 1 or 2. If 0 < α < 1, then from (8), we get

ρ(A†V1) < ρ(A†V2),

and proceeding as before, we get the desired result. The proof goes parallel in
the case of proper nonnegative splitting of type II. �

Remark 3.7. The above theorem is also true if we replace the condition the same
type by different types.

Another comparison result for proper nonnegative splittings of different types
is established below which generalizes [19], Theorem 2.14.

Theorem 3.8. Let A = U1− V1 = U2− V2 be two convergent proper nonnegative
splittings of different types of a semi-monotone matrix A ∈ Rm×n. If there exists
0 < α ≤ 1, such that U †

2 ≤ αU †
1 , then

ρ(U †
1V1) ≤ ρ(U †

2V2) < 1,

whenever α = 1 and

ρ(U †
1V1) < ρ(U †

2V2) < 1,

whenever 0 < α < 1.
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Proof. Assume that A = U1 − V1 is a convergent proper nonnegative splitting of
type I and A = U2−V2 is a convergent proper nonnegative splitting of type II. It
then follows from [5], Lemma 6.2.1 that (I − U †

1V1)
−1 ≥ 0 and (I − V2U

†
2)
−1 ≥ 0,

respectively. By using [6], Theorem 1 (6) and the given condition U †
2 ≤ αU †

1 , we
have

A† = U †
2(I − V2U

†
2)
−1 ≤ αU †

1(I − V2U
†
2)
−1. (9)

Pre-multiplying (9) by (I − U †
1V1)

−1, we get

(I − U †
1V1)

−1A† ≤ α(I − U †
1V1)

−1U †
1(I − V2U

†
2) = αA†(I − V2U

†
2)
−1. (10)

Since U †
1V1 ≥ 0, there exists an eigenvector x ≥ 0 such that

xT U †
1V1 = ρ(U †

1V1)x
T .

So x ∈ R(V T
1 ) ⊆ R(AT ). Pre-multiplying (10) by xT , we get

1

1− ρ(U †
1V1)

xT A† ≤ αxT A†(I − V2U
†
2)
−1.

By [5], Theorem 2.1.11, it then follows that

1

1− ρ(U †
1V1)

≤ α

1− ρ(V2U
†
2)

=
α

1− ρ(U †
2V2)

,

i.e,

ρ(U †
2V2) ≥ (1− α) + αρ(U †

1V1). (11)

As xT A† ≥ 0 and xT A† 6= 0. Suppose that xT A† = 0, then xT A†A = 0, i.e.,
(A†A)T x = A†Ax = x = 0, a contradiction. Hence xT A† 6= 0. Now, the desired
result follows immediately from (11).
In the case of A = U1 − V1 is a proper nonnegative splitting of type II and
A = U2− V2 is a proper nonnegative splitting of type I, the proof is analogous to
the above proof. �

The next result addresses the question of existence of an α, which is an exten-
sion of [19], Corollary 2.15.

Theorem 3.9. Let A = U1− V1 = U2− V2 be two convergent proper nonnegative
splittings of different types of a semimonotone matrix A ∈ Rm×n. If U †

1 > U †
2 ,

then there exists α, 0 < α < 1, such that U †
2 ≤ αU †

1 and ρ(U †
1V1) < ρ(U †

2V2) < 1.

Proof. Denote

U †
1 = (aij), U †

2 = (bij), i = 1, 2, . . . , n, j = 1, 2, . . . ,m.

From U †
1 > U †

2 , we get

aij > bij, i = 1, 2, . . . , n, j = 1, 2, . . . ,m.

If there exists bij > 0 for some i, j, then let α = max
0≤i≤n
0≤j≤n

{
bij

aij

| bij > 0

}
, otherwise,

0 < α < 1 is arbitrary. Clearly, 0 < α < 1 and

bij ≤ α aij, i = 1, 2, . . . , n, j = 1, 2, . . . ,m,
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i.e.,
U †

2 ≤ αU †
1 .

By Theorem 3.8, the inequality follows. �

The example given below demonstrates that the converse of Theorem 3.9 is not
true.

