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APPLICATIONS OF TERNARY RINGS TO C∗-ALGEBRAS

FERNANDO ABADIE1 and DAMIÁN FERRARO2∗

Communicated by C.-K. Ng

Abstract. We show that there is a functor from the category of positive
admissible ternary rings to the category of ∗-algebras, which induces an iso-
morphism of partially ordered sets between the families of C∗-norms on the
ternary ring and its corresponding ∗-algebra. We apply this functor to obtain
Morita–Rieffel equivalence results between cross-sectional C∗-algebras of Fell
bundles, and to extend the theory of tensor products of C∗-algebras to the
larger category of full Hilbert C∗-modules. We prove that, like in the case of
C∗-algebras, there exist maximal and minimal tensor products. As applica-
tions we give simple proofs of the invariance of nuclearity and exactness under
Morita–Rieffel equivalence of C∗-algebras.

1. Introduction

An important tool in the study of C∗-algebras is Morita–Rieffel equivalence.
When two C∗-algebras are Morita–Rieffel equivalent, they are related by a certain
type of bimodule, from which one can see that these algebras share many prop-
erties. A Morita–Rieffel equivalence between two C∗-algebras implies that these
algebras have many characteristics in common: they have the same K-theory,
their spectra and primitive ideal spaces are homeomorphic, etc. In [12], Zettl
introduced and studied C∗-ternary rings, and showed that these objects are es-
sentially Morita–Rieffel equivalence bimodules. In fact, given a C∗-ternary ring
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E, there exists essentially a unique structure of Morita–Rieffel equivalence bi-
module on E compatible with its structure of ternary ring (perhaps after a minor
change on the ternary product).

On the other hand, when dealing with constructions such as tensor products
or any sort of crossed products of C∗-algebras, in general one has to follow two
steps: first one defines some ∗-algebra, and then one takes the completion of that
algebra with respect to a C∗-norm. A situation that appears frequently is that
there is more than one reasonable C∗-norm to perform this second step. In many
cases, for instance in several imprimitivity theorems, one is interested in finding
a Morita–Rieffel equivalence between different C∗-completions of a given pair of
∗-algebras which are related by a certain bimodule. This is the situation we study
in the present paper, adopting a viewpoint similar to that in Zettl’s work, but
starting from a more algebraic level.

More precisely, suppose E is an A−B bimodule, where A and B are ∗-algebras,
〈 , 〉A : E × E → A and 〈 , 〉B : E × E → B satisfy all the algebraic properties of
Hilbert bimodule inner products. In particular 〈x, y〉Az = x〈y, z〉B, ∀x, y, z ∈ E.
Then we can endow E with a ∗-ternary ring structure by defining a ternary
product ( , , ) : E × E × E → E such that (x, y, z) = x〈y, z〉B. We show that,
under certain conditions, the partially ordered sets of C∗-norms on E and on
the ∗-algebras A and B are isomorphic to each other, in such a way that the
completions with respect to corresponding C∗-norms under these isomorphisms
yields a Morita–Rieffel equivalence bimodule.

We think that the best way to do it is by using the above mentioned abstract
characterization of equivalence bimodules given by Zettl in [12], under the name
of C∗-ternary rings. Such an object is a Banach space with a ternary product on
it, which implicitly carries all the structure of an equivalence bimodule. Natural
morphisms between C∗-ternary rings are linear maps that preserve ternary prod-
ucts. With such morphisms, one obtains a C∗-category, which is very convenient
for the study of properties invariant under Morita–Rieffel equivalence.

The structure of the paper is as follows. In the next section, working in a
pure algebraic level, we define the category of admissible ∗-ternary rings, and we
show there is a functor from this category to the category of ∗-algebras or, more
precisely, to the category of right basic triples (see Definition 2.6). In Section 3,
given an admissible ternary ring E with associated basic triple (E,A, 〈 , 〉A), we
consider the lattice of C∗-seminorms on A that satisfy the Cauchy-Schwarz in-
equality ‖〈x, y〉A‖2 ≤ ‖〈x, x〉‖ ‖〈y, y〉‖, ∀x, y ∈ E. Then we prove that this lattice
is isomorphic to the lattice of C∗-seminorms on E. In passing we obtain some of
the results of [12] and [1] regarding C∗-ternary rings. Besides, since there is also
a functor to the category of left basic triples, we obtain a fortiori an isomorphism
between the lattices of C∗-seminorms (satisfying the Cauchy-Schwarz property)
on the ∗-algebras associated to the left and to the right sides. The Hausdorff
completions of corresponding C∗-seminorms under this isomorphism turn out to
be Morita–Rieffel equivalent. In the last part of Section 3 we consider positive
ternary rings, for which the C∗-seminorms on the associated ∗-algebras automati-
cally satisfy the Cauchy-Schwarz inequality. In Section 4 we briefly study the case
of C∗-ternary rings, in which basic triples are replaced by C∗-basic triples, that is,
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Hilbert modules, and the functors from C∗-ternary rings to C∗-basic triples are
shown to be exact. Finally, Section 5 is devoted to applications. We first refine
a result from [2] concerning cross-sectional algebras of Fell bundles over groups.
Then we consider tensor products of C∗-ternary rings, which is essentially the
same as tensor products of Hilbert modules. We show that the theory of tensor
products of C∗-algebras extends to this larger category, in the sense that there
exist a maximal and a minimal tensor products. By using this theory we obtain
easy and natural proofs of the known results of the Morita–Rieffel invariance of
nuclearity and exactness of C∗-algebras.

2. Ternary rings

2.1. Ternary rings.

Definition 2.1. A ∗-ternary ring is a complex linear space E with a map µ :
E × E × E → E, called ∗-ternary product on E, which is linear in the odd
variables and conjugate linear in the second one, and such that:

µ
(
µ(x, y, z), u, v

)
= µ

(
x, µ(u, z, y), v

)
= µ

(
x, y, µ(z, u, v)

)
, ∀x, y, z, u, v ∈ E

A homomorphism of ∗-ternary rings is a linear map φ : (E, µ) → (F, ν) such that
ν
(
φ(x), φ(y), φ(z)

)
= φ

(
µ(x, y, z)

)
, ∀x, y, z ∈ E. Sometimes we will write (x, y, z)

or (x, y, z)E instead of µ(x, y, z), and we will use the expression ∗-tring instead
of ∗-ternary ring.

There is an inclusion of the category of ∗-algebras into the category of ∗-trings:
if A is a ∗-algebra, then (x, y, z) 7→ xy∗z is a ternary product on A, and if
π : A→ A′ is a homomorphism of ∗-algebras, then so is of ∗-trings.

Definition 2.2. If a subspace F of a ∗-tring E is invariant under the ternary
product, we say that it is a sub-∗-tring of E, or just a subring of E. A subring
F is said to be hermetic in E if for x ∈ E we have (x, x, x) ∈ F ⇐⇒ x ∈ F .

Definition 2.3. A ∗-tring E will be called admissible if {0} is hermetic in E. A
∗-algebra A will be called admissible if it is admissible as a ∗-tring.

Note that a ∗-algebra A is admissible if and only if the condition a∗a = 0
implies a = 0.

Definition 2.4. Let E be a ∗-tring and F ⊆ E a subspace. We say that F is an
ideal of E if (E,E, F ) + (E,F,E) + (F,E,E) ⊆ F .

If π : E → F is a homomorphism into an admissible ∗-tring F , then ker π is
an hermetic ideal of E:

π((x, x, x)) = 0 ⇐⇒ (π(x), π(x), π(x)) = 0 ⇐⇒ π(x) = 0

In case F is an ideal of E, then E/F has an obvious structure of ∗-tring for
which the canonical map q : E → E/F is a homomorphism of ∗-trings. Note
that E/F is admissible whenever F is hermetic. In particular if π : E → F is a
homomorphism into an admissible ∗-tring F , then E/ kerπ is admissible

Suppose E is a complex vector space, and let E∗ denote its complex conju-
gate linear space. If (E, µ) is a ∗-tring, then µ∗ : E∗ × E∗ × E∗ → E∗ given
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by µ∗(x, y, z) = µ(z, y, x), ∀x, y, z ∈ E∗, is a ∗-ternary product on E∗. We call
(E∗, µ∗) the adjoint or reverse ∗-tring of (E, µ). If π : E → F is a homomor-
phism, then π remains a homomorphism E∗ → F ∗, so it is clear that reversion
is an autofunctor of order two of the category of ∗-trings, which moreover sends
admissible ∗-trings into admissible ∗-trings. If A is a ∗-algebra considered as a
∗-tring as above, then its reverse ∗-tring A∗ is the conjugate linear space of Aop

considered as a ∗-tring.

Example 2.5 (Basic triples). Suppose (E,A, 〈 , 〉) is a triple consisting of a C-
vector space E, a ∗-algebra A over which E is a right module, and a sesquilinear
map 〈 , 〉 : E×E → A (conjugate linear in the first variable), such that 〈x, y〉a =
〈x, ya〉 and 〈x, y〉∗ = 〈y, x〉, ∀x, y ∈ E, a ∈ A. Then ( , , ) : E × E × E → E
given by (x, y, z) 7→ x〈y, z〉 is a ternary product. We will say that (E, ( , , ) ) is
the ternary ring associated with (E,A, 〈 , 〉).

Definition 2.6. Triples as in Example 2.5 will be referred to as (right) basic
triples. A basic triple (E,A, 〈 , 〉A) will be called admissible whenever A is ad-
missible, and full if span{〈x, y〉A : x, y ∈ E} = A. By a homomorphism from
the basic triple (E,A, 〈 , 〉A) into the basic triple (F,B, 〈 , 〉B) we mean a pair
(ϕ, ψ) of maps such that ϕ : E → F is linear, ψ : A→ B is a homomorphism of
∗-algebras, and ϕ(xa) = ϕ(x)ψ(a), ∀x ∈ E, a ∈ A.