Example 3.10. Let A =

(
5 −4 0
−7 7 0

)
. Then A† =

 1 0.5714
1 0.7143
0 0

 ≥ 0.

Let U1 =

(
5 −1 0
−7 7 0

)
and U2 =

(
5 0 0
0 8 0

)
. Then A = U1 − V1 is a

proper nonnegative splitting of type I and A = U2 − V2 is a proper nonnegative
splitting of type II. We have 0.7500 = ρ(U †

1V1) < ρ(U †
2V2) = 0.9015 < 1, and

for α = 0.8, U †
2 =

 0.2000 0
0 0.1250
0 0

 ≤

 0.2000 0.0286
0.2000 0.1429

0 0

 = αU †
1 . But

U †
1 =

 0.2500 0.0357
0.2500 0.1786

0 0

 ≯

 0.2000 0
0 0.1250
0 0

 = U †
2 .

The following example shows that Theorem 3.8 and Theorem 3.9 do not valid,
if we consider proper nonnegative splittings of same types instead of different
types.

Example 3.11. Let A =

(
3 −2 3
−2 3 −2

)
. Then A† =

 3/10 1/5
2/5 3/5
3/10 1/5

 >

0. Let U1 =

(
12 −10 12
−8 15 −8

)
and U2 =

(
25/2 −10 25/2
−8 15 −8

)
. Then A =

U1 − V1 = U2 − V2 are two convergent proper nonnegative splittings of type

I. We have U †
1 =

 0.0750 0.0500
0.0800 0.1200
0.0750 0.0500

 > U †
2 =

 0.0698 0.0465
0.0744 0.1163
0.0698 0.0465

 , and for

α = 0.9690 < 1, U †
2 =

 0.0698 0.0465
0.0744 0.1163
0.0698 0.0465

 ≤

 0.0727 0.0484
0.0775 0.1163
0.0727 0.0484

 = αU †
1 . But

ρ(U †
1V1) = ρ(U †

2V2) = 0.8.

The condition A† ≥ 0 in Theorem 3.8 and Theorem 3.9 is not redundant, and
is illustrated hereunder by an example.

Example 3.12. Let A =

(
2 −7 2
−8 5 −8

)
. Then A† =

 −0.0543 −0.0761
−0.1739 −0.0435
−0.0543 −0.0761


< 0. Let U1 =

(
4 −35 4
−16 25 −16

)
and U2 =

(
3 −21/2 3
−12 15/2 −12

)
. Then

A = U1−V1 is a proper nonnegative splitting of type I and A = U2−V2 is a proper
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nonnegative splitting of type II. We have 0.3333 = ρ(U †
2V2) < ρ(U †

1V1) = 0.8. But

U †
2 =

 −0.0362 −0.0507
−0.1159 −0.0290
−0.0362 −0.0507

 <

 −0.0272 −0.0380
−0.0348 −0.0087
−0.0272 −0.0380

 = U †
1 .

The above example also motivates us to prove the following theorem which is a
generalization of [21], Theorem 2.4 to rectangular matrices. However, we provide
below a short new proof.

Theorem 3.13. Let A = U1−V1 = U2−V2 be two convergent proper nonnegative
splittings of different types of A ∈ Rm×n. If A† ≤ 0 and U †

2 ≥ U †
1 , then

ρ(U †
1V1) ≤ ρ(U †

2V2) < 1.

In particular, if A† < 0 and U †
2 > U †

1 , then

ρ(U †
1V1) < ρ(U †

2V2) < 1.

Proof. Assume that A = U1−V1 is a proper nonnegative of type I and A = U2−V2

is a proper nonnegative of type II. Then there exists an eigenvector x ≥ 0 such
that

xT U †
1V1 = ρ(U †

1V1)x
T (12)

Therefore, x ∈ R(V T
1 ) ⊆ R(UT

1 ) = R(AT ). From the given condition U †
2 ≥ U †

1 ,
we obtain the following inequality

A† = U †
2(I − V2U

†
2)
−1 ≥ U †

1(I − V2U
†
2)
−1. (13)

Pre-multiplying (13) by (I − U †
1V1)

−1, we obtain

(I − U †
1V1)

−1A† ≥ (I − U †
1V1)

−1U †
1(I − V2U

†
2)
−1 = A†(I − V2U

†
2)
−1. (14)

Again, pre-multiplying (14) by xT , we get

1

1− ρ(U †
1V1)

xT A† ≥ xT A†(I − V2U
†
2)
−1. (15)

Let z = xT A†. Clearly, z ≤ 0 and z 6= 0. Otherwise, x ∈ R(AT ) ∩ N(A), which
is a contradiction. So, we get

1

1− ρ(U †
1V1)

(−z) ≤ (−z)(I − V2U
†
2)
−1.

Now, the required result follows from [5], Theorem 2.1.11. The proof follows
similarly when A = U1 − V1 is proper nonnegative of type II and A = U1 − V1 is
proper nonnegative of type I. �

3.3. Comparison of Proper Multisplittings. Improving the rate of conver-
gence of the iteration scheme (2) is a problem of interest for getting the solution
faster. In this direction, Climent and Perea [7] proposed multisplitting theory for
rectangular matrices while the authors of [17] studied the same problem in the
nonsingular matrix setting. Here, we revisit the same theory proposed by Climent
and Perea [7] first, and then produced a few new convergence and comparison
theorems for proper multisplittings. In this context, the definition of a proper
multisplitting is recalled below.
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Definition 3.14. ([7], Definition 2)
The triplet (Uk, Vk, Ek)

p
k=1 is called a proper multisplitting of A ∈ Rm×n if

(i) A = Uk − Vk is a proper splitting, for each k = 1, 2, . . . , p,
(ii) Ek ≥ 0, for each k = 1, 2, . . . , p is a diagonal n× n matrix, and

∑p
k=1 Ek = I,

where I is the n× n identity matrix.

Using the above definition, Climent and Perea [7] have considered the iteration
scheme for solving (1) as follows:

xi+1 = Hxi + Gb, i = 0, 1, 2, . . . , (16)

where H =

p∑
k=1

EkU
†
kVk and G =

p∑
k=1

EkU
†
k . Here onwards, all H and G are

defined as above unless stated otherwise.
A proper multisplitting is called a proper regular multisplitting or a proper

weak regular multisplitting, if each one of the proper splitting is a proper regular
splitting or a proper weak regular splitting, respectively. Climent and Perea [7]
obtained the following results for a proper weak regular multisplitting.

Lemma 3.15. ([7], Lemma 1)
Let (Uk, Vk, Ek)

p
k=1 be a proper weak regular multisplitting of A ∈ Rm×n. Then

(i) H ≥ 0 and therefore Hj for j = 0, 1, . . . .

(ii)

p∑
k=1

EkU
†
kA = (I −H)A†A.

(iii) (I + H + H2 + · · ·+ Hm)(I −H) = I −Hm+1.

Theorem 3.16. ([7], Theorem 4)
Let (Uk, Vk, Ek)

p
k=1 be a proper weak regular multisplitting of a semi-monotone

matrix A ∈ Rm×n. Then ρ(H) < 1.

It is of interest to know the type of splitting B − C of A that yields the
iteration scheme (16) which is restated as what can we say about the type of the

induced splitting A = B − C being induced by H =

p∑
k=1

EkU
†
kVk. This problem

in nonsingular matrix setting is also discussed by Elsner [9]. With an additional
hypothesis R(Ek) ⊆ R(AT ), for each k = 1, 2, . . . , p, of a proper weak regular
multisplitting, we establish the following new result which addresses the above
issue partially.

Theorem 3.17. Let (Uk, Vk, Ek)
p
k=1 be a proper weak regular multisplitting of

a semi-monotone matrix A ∈ Rm×n. Then the unique splitting A = B − C
induced by H with B = A(I −H)−1 is a convergent proper weak regular splitting
if R(Ek) ⊆ R(AT ), for each k = 1, 2, . . . , p.
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Proof. By using the condition R(Ek) ⊆ R(AT ), we have A†AEk = Ek and
EkA

†A = Ek. Then

A†AH = A†A

p∑
k=1

EkU
†
kVk

=

p∑
k=1

A†AEkU
†
kVk

=

p∑
k=1

EkU
†
kVk

=

p∑
k=1

EkU
†
kVkA

†A

= HA†A

= H.