Similarly we can define left basic triples, using left instead of right A-modules.

We will see soon that any admissible ∗-tring can be described in terms of basic
triples as in 2.5.

Proposition 2.7. Let (E,A, 〈 , 〉) be a basic triple.

(1) If A is admissible, and 〈x, x〉 = 0 implies x = 0, then the ∗-tring E is
admissible as well.

(2) If (E,A, 〈 , 〉) is admissible and full, then E is faithful as an A-module.

Proof. If x ∈ E is such that x〈x, x〉 = 0, then

〈x, x〉∗〈x, x〉 = 〈x, x〉〈x, x〉 = 〈x, x〈x, x〉〉 = 0.

Now, if A is admissible, the latter equality implies 〈x, x〉 = 0, so x = 0. As for the
second statement suppose (E,A, 〈 , 〉A) is admissible and full, and a ∈ A is such
that a =

∑n
j=1〈yj, zj〉 and ya = 0, ∀y ∈ F . Then we have a∗a =

∑n
j=1〈yj, zja〉 =

0, so a = 0. Then E is a faithful A-module. �

Lemma 2.8. Suppose that (E,A, 〈 , 〉A) and (F,B, 〈 , 〉B) are basic triples, with
the former full, and F admissible as ∗-tring and faithful as a B-module. Then,
if ϕ : (E, ( , , ) ) → (F, ( , , ) ) is a homomorphism between their associated ∗-
trings, there exists a unique homomorphism of ∗-algebras ψ : A → B such that
ψ(〈x, y〉A) = 〈ϕ(x), ϕ(y)〉B, ∀x, y ∈ E. Besides we have ϕ(xa) = ϕ(x)ψ(a),
∀x ∈ E, a ∈ A, and

kerψ ⊆ {a ∈ A : Ea ⊆ kerϕ} ⊆ {a ∈ A : ψ(a)∗ψ(a) = 0}, (2.1)

both inclusions being equalities if B is admissible. If E is also a faithful A-module
and ϕ is injective, then so is ψ.
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Proof. We will suppose that (F,B, 〈 , 〉B) is full: otherwise we just replace B by
span〈F, F 〉B. We concentrate in showing the existence of the map ψ, because
its uniqueness is obvious. To this end suppose that x1, . . . , xn and y1, . . . , yn are
elements in E such that

∑n
j=1〈xj, yj〉A = 0, and therefore also

∑n
j=1〈yj, xj〉A = 0.

Consider the element c :=
∑n

j=1〈ϕ(xj), ϕ(yj)〉B of B. All we have to do is to
show that c = 0. Now, if x ∈ E and u ∈ F we have

(ϕ(x), uc, uc) =
∑
k

(ϕ(x), (u, ϕ(xk), ϕ(yk)), uc)

=
∑
k

((ϕ(x), ϕ(yk), ϕ(xk)), u, uc) = (ϕ(x
∑
k

〈yk, xk〉A), u, uc) = 0.

Hence, if u ∈ F :

(uc, uc, uc) =
∑
j

((u, ϕ(xj), ϕ(yj)), uc, uc) =
∑
j

(u, ϕ(xj), (ϕ(yj), uc, uc)) = 0

Since F is admissible, it follows that uc = 0,∀u ∈ F , so c = 0 because F is a
faithful B-module.

Suppose now that a ∈ kerψ. Then ϕ(xa) = ϕ(x)ψ(a) = 0, so Ea ⊆ kerϕ.
On the other hand, if the element a =

∑
j〈xj, yj〉A is such that Ea ⊆ kerϕ, then

ψ(a∗a) = ψ(
∑

i,j〈yi, xi〈xj, yj〉A〉A) =
∑

i,j〈ϕ(yi), ϕ(xi)ψ(〈xj, yj〉A)〉A, so

ψ(a)∗ψ(a) =
∑
i

〈ϕ(yi), ϕ(xi)ψ(
∑
j

〈xj, yj〉A)〉A =
∑
i

〈ϕ(yi), ϕ(xia)〉A = 0,

because ϕ(xia) = 0 ∀i. In case B is admissible we have ψ(a)∗ψ(a) = 0 if and
only if a ∈ kerψ, so in this case the three considered sets agree. Finally, when E
is faithful and kerϕ = 0, we have {a ∈ A : Ea ⊆ kerϕ} = 0, so kerψ = 0. �

Given two modules E and F over a ring R, we denote by HomR(E,F ) the
abelian group of R-linear maps from E into F , and just by EndR(E) in case
E = F . Let E be an admissible ∗-tring, and suppose T ∈ EndC(E) is such
that there exists S ∈ EndC(E) that satisfies (x, Ty, z) = (Sx, y, z),∀x, y, z ∈ E.
Since {0} is hermetic in E, given T ∈ EndC(E), there exists at most one such
endomorphism S; in this case we say that S is the adjoint of T to the left,
and we denote it by T ∗. The set Ll(E) of C-linear endomorphisms of E that
have an adjoint to the left is clearly a unital subalgebra of EndC(E). Every
pair of elements y, z ∈ E gives rise to an endomorphism θy,z : E → E given by
θy,z(x) := (x, y, z). It is readily checked that θy,z is adjointable with adjoint θz,y.

Proposition 2.9. Let E be an admissible ∗-tring. Then the map ∗ : Ll(E) →
Ll(E), given by taking the adjoint, is an involution in Ll(E). Moreover, the
∗-algebra Ll(E) is an admissible ∗-tring, and span{θy,z : y, z ∈ E} is a twosided
ideal of Ll(E), which is essential in the sense that Tθy,z = 0 ∀y, z ∈ E or
θy,zT = 0 ∀y, z ∈ E implies T = 0.

Proof. It is clear that the map T 7→ T ∗ is conjugate linear and antimultiplicative.
On the other hand, if T ∈ Ll(E):

(u, (Tx, y, z), u) = (u, z, (y, T (x), u)) = (u, z, (T ∗(y), x, u)) = (u, (x, T ∗(y), z), u)
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∀x, y, z, u ∈ E and T ∈ Ll(E), which shows that T ∗∗ = T . Now, if x ∈ E,
and T ∈ Ll(E) is such that T ∗T = 0: (Tx, Tx, Tx) = (x, T ∗Tx, Tx) = 0,
so T (x) = 0, and therefore T = 0. Finally, if T ∈ Ll(E) and x, y, z ∈ E:
θy,zT (x) = (Tx, y, z) = (x, T ∗y, z) = θT ∗y,z(x). Thus Tθy,z = (θz,yT

∗)∗ = θy,Tz.
This shows that span{θy,z : y, z ∈ E} is an ideal of Ll(E). If θy,zT = 0 ∀y, z ∈ E,
then 0 = θTx,TxT (x) = (Tx, Tx, Tx), ∀x ∈ E. Then Tx = 0 ∀x ∈ E because E is
admissible, so T = 0. �

The next result shows that any admissible ∗-tring E gives rise to an admissible
and full right basic triple (E,Er

0 , 〈 , 〉r). In the same way one could show that E
also defines a left basic triple (E,El

0, 〈 , 〉l).

Theorem 2.10. Let E and F be admissible ∗-trings. Then:

(1) There exists a pair (Er
0 , 〈 , 〉r) such that (E,Er

0 , 〈 , 〉r) is an admissible
and full basic triple, whose associated ∗-tring is E.

(2) If π : E → F is a homomorphism of ∗-trings, and (Er
0 , 〈·, ·〉r) and

(F r
0 , 〈·, ·〉r) are pairs like above for E and F respectively, there exists a

unique homomorphism of ∗-algebras πr0 : Er
0 → F r

0 such that

πr0(〈x, y〉r) = 〈π(x), π(y)〉r, ∀x, y ∈ E.
Moreover, π(xb) = π(x)πr0(b), ∀x ∈ E, b ∈ Er

0, that is, the pair (π, πr0) is
a homomorphism of basic triples.

(3) The pair (Er
0 , 〈·, ·〉r) is the unique (up to canonical isomorphisms) such

that the triple (E,Er
0 , 〈·, ·〉r) is a full and admissible with E as associated

∗-tring.

Proof. Note that E is a faithful right Ll(E)op-module with xT := T (x). Consider
the ideal Er

0 := span{θy,z : y, z ∈ E} of Ll(E)op and let 〈 , 〉r : E × E → Er
0

be given by 〈x, y〉r := θx,y. It is routine to verify that (E,Er
0 , 〈 , 〉r ) is a full

and admissible basic triple whose associated ∗-tring is E. The second statement
follows at once from 2.8 and 2.7, while the last assertion of the theorem follows
immediately from the second one. �

Corollary 2.11. The assignment

(E
π→ F ) 7−→ (E,Er

0 , 〈 , 〉r)
(π,πr

0)
7−→ (F, F r

0 , 〈 , 〉r)
defines a functor from the category of admissible ∗-trings into the category of
admissible and full basic triples.

Corollary 2.12. Let (E,A, 〈 , 〉A) be a basic triple such that E is faithful as an
A-module and E is admissible as a ∗-tring. Then there exists a unique homomor-
phism ψ : Er

0 → A such that 〈x, y〉r = 〈x, y〉A, ∀x, y ∈ E. The homomorphism ψ
is injective, and it is an isomorphism if (E,A, 〈 , 〉A) is full.

Proof. Let (E,Er
0 , 〈 , 〉r ) be the full and admissible basic triple provided by

Theorem 2.10. The identity map on E is an injective homomorphism of ∗-trings,
so by 2.8 there exists a unique homomorphism ψ : Er

0 → A such that 〈x, y〉r =
〈x, y〉A, ∀x, y ∈ E, which is injective because E is faithful as Er

0-module. It is
clear that ψ is also surjective when the given basic triple is full. �
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Corollary 2.13. Let (E,A, 〈 , 〉A) be a full basic triple such that E is faithful as
a A-module. Then A is admissible if E is admissible.

Proof. Just note that if E is admissible, then Er
0
∼= A by 2.12, and Er

0 is admissible
according to 2.10. �

Corollary 2.14. Let F be an ideal of the admissible ∗-tring E, (E,Er
0 , 〈 , 〉E)

and (F, F r
0 , 〈 , 〉F ) the full and admissible basic triples associated, respectively,

with E and F (given by Theorem 2.10). If A := span{〈x, y〉E : x, y ∈ F}, then
A is a ∗-ideal of Er

0, and the basic triples (F, F r
0 , 〈 , 〉F ) and (F,A, 〈 , 〉E) are

isomorphic.

Proof. The triple (F,A, 〈 , 〉r) is admissible and full, with F as induced ∗-tring.
Then F is a faithful A-module by 2.7. According to 2.12, there exists a unique
map ψ : F r

0 → A such that (id, ψ) is a homomorphism from (F, F r
0 , 〈 , 〉F ) to

(F,A, 〈 , 〉E), and ψ is an isomorphism o ∗-algebras. It follows that (id, ψ−1) is
the inverse homomorphism of (id, ψ). �

From now on if F is an ideal in the admissible ∗-tring E, we will think of F r
0

as a ∗-ideal of Er
0 via the identification provided by 2.14:

F r
0
∼= span{〈x, y〉E : x, y ∈ F}. (2.2)

For the next result recall that an ideal F of the ∗-tring E is hermetic if and
only if E/F is admissible.

Proposition 2.15. Let π : E → F be a homomorphism between the admissible
∗-trings E and F , such that kerπ is hermetic. If Ikerπ := {a ∈ Er

0 : Ea ⊆ kerπ},
then:

(kerπ)r0 ⊆ kerπr0 ⊆ Ikerπ

Proof. Taking into account (2.2) above and the second part of 2.10, the first
inclusion is clear. The second inclusion follows from the admissibility of E/ kerπ
and (2.1) in Lemma 2.8. �

Remark 2.16. Suppose F is an hermetic ideal of the admissible ∗-tring E. Let
q : E → E/F be the quotient map, IF := {a ∈ Er

0 : Ea ⊆ F}, p : Er
0 → Er

0/IF
the canonical projection and qr0 : Er

0/IF → (E/F )r0 the isomorphism induced by
qr0, so the following diagram commutes:

Er
0

p ##HHH
HH

qr
0 // (E/F )r0

Er
0/IF

qr
0

88qqqqq

Then:

qr0(p(〈x, y〉E)) = qr0(〈x, y〉E)) = 〈q(x), q(y)〉E/F , ∀x, y ∈ E.

Therefore the pair ((E/F )r0.〈 , 〉E/F ) associated with E/F in Theorem 2.10 may be
replaced by the pair (Er

0/IF , [ , ]E/F )., where [q(x), q(y)]E/F = p(〈x, y〉E), ∀x, y ∈
E and the action of Er

0/IF on E/Fγ is given by q(x)p(a) = q(xa), ∀x ∈ E, a ∈ A.
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Proposition 2.17. Let π : E → F be a homomorphism between admissible ∗-
trings. Then:

(1) π is injective if and only if πr0 : Er
0 → F r

0 is injective.
(2) If π is onto, or an isomorphism, then so is πr0 : Er

0 → F r
0 .

Proof. Since the second statement is clear we prove only the first one. Now if πr0
is injective and x ∈ E, the admissibility of E and F implies that:

π(x) = 0 ⇐⇒ 〈π(x), π(x)〉r = 0 ⇐⇒ πr0(〈x, x〉r) = 0 ⇐⇒ x = 0,

so π is injective as well. On the other hand the injectivity of π implies that of πr0
by 2.8. �

3. Correspondence between C∗-seminorms.

3.1. C∗-seminorms.

Definition 3.1. A C∗-seminorm on a ∗-tring (E, µ) is a seminorm such that:

(1) ‖µ(x, y, z)‖ ≤ ‖x‖ ‖y‖ ‖z‖, ∀x, y, z ∈ E.
(2) ‖µ(x, x, x)‖ = ‖x‖3, ∀x ∈ E.

If ‖·‖ is a norm, we call it a C∗-norm, and we say that (E, ‖·‖) is a pre-C∗-ternary
ring. If (E, ‖ · ‖) is also a Banach space, we say that it is a C∗-ternary ring, or
just a C∗-tring.

If E is a ∗-tring, the set of C∗-seminorms on E will be denoted by SN (E), and
N (E) will denote the set of C∗-norms on E. The set SN (E) is partially ordered
by: γ1 ≤ γ2 if γ1(x) ≤ γ2(x), ∀x ∈ E.

Definition 3.2. A ∗-tring E will be called C∗-closable, or just closable, in case
N (E) 6= ∅. Similar terminology will be used for ∗-algebras.

Observe that any C∗-closable ∗-tring is admissible.
In the next proposition, whose easy proof is left to the reader, we record some

basic facts about ∗-trings.

Proposition 3.3. Let E be a ∗-tring. Then:

(1) Nγ := {x ∈ E : γ(x) = 0} is an hermetic ideal of E, for all γ ∈ SN (E).
(2) The intersection of hermetic subrings is also hermetic.
(3) The quotient E/N is admissible, where N := ∩{Nγ : γ ∈ SN (E)} and

Nγ is as in 1.
(4) If SN (E) separates points of E, then E is admissible.
(5) If SN (E) separates points of E and is bounded, then E is C∗-closable.

If H and K are Hilbert spaces and B(H,K) denotes the corresponding space of
bounded linear maps, a subspace E of B(H,K) closed under the ternary product
(R, S, T ) 7→ RS∗T ∈ E, ∀R,S, T ∈ E, is a ∗-tring with that product. In case E
is also closed it is called a ternary ring of operators (TRO). Note that if (E, µ)
is a C∗-tring, then (E,−µ) also is a C∗-tring, called the opposite of (E, µ) and
denoted by Eop. The opposite of a TRO is called anti-TRO.
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New C∗-ternary rings can be obtained by direct sums: if (E, ‖ · ‖E, µE) and
(F, ‖·‖F , µF ) are C∗-trings, then (E⊕F,max{‖·‖E, ‖·‖F}, µE⊕µF ) is a C∗-tring.
We denote it just by E ⊕ F .

Suppose that E is a full right Hilbert A-module, and define the ternary product
on E: µE(x, y, z) := x〈y, z〉. Then (E, µE) is a C∗-tring with the norm ‖x‖ =√
〈x, x〉. Now, if F is a full right Hilbert B-module, then E ⊕ F op is also a

C∗-tring. This is the fundamental example of C∗-tring, as shown by Zettl in [12,
3.2] (see also Corollay 3.10 below).

Zettl also showed that there exist unique sub-C∗-trings E+ and E− of E such
that E = E+

⊕
E−, and E+ is isomorphic to a TRO, while E− is isomorphic

to an anti-TRO (see [12]). The decomposition above is called the fundamental
decomposition of E.

Definition 3.4. We say that a C∗-tring E is positive (negative) if E = E+

(respectively: if E = E−).

If E is a C∗-tring, we define Ep := E+ ⊕ Eop
− . Then Ep is a positive C∗-tring.

Let E∗ be the reverse ∗-tring of (the *-tring) E. It is clear that a norm on
E is a C∗-norm if and only if is a C∗-norm on E∗. Moreover, E is a (positive)
C∗-tring if and only if so is E∗.

3.2. From pre-C∗-trings to pre-C∗-algebras. In what follows we will examine
an intermediate situation between the ∗-algebraic context of 2.10 and the C∗-
context originally considered by Zettl.

If α is a seminorm on the vector space X, then Nα := {x ∈ X : α(x) = 0} is a
closed subspace of X, so X/Nα is a normed space with the norm ᾱ induced by α:
ᾱ(x+Nα) = α(x). The completion (Xα, ᾱ) of (X/Nα, ᾱ) will be referred to as the
Hausdorff completion of the seminormed space (X,α), and the map x 7→ x+Nα

will be called the canonical map.
In case γ is a C∗-seminorm on the ternary ring E, then E/Nγ is a pre-C∗-tring

with the induced norm γ̄. Thus the corresponding Hausdorff completion Eγ of E
is a C∗-tring.

Proposition 3.5. Suppose E is an admissible ∗-tring and γ ∈ SN (E). Let
γr : Er

0 → [0,∞) be the operator seminorm on Er
0, that is:

γr(a) := sup{γ(xa) : γ(x) ≤ 1}. (3.1)

Then γr ∈ SN (Er
0), and γr ∈ N (Er

0) ⇐⇒ γ ∈ N (E). Moreover the following
relations hold:

γ(xa) ≤ γ(x)γr(a),∀x ∈ E, a ∈ Er
0 (3.2)

γr(〈x, y〉r) ≤ γ(x)γ(y),∀x, y ∈ E (3.3)

γ(x)2 = γr(〈x, x〉r),∀x ∈ E (3.4)
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Proof. Given a =
∑n

i=1〈xi, yi〉 ∈ Er
0 the linear map x 7→ xa is bounded because

γ(xa) ≤ γ(x)
∑n

i=1 γ(xi)γ(yi). Then (3.2) and (3.3) follow immediately and Def-
inition 3.1 implies (3.4). With a ∈ E0

r as before and x ∈ E we have

(xa, xa, xa) =
n∑
i=1

((x, xi, yi), xa, xa) =
n∑
i=1

(x, (xa, yi, xi), xa),

so
γ(xa)3 = γ(x, xaa∗, xa) ≤ γr(aa∗) γr(a) γ(x)3,

from where it follows that γr(a)2 ≤ γr(aa∗) ≤ γr(a)γr(a∗). From the computa-
tions above is clear that γr ∈ N (Er

0) ⇐⇒ γ ∈ N (E). In particular Er
0 is a

C∗-closable algebra whenever E is a C∗-closable tring. �

Definition 3.6. Suppose (E,A, 〈 , 〉A) is a basic triple such that (E, γ) is a C∗-
tring and a Banach module over the C∗-algebra (A,α), and that 〈 , 〉A : E×E → A
is continuous. Then the triple is said to be a C∗-basic triple. We say that it is
full if the ideal span{〈x, y〉A : x, y ∈ E} of A is dense in A.