Now, post-multiplying Lemma 3.15 (ii) by A†, we get G = (I − H)A†. By
Theorem 3.16, we obtain ρ(H) < 1 and so (I −H) is invertible. From equation
(16), we obtain B† = G = (I −H)A†. Let X = A(I −H)−1. Then XB† = AA†

and B†X = (I−H)A†A(I−H)−1 = (A†A−HA†A)(I−H)−1 = (A†A−A†AH)(I−
H)−1 = A†A(I−H)(I−H)−1 = A†A which imply XB† and B†X are symmetric.
Also, XB†X = AA†A(I − H)−1 = A(I − H)−1 = X and B†XB† = A†A(I −
H)A† = (A†A−A†AH)A† = (A†A−HA†A)A† = (I −H)A†AA† = (I −H)A† =
B†. Therefore, B = A(I −H)−1.

Clearly, R(B) = R(A) as B = A(I−H)−1. Next we prove that N(B) = N(A).

Let x ∈ N(A). Then 0 = Ax = B(I−H)x = B(x−Hx) = B(x−
p∑

k=1

EkU
†
kVkx) =

Bx, since N(Vk) ⊇ N(A). So N(A) ⊆ N(B). Again, let y ∈ N(B). Then we get
By = A(I −H)−1y = 0. Pre-multiplying A†, we get A†A(I −H)−1y = 0. Again,
using the fact that A†AH = HA†A and pre-multiplying A, we get Ay = 0. So
N(B) ⊆ N(A). Thus N(B) = N(A). Next, we have to prove that A = B − C
is unique. Suppose that there exists another induced splitting A = B̃ − C̃ such
that B̃ = A(I − H)−1. Then B̃†C̃ = H and B̃H = B̃B̃†C̃ = C̃ = B̃ − A. So
B̃ = A + B̃H, i.e., B̃(I −H) = A. This reveals that B̃ = A(I −H)−1 = B and
therefore, H induces the unique proper splitting A = B−C. Finally, B† = G ≥ 0
and B†C = B†(B − A) = B†B − B†A = A†A− A†A(I −H) = A†AH = H ≥ 0.
By Theorem 3.16, we get ρ(B†C) = ρ(H) < 1. �

The following example illustrates Theorem 3.17.
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Example 3.18. Let A =

 3 −2
−2 3
3 −2

 .

Set U1 =

 6 −6
−4 9
6 −6

, U2 =

 9 −8
−6 12
9 −8

, E1 =

(
1 0
0 0

)
and E2 =

(
0 0
0 1

)
.

Then (Uk, Vk, Ek)
2
k=1 is a proper weak regular multisplitting. Also, R(Ek) ⊆

R(AT ), for each k = 1, 2. Thus, all the conditions of Theorem 3.17 are sat-

isfied. We observe that B = A(I − H)−1 =

 6 −8
−4 12
6 −8

 and the induced

splitting A = B − C is proper weak regular with ρ(B†C) = 0.75 < 1, as

R(B) = R(A), N(B) = N(A), B† =

(
3/20 1/5 3/20
1/20 3/20 1/20

)
≥ 0 and B†C =(

1/2 0
0 3/4

)
≥ 0.

Next result says that the induced splitting is also a proper regular splitting
under the assumption of an extra condition A ≥ 0.

Theorem 3.19. Let (Uk, Vk, Ek)
p
k=1 be a proper weak regular multisplitting of a

semi-monotone matrix A ∈ Rm×n. Then the splitting A = B−C induced by H is
a proper regular splitting if A ≥ 0 and R(Ek) ⊆ R(AT ), for each k = 1, 2, . . . , p.

Proof. By Theorem 3.17, the splitting A = B − C induced by H is proper weak
regular. Now we have to show that C ≥ 0. So C = B − A = A(I −H)−1 − A =
A(I −H)−1H ≥ 0, since H ≥ 0 and ρ(H) < 1 by Theorem 3.16. �

We obtain the following corollary for a square nonsingular matrix A.

Corollary 3.20. Let (Uk, Vk, Ek)
p
k=1 be a weak regular multisplitting of a mono-

tone matrix A ∈ Rn×n. Then the splitting A = B − C induced by H is a regular
splitting if A ≥ 0.

Next theorem compares the spectral radii between a multisplitting and a split-
ting of a real rectangular matrix A.

Theorem 3.21. Let (Uk, Vk, Ek)
p
k=1 be a proper weak regular multisplitting of a

semi-monotone matrix A ∈ Rm×n and U, U ∈ Rm×n such that

U
† ≤ U †

k ≤ U †, for each k = 1, 2, . . . , p

and R(Ek) ⊆ R(AT ), for each k = 1, 2, . . . , p.

(i) If A = U − V is a proper regular splitting and row sums of U
†
are positive,

then
ρ(H) ≤ ρ(U

†
V ).

(ii) If A = U − V is a proper regular splitting, then

ρ(U †V ) ≤ ρ(H).
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Proof. (i) Let Ũ1 = B, Ũ2 = U and Ṽ2 = V . Then Ũ †
1 Ṽ1 = B†(B − A) =

B†B − B†A = A†A − (I − H)A†A = HA†A = H ≥ 0. The condition U †
k ≥ U

†

implies Ũ †
1 ≥ Ũ2

†
, Ṽ2 ≥ 0. Hence, ρ(H) ≤ ρ(U

†
V ) by [14], Theorem 3.4 (iii).

(ii) Define Ũ1 = U, Ṽ1 = V and Ũ2 = B, and on applying [14], Theorem 3.4
(ii), we obtain ρ(U †V ) ≤ ρ(H). �

For a square nonsingular matrix A, the above result reduces to the following
corollary.

Corollary 3.22. Let (Uk, Vk, Ek)
p
k=1 be a weak regular multisplitting of a mono-

tone matrix A ∈ Rn×n and U, U ∈ Rn×n such that

U
−1 ≤ U−1

k ≤ U−1, for each k = 1, 2, . . . , p.

(i) If A = U − V is a regular splitting, then

ρ(H) ≤ ρ(U
−1

V ).

(ii) If A = U − V is a regular splitting, then

ρ(U−1V ) ≤ ρ(H).

The spectral radii of iteration matrices of two proper weak regular multisplit-
tings of the same coefficient matrix A is compared below.

Theorem 3.23. Let (U
(i)
k , V

(i)
k , Ek)

p
k=1, i = 1, 2, be two proper weak regular

multisplittings of a non-negative semi-monotone matrix A ∈ Rm×n such that

R(Ek) ⊆ R(AT ), for each k = 1, 2, . . . , p. If V
(2)
k ≥ V

(1)
k , for each k = 1, 2, . . . , p,

then
ρ(H1) ≤ ρ(H2) < 1,

where Hi =

p∑
k=1

Ek[U
(i)
k ]†V

(i)
k , for each i = 1, 2.

Proof. From V
(2)
k ≥ V

(1)
k , for each k = 1, 2, . . . , p, we obtain

U
(2)
k ≥ U

(1)
k , for each k = 1, 2, . . . , p.

Since R(U
(1)
k ) = R(U

(2)
k ) and N(U

(1)
k ) = N(U

(2)
k ) by [14], Lemma 3.16, it follows

that
[U

(1)
k ]† ≥ [U

(2)
k ]†, for each k = 1, 2, . . . , p.

Consequently,
p∑

k=1

Ek[U
(1)
k ]† ≥

p∑
k=1

Ek[U
(2)
k ]†,

i.e.,
B†

1 ≥ B†
2.