The next two results will be useful for studying the relation between a C∗-basic
triple (E,A, 〈 , 〉A) and the basic triple (E,Er

0 , 〈 , 〉r). What we will show first, in
3.9, is that (E,Er

0 , 〈 , 〉r) can be embedded in (E,A, 〈 , 〉A).

Proposition 3.7. Let A be a Banach ∗-algebra and I a ∗-ideal of A, not neces-
sarily closed. Then any C∗-seminorm on I can be extended to a C∗-seminorm on
A. If I is dense, such extension is unique.

Proof. Consider α ∈ SN (I), α 6= 0. Let Iα be the Hausdorff completion of
(I, α), p : I → Iα the canonical map, and let π : Iα → B(H) be a faithful
representation. Now, according to [4, VI-19.11], the representation πp : I →
B(H) can be extended to a representation ρ of A. Then a 7→ ‖ρ(a)‖ defines a
C∗-seminorm on A that extends α. Note that the continuity of ρ implies the
continuity of α, from which the uniqueness of the extension follows in case I is
dense in A. �

Corollary 3.8. Let I be a ∗-ideal of the C∗-algebra A. Then the unique C∗-norm
one can define in I is the restriction to I of the norm of A.

Proposition 3.9. Let (E,A, 〈 , 〉A) be a full C∗-basic triple, and γ and α the
corresponding norms of E and A. Then (A,α) is the completion of (Er

0 , γ
r), and

〈 , 〉A is the continuous extension of 〈 , 〉r.

Proof. Note that E is admissible for it is a C∗-tring. On the other hand E is a
faithful A-module: if a ∈ A is such that xa = 0∀x ∈ E, then 〈x, y〉Aa = 0∀x, y ∈
E, so it follows that ba = 0 for every b in the dense ideal span{〈x, y〉A : x, y ∈ E}
of A, which implies a = 0. Thus there exists, by 2.7, a unique homomorphism
ψ : Er

0 → A such that ψ(〈x, y〉r) = 〈x, y〉A, ∀x, y ∈ E. Besides ψ is injective and
ψ(Er

0) = span{〈x, y〉A : x, y ∈ E} (thus we may suppose Er
0 is a dense ideal of

A). Now 3.8 implies γr0 is the restriction of α to ψ(Er
0) and, since the latter is

dense in A, we conclude that A is the completion of Er
0 . �

As a consequence we obtain the following result, due to H. Zettl:
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Corollary 3.10 (cf. [12, Proposition 3.2]). Let (E, γ) be a C∗-tring and Er the
completion of Er

0 with respect to γr. Then (E,Er, 〈 , 〉r)) is, up to isomorphism,
the unique full C∗- basic triple whose first component is E.

Proposition 3.11. Let π : E1 → E2 be a homomorphism of ∗-trings between the
C∗-trings E1 and E2. Then there exists a unique homomorphism πr : Er → F r

such that πr(〈x, y〉E) = 〈π(x), π(y)〉F , ∀x, y ∈ E, and π(xa) = π(x)πr(a) ∀x ∈ E,
a ∈ Er. Consequently π is always contractive, and is isometric if and only if it
is injective.

Proof. It is clear that, if the homomorphism πr exists, it must be an extension
of πr0 : Er

0 → F r
0 . Let ρ : F r → B(H) be a faithful representation. Then

ρπr0 is a representation of Er
0 . Now, since (E,Er, 〈 , 〉r) is a C∗-triple, Er

0 is
a ∗-ideal in Er. Therefore ρπr0 can be uniquely extended to a representation
ρ̄ : Er → B(H) ([4, VI.19.11]). Since ρ(F r) is closed and ρ̄(Er) is a subset of the
closure of ρπr0(E

r
0), we have ρ̄(Er) ⊆ ρ(F r). Then take πr := ρ−1ρ̄. Note that

‖π(x)‖2 = ‖πr(〈x, x〉)‖ ≤ ‖〈x, x〉‖ = ‖x‖2, with equality if πr is injective. This
shows that π is contractive. Finally, if π is injective, so is πr0 and, as in the proof
of 3.8, this implies that πr also is injective, thus an isometry. �

Corollary 3.12 (cf. [1][Proposition 4.1]). The assignment

(E
π→ F ) 7−→ (E,Er, 〈 , 〉r)

(π,πr)7−→ (F, F r, 〈 , 〉r)
defines a functor from the category of C∗-trings to the category of full C∗-basic
triples.

It follows from Proposition 3.5 that any C∗-seminorm on Er
0 induced by a

C∗-seminorm on E by means of (3.1) must satisfy the Cauchy-Schwarz condi-
tion (3.3). So it is natural to restrict our attention to the following subsets of
C∗-seminorms on Er

0 :

SN cs(E
r
0) := {α ∈ SN (Er

0) : α(〈x, y〉r)2 ≤ α(〈x, x〉r)α(〈y, y〉r)}
Ncs(E

r
0) := SN cs(E

r
0) ∩N (Er

0).

In fact it will be convenient to place ourselves in a slightly more general setting:

Definition 3.13. Let (E,A, 〈 , 〉) be a basic triple. We define

SN 〈,〉
cs (A) := {α ∈ SN (A) : α(〈x, y〉)2 ≤ α(〈x, x〉)α(〈y, y〉), ∀x, y ∈ E}.

Proposition 3.14. Let (E,A, 〈 , 〉) be a basic triple, and consider E with the

∗-tring structure induced by 〈 , 〉. Given α ∈ SN 〈,〉
cs (A), let α̃ : E → [0,∞) be

defined by:

α̃(x) := α(〈x, x〉)1/2 (3.5)

Then

(1) α̃(xa) ≤ α̃(x)α(a).
(2) α̃ ∈ SN (E)

(3) If E is a faithful A-module and α̃ ∈ N (E), then α ∈ N 〈,〉
cs (A).

(4) If α ∈ N 〈,〉
cs (A) and 〈x, x〉 = 0 implies x = 0, then α̃ ∈ N (E)
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Proof. Since the Cauchy-Schwarz inequality (3.3) holds for α, it follows as usual
that α̃ satisfies the triangular inequality and, since homogeneity is obvious, α̃ is a
seminorm on E. On the other hand, since α is a C∗-seminorm and satisfies (3.3)
we have, for all x, y, z ∈ E, a ∈ A:

α̃(xa) = α(a∗〈x, x〉a)1/2 ≤ α(a)α̃(x)

α̃((x, y, z)) = α̃(x〈y, z〉) ≤ α̃(x)α(〈y, z〉) ≤ α̃(x)α̃(y)α̃(z)

α̃((x, x, x)) = α(〈x, x〉3)1/2 = α(〈x, x〉)3/2 = α̃(x)3,

so α̃ is a C∗-seminorm on E. The first of the above inequalities implies that α is
a norm whenever α̃ so is and E is a faithful A-module. Finally, if α is a norm,
it follows directly from (3.5) that α̃ also is a norm when the condition 〈x, x〉 = 0
implies x = 0. �

Corollary 3.15. If E is an admissible ∗-tring and γ ∈ SN (E), α ∈ SN cs(E
r
0),

then γ̃r = γ and α̃r ≤ α.

Proof. The first statement follows immediately from (3.4) and (3.5). As for the
second one we have α̃r(a) = sup{α̃(xa) : α̃(x) ≤ 1} ≤ α(a) by 1. of 3.14. �

Corollary 3.16. Let (E,A, 〈 , 〉) be a full basic triple, and α ∈ SN 〈,〉
cs (A). If

α̃ ∈ SN (E) is given by (3.5), then INα̃
= Nα, where INα̃

:= {a ∈ A : Ea ⊆ Nα̃}.

Proof. The inclusion Nα ⊆ INα̃
is clear because α̃(xa) ≤ α̃(x)α(a), ∀x ∈ E,

a ∈ A. Conversely, suppose that a ∈ A is such that α̃(xa) = 0, ∀x ∈ E. Then
α(a∗〈x, y〉a) = α(〈xa, ya〉) ≤ α̃(xa)α̃(ya) = 0, ∀x, y ∈ E. Now, since the triple is
full, we can write aa∗ =

∑
j〈xj, yj〉, for certain xj, yj ∈ E, so we have:

0 ≤ α(a)4 = α(a∗a)2 = α(a∗aa∗a) = α(a∗
∑
j

〈xj, yj〉a) ≤
∑
j

α(a∗〈xj, yj〉a) = 0,

hence a ∈ Nα. �

Proposition 3.17. Let (E,A, 〈 , 〉) be a full basic triple, and α ∈ SN 〈,〉
cs (A). Let

γ := α̃ ∈ SN (E), α̃ given by (3.5). Then Eγ is a C∗-tring, (Er
γ, γ̄

r) = (Aα, ᾱ)
and α̃r = α.

Proof. Denote by q : E → E/Nγ ⊆ Eγ and p : A→ A/Nα ⊆ Aα the correspond-
ing canonical maps. We define E/Nγ×A/Nα → E/Nγ and [ , ] : E/Nγ×E/Nγ →
A/Nα such that q(x)p(a) := q(xa) and [q(x), q(y)] := p(〈x, y〉) respectively. Let
us see that these operations are continuous in the norms γ̄ and ᾱ. The action of
A/Nα on E/Nγ is continuous, for if x, y ∈ E and a ∈ A:

γ̄(q(x)p(a)) = γ̄(q(xa)) = γ(xa) ≤ γ(x)α(a) = γ̄(q(x))ᾱ(p(a))

And the sesquilinear map [ , ]E/Nγ also is continuous, because:

ᾱ([q(x), q(y)]E/Fγ ) = ᾱ(p(〈x, y〉E)) = α(〈x, y〉E) ≤ γ(x)γ(y) = γ̄(q(x))γ̄(q(y)).

Therefore these operations extend to continuous maps Eγ × Aα → Eγ and [ , ] :
Eγ × Eγ → Aα, so we obtain a full C∗-basic triple (Eγ, Aα, [ , ]). Therefore
(Aα, α) = (Er

γ, γ̄
r) by 3.9. As for the last assertion, we have to prove that γr = α
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or, equivalently, that γ̄r = ᾱ. So it is enough to show that γr = γ̄rp. But, if
a ∈ A:

γ̄r(p(a)) = sup{γ̄(q(x)p(a)) : γ̄(q(x)) ≤ 1} = sup{γ̄(q(xa)) : γ(x) ≤ 1} = γr(a).

�

Propositions 3.5 and 3.14 allow us to define maps Φr : SN (E) → SN cs(E
r
0) and

Ψr : SN cs(E
r
0) → SN (E) such that Φr(γ) = γr, given by (3.1), and Ψr(α) = α̃,

given by (3.5). We want to show that in fact Φr and Ψr are mutually inverse
maps that preserve the order.

Theorem 3.18. Let E be an admissible ∗-tring. Then the maps Φr : SN (E) →
SN cs(E

r
0) and Ψr : SN cs(E

r
0) → SN (E) are mutually inverse isomorphisms of

lattices. Moreover Φr(N (E)) = Ncs(E
r
0) and Ψr(Ncs(E

r
0)) = N (E).

Proof. By Corollary 3.15 we have ΨrΦr = IdSN (E), and Proposition 3.17 shows
that ΦrΨr = IdSN cs(Er

0), so the maps Φr and Ψr are mutually inverse. Besides, it
follows from 3.5 that Φr(γ) is a norm if and only if so is γ. On the other hand
is clear that Ψr preserves the order, thus it remains to be shown that Φr also
preserves the order. To this end consider γ1 ≤ γ2 in SN (E). Since id : (E, γ2) →
(E, γ1) is continuous, it induces a homomorphism π : Eγ2 → Eγ1 , which in turn
induces, according with Proposition 3.11, a homomorphism πr : Er

γ2
→ Er

γ1
,

which is necessarily contractive. Thus if a ∈ Er
0 , we have:

γr1(a) = γ̄r1(π
r(a+Nγr

2
)) ≤ γ̄r2(a+Nγr

1
) = γr2(a),

which shows that γr1 ≤ γr2. �

All we have done to the right side can be done also to the left side. For
example, every admissible ∗-tring E induces a (left) admissible and full basic
triple (E,El

0, 〈 , 〉l), we have an isomorphism of posets Φl : SN (E) → SN cs(E
l
0)

with inverse Ψl : SN cs(E
l
0) → SN (E), given by Φl(γ) = γl and Ψ(α) = α̃, where

γl(a) := sup{γ(ax) : γ(x) ≤ 1} and α̃(x) := α(〈x, x〉l)1/2, etc. Then we obtain
the following consequences:

Corollary 3.19. Let E be an admissible ∗-tring. Then ΦrΨl : SN cs(E
l
0) →

SN cs(E
r
0) is an isomorphism of lattices such that ΦrΨl(Ncs(E

l
0)) = Ncs(E

r
0).

The inverse of ΦrΨl is ΦlΨr.

As mentioned at the end of 3.1 in [12][Theorem 3.1], Zettl proved that any
C∗-tring is of the form E = E+ ⊕ E−, where E+ and Eop

− are isomorphic to a
TRO. In fact we have E+ := {x ∈ E : 〈x, x〉r is positive}, E− := {x ∈ E :
−〈x, x〉r is positive}, and E+ and E− are ideals of E such that 〈E+, E−〉 = 0.
If Ep := E+ ⊕ Eop

− , we will have that Er
p = Er and El

p = El, and now Ep is a

Morita–Rieffel equivalence between El and Er. Thus we have:

Corollary 3.20. Let E be an admissible ∗-tring and γ ∈ SN (E). Then El
γ and

Er
γ are Morita–Rieffel equivalent C∗-algebras.

In general we will have to deal with algebras that strictly contain Er
0 , but whose

C∗-seminorms are essentially the same, as the following results show.
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Proposition 3.21. Let I be a selfadjoint ideal of a ∗-algebra A, and suppose that
α ∈ SN (I). Let α′ : A → [0,∞] be given by α′(a) := sup{α(ax) : x ∈ I, α(x) ≤
1}. For every a ∈ A consider La : I → I, such that La(x) = ax, ∀x ∈ I. Then
the following statements are equivalent:

(1) α′(a) <∞, ∀a ∈ A.
(2) La is bounded, ∀a ∈ A.
(3) α can be extended to a C∗-seminorm on A.

Suppose that one of the conditions above holds true. Then:

(a) α′ is a C∗-seminorm on A, and α′ ≤ β for every β ∈ SN (A) that extends α.
(b) If α is a norm, then α′ is a norm if and only if AnnA(I) = 0, where

AnnA(I) := {a ∈ A : ax = 0,∀x ∈ I}.

Proof. Since ‖La‖ = α′(a), we have that conditions 1. and 2. are equivalent. It is
also clear that 3.⇒ 1. Suppose now that α′(a) <∞, ∀a ∈ A. Let show that α′ is
a C∗-seminorm on A that extends α. It is easy to check that α′(ab) ≤ α′(a)α′(b),
∀a, b ∈ A. Moreover:

α′(a∗a) = sup{α(a∗ax) : x ∈ I, α(x) ≤ 1} ≥ sup{α(x∗a∗ax) : x ∈ I, α(x) ≤ 1}
≥ sup{α(ax)2 : x ∈ I, α(x) ≤ 1} = α′(a)2.

Therefore α′ ∈ SN (A). The fact that α′ extends α, as well as assertion (a),
are consequences of the fact that for every C∗-seminorm β on A one has that
β(a) = sup{β(ab) : β(b) ≤ 1}. Finally, suppose that α is a norm on I. Then
α′(a) = 0 ⇐⇒ α(ax) = 0, ∀x ∈ I, that is α′(a) = 0 ⇐⇒ a ∈ AnnA(I). �

Theorem 3.22. Let (E,A, 〈 , 〉) be an admissible basic triple, with E a faithful
A-module, and admissible as ∗-tring. Suppose that any C∗-seminorm on Er

0 can
be extended in a unique way to a C∗-seminorm on A (recall Corollary 2.12). Then

the lattices SN (E) and SN 〈 , 〉
cs (A) are isomorphic. If in addition AnnA(Er

0) = 0,

the posets N (E) and N 〈 , 〉
cs (A) are isomorphic as well.

Proof. Since any C∗-seminorm on Er
0 can be uniquely extended to a C∗-seminorm

on A, we are allowed to identify SN (A) and SN (Er
0) as lattices, and it is clear

that this yields also an identification between SN 〈 , 〉
cs (A) and SN cs(E

r
0), and the

latter is isomorphic to SN (E) by 3.18. If moreover AnnA(Er
0) = 0, the same

argument applies to N (E) and Ncs(A). �

In case A is a Banach ∗-algebra, any C∗-seminorm on a ∗-ideal can be extended
to a C∗-seminorm defined on the whole algebra. Moreover we have:

Proposition 3.23. Let A be an admissible Banach ∗-algebra and I a dense ∗-
ideal of A, not necessarily closed. Then any C∗-norm on I can be uniquely ex-
tended to a C∗-norm on A.

Proof. Let α ∈ N (I). By 3.7 α has a unique extension to a C∗-seminorm on
A, and by 3.21 this extension must be α′ such that α′(a) = sup{α(ax) : x ∈
I, α(x) ≤ 1}. Suppose a ∈ AnnA(I). Then aa∗ = 0, because I is dense in A and
ax = 0, ∀x ∈ I. Thus a = 0 for A is admissible. Then α′ is a norm by 3.21. �
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Corollary 3.24. Let (E,A, 〈 , 〉E) be an admissible basic triple with A a Banach
∗-algebra and E a faithful A-module. Suppose in addition that E is an admissible
∗-tring such that Er

0 is a dense ideal of A (recall Corollary 2.12). Then the lattices
SN (E) and SN cs(A) are isomorphic, as well as the partially ordered sets N (E)
and Ncs(A).

Proof. Just combine Theorem 3.22 with Proposition 3.7 and Proposition 3.23. �

Corollary 3.25. Let (E,A, 〈 , 〉A) and (E,B, 〈 , 〉B) be respectively left and right
admissible basic triples, with A and B Banach ∗-algebras such that E is an (A−
B)-bimodule with the given structure, and 〈x, y〉Az = x〈y, z〉B, ∀x, y, z ∈ E. If
E is faithful as a left A-module and as a right B-module, and El

0 and Er
0 are

dense in A and B respectively, then there is an isomorphism of lattices between
SN 〈,〉A

cs (A) and SN 〈,〉B
cs (B), that restricts to an isomorphism between the posets

N 〈,〉A
cs (A) and N 〈,〉B

cs (B).

3.3. Positive modules. In general is not a simple task to decide if a given
C∗-seminorm satisfies the Cauchy-Schwarz property with respect to a certain
sesquilinear map. However this is always the case for the positive modules we
introduce next.

Let α be a C∗-seminorm on the ∗-algebra A, and let pα : A → Aα be the
canonical map, where Aα is the Hausdorff completion of A. If Λ ⊆ SN (A), then
A+

Λ := ∩α∈Λp
−1
α (A+

α ) is a cone. When Λ = SN (A), we write A+ instead of A+
Λ .