By Theorem 3.19, the splittings A = B1 − C1 = B2 − C2 induced by H1 and H2

are proper regular splittings. Hence, by Theorem 2.2, we obtain ρ(H1) ≤ ρ(H2) <
1. �

We have the following corollary.
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Corollary 3.24. Let (U
(i)
k , V

(i)
k , Ek)

p
k=1, i = 1, 2, be two weak regular multisplit-

tings of a non-negative monotone matrix A ∈ Rn×n. If V
(2)
k ≥ V

(1)
k , for each k =

1, 2, . . . , p, then

ρ(H1) ≤ ρ(H2) < 1,

where Hi =

p∑
k=1

Ek[U
(i)
k ]−1V

(i)
k , for each i = 1, 2.

Remark 3.25. Theorem 3.19 and Theorem 3.23 are also true if we assume G† ≥ 0
instead of A ≥ 0.

Next result compares the spectral radii of iteration matrices of two proper weak
regular multisplittings of the same coefficient matrix A.

Theorem 3.26. Let (U
(i)
k , V

(i)
k , Ek)

p
k=1, i = 1, 2, be two proper weak regular mul-

tisplittings of a non-negative semi-monotone matrix A ∈ Rm×n such that R(Ek) ⊆
R(AT ), for each k = 1, 2, . . . , p. If [U

(1)
k ]† ≥ [U

(2)
k ]†, for each k = 1, 2, . . . , p, then

ρ(H1) ≤ ρ(H2) < 1.

Proof. By Theorem 3.19, the splittings A = B1 − C1 = B2 − C2 induced by

H1 =

p∑
k=1

Ek[U
(1)
k ]†V

(1)
k and H2 =

p∑
k=1

Ek[U
(2)
k ]†V

(2)
k are proper regular splittings.

From

[U
(1)
k ]† ≥ [U

(2)
k ]†, for each k = 1, 2, . . . , p,

we have
p∑

k=1

Ek[U
(1)
k ]† ≥

p∑
k=1

Ek[U
(2)
k ]†, for each k = 1, 2, . . . p,

i.e.,

B†
1 ≥ B†

2.

Hence, by Theorem 2.2, we obtain ρ(H1) ≤ ρ(H2) < 1.
�

The following example illustrates Theorem 3.23 and Theorem 3.26.

Example 3.27. Let A =

 3 0
0 2
0 3

. Set U
(1)
1 =

 6 0
0 2
0 3

 , U
(2)
1 =

 9 0
0 2
0 3

 ,

U
(1)
2 =

 12 0
0 4
0 6

 , U
(2)
2 =

 16 0
0 4
0 6

 , E1 =

(
1 0
0 0

)
and E2 =

(
0 0
0 1

)
,

respectively. Then (U
(1)
k , V

(1)
k , Ek)

2
k=1 and (U

(2)
k , V

(2)
k , Ek)

2
k=1 are two proper weak

regular multisplittings of a non-negative semi-monotone matrix A with R(Ek) ⊆

R(AT ). Also, V
(2)
1 =

 9 0
0 2
0 3

 ≥

 3 0
0 0
0 0

 = V
(1)
1 , V

(2)
2 =

 13 0
0 2
0 3

 ≥
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0 0
0 0

 = V
(1)
2 , and [U

(1)
1 ]† =

(
0.1667 0 0

0 0.1538 0.2308

)
≥(

0.1111 0 0
0 0.1538 0.2308

)
= [U

(2)
1 ]†, [U

(1)
2 ]† =

(
0.0833 0 0

0 0.0769 0.1154

)
≥(

0.0625 0 0
0 0.0769 0.1154

)
= [U

(2)
2 ]†.

Thus, all the conditions of Theorem 3.23 and Theorem 3.26 are satisfied. Note
that 0.5 = ρ(H1) ≤ ρ(H2) = 0.75 < 1.

The following corollary follows immediately from the above result when a
square nonsingular system of linear equations is considered.

Corollary 3.28. Let (U
(i)
k , V

(i)
k , Ek)

p
k=1, i = 1, 2, be two weak regular multisplit-

tings of a non-negative monotone matrix A ∈ Rn×n. If [U
(1)
k ]−1 ≥ [U

(2)
k ]−1, for

each k = 1, 2, . . . , p, then

ρ(H1) ≤ ρ(H2) < 1.
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