Therefore A+ is the set of elements of A that are positive in any C∗-Hausdorff
completion of A. Of course the map Λ 7→ A+

Λ is order reversing.

Definition 3.26. Given Λ ⊆ SN (A), we say that a ∈ A is positive in (A,Λ), or
that it is Λ-positive, if a ∈ A+

Λ . The elements of A+ are just called the positive
elements of A.

It is clear that A+ contains the cone CA := {
∑n

i,j=1 a
∗
i aj : n ∈ N, ai ∈ A, i =

1, . . . n}, and that pα(CA) is dense in A+
α , ∀α ∈ SN (A). Also note that if φ : A→

B is a homomorphism between ∗-algebras, then φ(A+) ⊆ B+ and φ(CA) ⊆ CB.
If SN (A) is bounded, with α := maxSN (A), then a is positive in A if and

only if a is positive in (A,α). In particular, if A is a Banach ∗-algebra, then
a ∈ A+ if and only if ι(a) ∈ C∗(A)+, where ι : A→ C∗(A) is the natural map of
A into its C∗-enveloping algebra C∗(A).

Lemma 3.27. Let A be C∗-closable. Then A+ =
⋂
{p−1

α (A+
α ) : α ∈ N (A)}.

Proof. Clearly we have that A+ ⊆
⋂
{p−1

α (A+
α ) : α ∈ N (A)}. Let β ∈ SN (A).

Since the maximum of two C∗-seminorms is again a C∗-seminorm, and since A
is C∗-closable, we may pick β′ ∈ N (A) such that β′ ≥ β. Then the identity map
on A induces a homomorphism φ : Aβ′ → Aβ, determined by φ(pβ′(a)) = pβ(a),
∀a ∈ A. If a ∈

⋂
{p−1

α (A+
α ) : α ∈ N (A)} then pβ′(a) ∈ A+

β′ , and therefore

pβ(a) ∈ A+
β . This proves the converse inclusion. �

Once we have a cone of positive elements on a ∗-algebra A, we are able to
define a notion similar to that of Hilbert module.
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Definition 3.28. Let A be a ∗-algebra, E a right A-module, and Λ ⊆ SN (A).
We say that a map 〈·, ·〉 : E × E → A is a Λ-semi-pre-inner product on E if:

(1) 〈x, λ1y + λ2z〉 = λ1〈x, y〉+ λ2〈x, z〉, ∀x, y, z ∈ E, λ1, λ2 ∈ C.
(2) 〈x, ya〉 = 〈x, y〉a, ∀x, y ∈ E, a ∈ A.
(3) 〈y, x〉 = 〈x, y〉∗, ∀x, y ∈ E.
(4) 〈x, x〉 is Λ-positive, ∀x ∈ E.

The pair (E, 〈 , 〉) is then called a right positive Λ-module. In case Λ = SN (A)
we say that (E, 〈 , 〉) is a right positive A-module.

Similarly we define left semi-pre-inner-products and left positive modules.

Definition 3.29. An admissible ∗-tring E is right (left) positive if (E, 〈 , 〉r) is
a positive Er

0-module (respectively: (E, 〈 , 〉l) is a positive El
0-module). It is said

positive if it is both left and right positive.

Observe that if E is a C∗-tring, which is positive as an admissible ∗-tring,
then it is obviously a positive C∗-tring. Conversely, it is readily checked that any
positive C∗-tring is a positive admissible ∗-tring.

Proposition 3.30. Let (A,α) be a C∗-seminormed algebra and (E, 〈 , 〉) a right

positive (A,α)-module. Let α̃ : E → [0,∞) be given by α̃(x) =
√
α(〈x, x〉),

∀x ∈ E. Consider E as a ∗-tring with (x, y, z) := x〈y, z〉, ∀x, y, z ∈ E. Then:

(1) We have α(a) ≤ α(b) whenever a and b− a are positive elements of A.
(2) α̃(x)2〈y, y〉 − 〈x, y〉∗〈x, y〉 is positive in (A,α), and α(〈x, y〉) ≤ α̃(x)α̃(y),

∀x, y ∈ E (Cauchy-Schwarz).
(3) α(〈x, x〉)a∗a− a∗〈x, x〉a ≥ 0, ∀x ∈ E, a ∈ A.
(4) α̃(xa) ≤ α̃(x)α(a), ∀x ∈ E, a ∈ A.
(5) α̃ ∈ SN (E).

Proof. Let pα : A → A/Iα =: Aα be the natural map, where Iα is the ideal
Iα := {a ∈ A : α(a) = 0}, and let ᾱ be the quotient norm on Aα. Now let
F := span{xb ∈ E : x ∈ E, b ∈ Iα}. Then EIα ⊆ F , so E/F is an A/Iα-
module. Moreover, 〈E,F 〉 ⊆ Iα and 〈F,E〉 ⊆ Iα, so we can consider the map
[ , ] : E/F × E/F → A/Iα given by [q(x), q(y)] = pα(〈x, y〉), which satisfies
properties 1.–4. of Definition 3.28 above. If a and b−a are positive in A, then 0 ≤
pα(a) ≤ pα(b) in Aα, and therefore ᾱ(pα(a)) ≤ ᾱ(pα(b)), that is α(a) ≤ α(b). This
proves 1. Now, the first part of the second statement follows from the proof of [6,
Proposition 1.1], since pα(α̃(x)2〈y, y〉− 〈y, x〉〈x, y〉) = ᾱ([q(x), q(x)])[q(y), q(y)]−
[q(y), q(x)] [q(x), q(y)] in Aα. The second part of 2. follows from the first one and
from 1. To see 3. just observe that by applying pα to the element α(〈x, x〉)a∗a−
a∗〈x, x〉a of A we get the positive element ᾱ([x, x])pα(a)

∗pα(a)−pα(a)∗[x, x]pα(a)
of Aα. Assertion 4. easily follows from 1. and 3: by 3. we have a∗〈x, x〉a ≤
α̃(x)2a∗a, then α̃(xa)2 = α(〈xa, xa〉) = α(a∗〈x, x〉a), and by 1. this is less or
equal to α(α̃(x)2a∗a) = α̃(x)2α(a)2. It is clear that α̃(λx) = |λ|α̃(x), ∀x ∈ E,
λ ∈ C, and from the Cauchy-Schwarz inequality just proved it readily follows
that α̃ also satisfies the triangle inequality, so it is a seminorm on E. Now, if
x, y, z ∈ E: α̃(x〈y, z〉)2 = α(〈y, z〉∗〈x, x〉〈y, z〉). Thus, in the case x = y = z:

α̃((x, x, x)) = α(〈x, x〉3)1/2 = α(〈x, x〉1/2)3 = α̃(x)3.
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According to 3. we have 〈y, z〉∗〈x, x〉〈y, z〉 ≤ α(〈x, x〉)〈y, z〉∗〈y, z〉 in (A,α). From
this fact, together with 4. and the Cauchy-Schwarz inequality we conclude that

α̃(x〈y, z〉)2 ≤ α̃(x)2α(〈y, z〉)2 ≤ (α̃(x) α̃(y) α̃(z))2

so α̃ is a C∗-seminorm on E. �

Corollary 3.31. If E is a right positive ∗-tring, then SN cs(E
r
0) = SN (Er

0), and
SN (E) ∼= SN (Er

0) and N (E) ∼= N (Er
0) as ordered sets.

Proposition 3.32. Let E be an admissible ∗-tring and γ ∈ SN (E). If E is
a right positive (Er

0 , γ
r)-module, then E is also a left positive (El

0, γ
l)-module.

Therefore E is right positive if and only if is left positive.

Proof. Let Eγ be the Hausdorff completion of (E, γ). Since Eγ is a right Hilbert
module over Er

γ, it turns out that Eγ is a positive C∗-tring, and therefore a left

Hilbert module over El
γ, so E is a left positive (El

0, γ
l)-module. �

Proposition 3.33. Let B be an admissible Banach ∗-algebra and suppose E is
a right closed ideal of B such that span{x∗y : x, y ∈ E} is dense in B. Let A be
the closure in B of span{xy∗ : x, y ∈ E}. If xx∗ is positive in A, ∀x ∈ E, then
the restriction map ϕ : SN (B) → SN (A), β 7→ β|A, is a lattice isomorphism
such that ϕ(N (B)) = N (A), and for each β ∈ SN (B) the Hausdorff completion
Bβ of B is Morita–Rieffel equivalent to the Hausdorff completion Aϕ(β) of A. In
particular, the corresponding enveloping C∗-algebras C∗(B) and C∗(A) of B and
A are Morita–Rieffel equivalent C∗-algebras.

Proof. Let 〈 , 〉B : E×E → B and 〈 , 〉A : E×E → A be such that 〈x, y〉B = x∗y
and 〈x, y〉A = xy∗. Then E is both a positive B-module and a positive A-
module. Since B is admissible, so are E and A. Besides E is a faithful B-
module, for if xb = 0 ∀x ∈ E, then

∑
j x

∗
jyjb = 0 ∀xj, yj ∈ E, so b∗b = 0,

and this implies b = 0 because B is admissible. Similarly, E is a faithful A-
module. It follows by 2.12 that we can identify Er

0 with span{x∗y : x, y ∈ E}
and El

0 with span{xy∗ : x, y ∈ E}. Now the proof ends with an invocation to
Corollary 3.25 �

4. C∗-ternary rings

As previously mentioned, Zettl found a unique decomposition E = E+

⊕
E−

of any C∗-tring E, E+ being isomorphic to a TRO and E− being isomorphic to
an anti-TRO (see the discussion preceding Corollary 3.20). Of course, because of
the uniqueness of the fundamental decomposition, there is a left version of the
stuation above: E+ := {x ∈ E : 〈x, x〉l ∈ El

+}, E− := {x ∈ E : 〈x, x〉l ∈ −El
+},

〈E+, E−〉l = 0, El = El
+ ⊕ El

−, and (E+,−〈·, ·〉l) and (E−,−〈·, ·〉l) are full left
Hilbert El

+ and El
− modules respectively. This way, E is an (El − Er) Banach

bimodule that satisfies

〈x, y〉lz = µ(x, y, z) = x〈y, z〉r, ∀x, y, z ∈ E.
If E is a C∗-tring, we define Ep := E+ ⊕ Eop

− . Then Ep is a positive C∗-tring,
and Er

p = Er, El
p = El. Therefore Ep is a (El−Er)-imprimitivity bimodule, so in
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particular El and Er are Morita–Rieffel equivalent. Note also that if φ : E → F
is a homomorphism of C∗-trings, then φ(E+) ⊆ F+ and φ(E−) ⊆ F−, because
〈φ(x), φ(x)〉 = φr(〈x, x〉). Therefore φ : Ep → Fp is also a homomorphism of
C∗-trings. Thus E 7→ Ep is a functor.

Let E∗ be the reverse ∗-tring of E. It is clear that a norm on E is a C∗-norm
if and only if it is a C∗-norm on E∗. Moreover, E is a (positive) C∗-tring if and
only if so is E∗, and El = (E∗)r, Er = (E∗)l. Note that E and E∗ are essentially
the same object as C∗-trings. Thus the properties of Er and El deduced from
properties of E will be the same.

Definition 4.1. By a left (right) ideal of the C∗−ternary ring E we mean a
closed subspace F of E such that (E,E, F ) ⊆ F (respectively: (F,E,E) ⊆ F ).
An ideal of E is both a left and a right ideal of E. We denote by L(E), R(E),
and I(E) the families of left, right and twosided ideals of E.

Our definition of ideal, for a closed subspace F of E, is equivalent to the
definition which just requires the condition (E,F,E) ⊂ F to be satisfied. Note
that E+ and E− are ideals in every C∗-tring E. Moreover, since E+ and E− are
orthogonal, it easily follows that a closed subspace F of E is an ideal of E if and
only if it is an ideal in Ep. Thus the ideal structures of E and of Ep are the same.

If A is a C∗-algebra, we will denote by I(A) and H(A) respectively the families
of (closed) twosided ideals and hereditary C∗-subalgebras of A.

As in the algebraic case, if E is a C∗-tring and F is a sub-C∗-tring of E, then
the subalgebra span〈F, F 〉r of Er may be taken to represent the C∗-algebra F r.
With this choice of F r we have the following result:

Proposition 4.2. The map L(E) → H(Er) given by F 7→ F r is a bijection,
with inverse given by A 7→ EA. When restricted to I(E), the map F 7→ F r is a
bijection onto I(Er). Moreover, all of these maps are lattice isomorphisms.

Proof. We prove that the map L(E) → H(Er) is a bijection. Recalling that we
may replace E by Ep (which can be seen as a full right Hilbert Er-module),
the rest of the proof follows from [8, 3.22]. If A is a C∗-subalgebra of Er:
(E,E,EA) = E〈E,EA〉 = E〈E,E〉A = (E,E,E)A ⊆ EA, so EA is a left
ideal in E. Conversely, if F is a left ideal in E:

〈F, F 〉〈E,E〉〈F, F 〉 = 〈E〈F, F 〉 , E〈F, F 〉 〉 = 〈(E,F, F ), (E,F, F )〉 ⊆ 〈F, F 〉.

Thus, taking the closed linear spans in both sides of the above inclusion we have:
F rErF r = F r, which shows that F r is hereditary. To see that the correspondences
are mutually inverses, note that if F is a C∗-tring, then F = FF r. On the other
hand, if A is a hereditary C∗-subalgebra of Er, then EA = span〈EA,EA〉r =
spanA〈E,E〉rA = AErA = A. �

Corollary 4.3. Let π : E → F be a homomorphism of ∗-trings, where E and F
are C∗-trings. Then (kerπ)r = ker(πr).

Proof. It is clear that kerπ ⊇ E kerπr, so (ker π)r ⊇ kerπr. On the other hand

(kerπ)r = span{〈x, y〉r : x, y ∈ kerπ} ⊆ kerπr. �
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Remark 4.4. By Proposition 2.17 if π : E → F is a surjective homomorphism
between C∗-trings, then πr0 : Er

0 → F r
0 is also surjective, so also is πr : Er → F r

for the image of πr is closed. However the converse is false: consider the Hilbert

space inclusion C ι
↪→ C2; then ι is not onto, although ιr is the identity on C.

For a proof of the next result the reader is referred to [8, 3.25].

Proposition 4.5. Let F be an ideal of a C∗-tring E, and consider the quotient
E/F with its natural structure of ∗-tring. Then E/F is a C∗-tring with the
quotient norm, and (E/F )r = Er/F r.

Corollary 4.6. Let E and G be C∗-trings, and π : E → G a homomorphism of
∗-trings. Consider F = ker(π), and let p : Er → Er/F r be the quotient map.
Then there exists a unique homomorphism of C∗-algebras πr : Er/F r → Gr such
that πrp = πr. The homomorphism πr is injective. In particular, if π : E → E/F
is the quotient map, where F is an ideal of E, then πr : Er/F r → (E/F )r is a
natural isomorphism.

Proof. Proposition 3.11 provides a unique homomorphism of C∗-algebras πr :
Er → Gr such that 〈π(x), π(y)〉 = πr(〈x, y〉), ∀x, y ∈ E. The existence and
uniqueness of πr, as well as its injetivity, follow now from the quotient universal
property, together with the fact that ker(πr) = F r by Corollary 4.3. Finally, if
F is an ideal of E, by Proposition 4.5 we have that E/F is a C∗-tring, and the
projection π : E → E/F is a homomorphism of ∗-trings. �

Corollary 4.7. The functor E 7→ Er, π 7→ πr, from the category of C∗-trings
into the category of C∗-algebras, is exact. More precisely: if

0 // F1

φ // F2

ψ // F3
// 0

is an exact sequence of C∗-trings, then the sequence:

0 // F r
1

φr

// F r
2

ψr

// F r
3

// 0

also is exact.

Corollary 4.8. If π : E → F is a homomorphism of C∗-trings, then π(E) is
closed in F . The ideals of a C∗-tring E are exactly the kernels of the homomor-
phisms defined on E.

5. Applications

5.1. C∗-algebras associated with Fell bundles. The proof of Theorem 1.1 of
[2] relies on the existence of a certain inner product (see Corollary 5.3 below),
although no proof is included there of the fact that such inner product is indeed
positive. In the following lines we provide such a proof, and we refine the above
mentioned result.

Recall that a right ideal E = (Et)t∈G of a Fell bundle B = (Bt)t∈G is a sub-
Banach bundle of B such that EB ⊆ E .
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Given a right Hilbert B-module X, let denote by DX the cone of finite sums∑
i〈xi, xi〉 ⊆ B+. It is clear that if {Xλ}λ∈Λ is a family of right Hilbert B-

modules and X := ⊕λXλ (direct sum of Hilbert modules), then
∑

λDXλ
⊆ DX

-with equality if Λ is finite- and
∑

λDXλ
is dense in DX .

Similarly, for the right ideal E of the Fell bundle B, we defineDE := {
∑n

i=1 c
∗
i ci :

n ∈ N, ci ∈ E ,∀i} ⊆ B+
e . Then we have:

Lemma 5.1. Let E = (Et)t∈G be a right ideal of the Fell bundle B = (Bt)t∈G.
Then span(E∗E ∩ Be) is dense in Be if and only if the cone DE satisfies the
following property:

∀b ∈ Be, ε > 0, there exists d ∈ DE such that ‖d‖ ≤ 1 and ‖b− bd‖ < ε. (5.1)

Proof. Suppose that b ∈ Be is such that for any ε > 0 there exists d ∈ DE such
that ‖b− bd‖ < ε. Since DE ⊆ span(E∗E ∩Be) and the latter is an ideal in Be, we
conclude that b ∈ span(E∗E ∩Be). Then span(E∗E ∩Be) is dense in Be whenever
DE satisfies (5.1). Note now that DE =

∑
t∈GDEt , which is dense in DE, where

E := ⊕t∈GEt. Thus DE satisfies (5.1) if and only if that property holds for DE.
Assume that span(E∗E ∩Be) is dense in Be. Then E is a full Hilbert module over
Be, and therefore it satisfies (5.1) by [6, (ii) of Lemma 7.2]. �

Lemma 5.2. Let B = (Bt)t∈G be a Fell bundle over the locally compact group G,
A = (At) a sub-Fell bundle of B, and E = (Et) a right ideal of B such that A ⊆ E,
EE∗ ⊆ A and span(E∗E ∩ Be) is dense in Be. If ξ ∈ L1(E), then ξ ∗ ξ∗ can be
arbitrarily approximated in L1(A) by a finite sum

∑m
j=1 ηj ∗η∗j , where ηj ∈ L1(A),

∀j = 1, . . . ,m.

Proof. We will suppose that ξ ∈ Cc(E), which is clearly enough. Since C0(E) is
a nondegenerate right Banach Be-module, given a positive integer n there exists
bn ∈ Be such that ‖ξ − ξbn‖ < 1/n and 0 ≤ bn ≤ 1. Then we can find cn ∈ DE

such that ‖b1/2n − b
1/2
n cn‖ < 1/n. Set dn := b

1/2
n cnb

1/2
n and note that dn ∈ DE

because E is a right ideal. The continuity of the operations imply ‖bn − dn‖ → 0
and ‖ξ − ξdn‖1 → 0. Thus ‖ξ ∗ ξ∗ − ξdn ∗ ξ∗‖1 → 0.

Now for every n there exist u1, . . . , umn ∈ E such that dn =
∑mn

j=1 uj
∗uj. Thus

ξdn ∗ ξ∗ =
∑mn

j=1(ξuj
∗uj) ∗ ξ∗ =

∑mn

j=1(ξuj
∗) ∗ (ξuj

∗)∗ and, as E is a right ideal,

ξuj
∗ ∈ Cc(A). This completes the proof. �

Corollary 5.3. Under the assumptions of Lemma 5.2, let ‖ ‖A : L1(A) → [0,∞)
be the maximal C∗-norm of L1(A). Then L1(E) × L1(E) → L1(A) given by
(ξ, η) 7→ ξ ∗ η∗ is an inner product.

Corollary 5.4. Under the assumptions of Lemma 5.2, the map ϕ : SN (L1(B)) →
SN (L1(B)) given by β 7→ β|L1(A) is an isomorphism of partially ordered sets that
sends the maximal and reduced norms on L1(B) to the maximal and reduced norms
on L1(A) respectively, and such that ϕ(N (L1(B))) = N (L1(A)). Moreover, the
Hausdorff completions of L1(B) and L1(A) with respect to β and ϕ(β) respectively
are Morita–Rieffel equivalent.

Proof. We only have to prove the correspondence between the reduced C∗-norms,
but this is the content of [2]. �



APPLICATIONS OF TERNARY RINGS TO C∗-ALGEBRAS 313

5.2. Tensor products of C∗-trings. In the present section we apply the pre-
vious results to the study of tensor products of C∗-trings. Maximal and minimal
tensor product for TROs were constructed in [5] using linking algebras, but we
define tensor products of C∗-trings E and F using the tensor products of Er and
F r. The main result is Theorem 5.12.

From now on the algebraic tensor product of the C-vector spaces E1, . . . , En
will be denoted by E1

⊙
. . .

⊙
En, or just by

⊙n
j=1Ej. Let Eij, Fi be complex

vector spaces, ∀i = 1, . . . ,m, j = 1, . . . , n, and suppose that αi :
∏n

j=1Eij →
Fi is a n-linear map, for each i = 1, . . . ,m. Then it is clear that there exists
a unique n-linear map α := α1 � · · · � αm :

∏n
j=1

⊙m
i=1Eij →

⊙m
i=1 Fi such

that α(�m
i=1ei1, . . . ,�m

i=1ein) = �m
i=1αi(ei1, . . . , ein). Using this fact we have the

following result, whose straightforward proof is left to the reader.

Proposition 5.5. If (E, µ), (F, ν) are ∗-trings, then (E
⊙

F, µ � ν) is also a
∗-tring. Furthermore, if (E,A, 〈 , 〉A) and (F,B, 〈 , 〉B), are full basic triples as-
sociated to (E, µ) and (F, ν), respectively, then (E

⊙
F,A

⊙
B, 〈 , 〉A � 〈 , 〉B) is

a full basic triple associated to (E
⊙

F, µ� ν).

Definition 5.6. A C∗-tensor product of two ∗-trings (E, µ, ‖ · ‖) and (F, ν, ‖ · ‖)
is a completion of the corresponding algebraic tensor product (E

⊙
F, µ � ν)

with respect to a C∗-norm. If γ is such a C∗-norm, we denote by E
⊗

γ F the
corresponding C∗-tensor product.

Definition 5.7. We say that a C∗-tring E is nuclear if for every C∗-tring F there
exists just one C∗-tensor product E

⊗
F .

We will see next that SN (E
⊙

F ) = SN (Ep
⊙

F ), which implies, in particu-
lar, that a C∗-tring E is nuclear if and only if Ep is nuclear.

Proposition 5.8. Let E be a ∗-tring, and F1, F2 ideals of E such that E =
F1 ⊕ F2. If γ ∈ SN (E), and x = y + z, with y ∈ F1 and z ∈ F2, then γ(x) =
max{γ(y), γ(z)}.
Proof. Since γ(x) = sup{γ((x, u, u)) : u ∈ E, γ(u) ≤ 1}, it follows that γ(x) ≥
γ(y) and γ(x) ≥ γ(z), so γ(x) ≥ max{γ(y), γ(z)}. To prove the converse in-
equality, let us first introduce the following notation. For u ∈ E let u0 := z,
un := (un−1, un−1, un−1) if n ≥ 1. Then we have that γ(un) = γ(un−1)

3, ∀n ≥ 1, so
γ(un) = γ(u)3n

, ∀n ≥ 0. Since (E,F1, F2) = 0, it follows that xn = yn+zn. Thus:

γ(x) = γ(xn)
1/3n

= γ(yn+zn)
1/3n ≤ (γ(yn)+γ(zn))

1/3n
= (γ(y)3n

+γ(z)3n
)1/3n n→

max{γ(y), γ(z)}, whence γ(x) ≤ max{γ(y), γ(z)}. �

Corollary 5.9. Let E and F be C∗-trings. Then SN (E
⊙

F ) = SN (Ep
⊙

F )
and N (E

⊙
F ) = N (Ep

⊙
F ). Consequently a C∗-tring E is nuclear if and only

if Ep is nuclear.

Our aim is to prove that there is an isomorphism between N (E
⊙

F ) and
N (Er

⊙
F r). The key step is to show that each C∗-norm on Er

0

⊙
F r

0 has unique
extension to a C∗-norm on Er

⊙
F r.

Lemma 5.10. Let I and J be *-ideals (not necessarily closed) of the C*-algebras
A and B, respectively. Then the map Θ: N (A� B) → N (I � J), γ 7→ γ|I�J , is
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an order preserving surjection. If, in addition, I and J are dense in A and B,
respectively, then Θ is a bijection.

Proof. Clearly Θ is order preserving. Fix δ ∈ N (I � J). Given a ∈ A and
z =

∑n
j=1 xi � yj ∈ I � J , define w :=

∑n
j=1(‖a‖2 − a∗a)1/2xi � yj ∈ A � B. In

case A is unital it is clear that w ∈ I � J. If A is not unital, I is an ideal of the
unitization of A, so w ∈ I � J in any case. Then

‖a‖2z∗z − (
n∑
j=1

axi � yj)
∗(

n∑
j=1

axi � yj) = w∗w ∈ (I ⊗δ J)+

and δ(
∑n

j=1 axi � yj) ≤ ‖a‖δ(
∑n

j=1 xi � yj). Similarly, if b ∈ B, we also have

δ(
∑n

j=1 xi � byj) ≤ ‖b‖δ(
∑n

j=1 xi � yj). Thus δ((a� b)z) ≤ ‖a‖ ‖b‖δ(z), ∀a ∈ A,
b ∈ B and z ∈ I � J . Therefore, according to 3.21, the map δ′ : A�B → R such
that δ′(c) := sup{δ(cz) : δ(z) ≤ 1} is a C∗-seminorm on A � B that extends δ.
In case I and J are dense in A and B, respectively, I � J is dense in A�B with
respect to any C*-norm [10, Corollary T.6.2]. Thus Θ is injective. �

Proposition 5.11. Let E and F be positive C*-trings and consider the admissible
full basic triples (E,Er

0 , 〈 , 〉Er ) and (F, F r
0 , 〈 , 〉Fr ) given by Theorem 2.10. Then

the full basic triple (E
⊙

F,Er
0

⊙
F r

0 , 〈 , 〉Er � 〈 , 〉Fr ) is admissible. Furthermore,
E

⊙
F is positive and

SN 〈 , 〉Er �〈 , 〉Fr
cs (Er

0

⊙
F r

0 ) = SN (Er
0

⊙
F r

0 )

Proof. To simplify our notation we denote [ , ] the map 〈 , 〉Er � 〈 , 〉Fr . Note
Er

0

⊙
F r

0 -module is admissible because it is a *-subalgebra of the C*-closable
*-algebra Er

⊙
F r. We will show that E

⊙
F is a positive Er

0

⊙
F r

0 -module.
Lemma 5.10 implies there is a maximal C*-norm on Er

0

⊙
F r

0 , namely the restric-
tion of the maximal C*-norm of Er

⊙
F r. The comments preceding Lemma 3.27

imply that, to show E
⊙

F is positive, it suffices to prove that [u, u] ≥ 0 in the
maximal tensor product Er

⊗
max F

r. Given u =
∑n

j=1 xj ⊗ yj ∈ E
⊙

F we have

[u, u] =
n∑

j,k=1

〈xj, xk〉Er � 〈yj, yk〉rF .

Then Lemmas 4.2 and 4.3 of [6] give the desired result.
To show [u, u] = 0 implies u = 0 we use the linking algebras L(E) and L(F )

and the linear maps

α : E
⊙

F → L(E)
⊙

L(F ), x� y 7→
(

0 x
0 0

)
�

(
0 y
0 0

)
,

β : L(E)
⊙

L(F ) → E
⊙

F,
(
x11 x12
x21 x22

)
�

(
y11 y12
y21 y22

)
7→ x12 � y12,

γ : E
⊙

F → L(E)
⊙

L(F ), a� b 7→
(

0 0
0 a

)
�

(
0 0
0 b

)
.

Then α(u)∗α(u) = γ([u, u]) = 0, so α(u) = 0 and u = β(α(u)) = 0. �

Theorem 5.12. Let E and F be C∗-ternary rings. Then every set among the
partially ordered sets N (El

⊙
F l), N (E

⊙
F ) and N (Er

⊙
F r) is isomorphic to
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each other. Besides, if γ ∈ N (E
⊙

F ) and γl and γr are the corresponding C∗-
norms on N (El

⊙
F l) and N (Er

⊙
F r) respectively, then E

⊗
γ F is a Morita–

Rieffel equivalence bimodule between El
⊗

γl F l and Er
⊗

γr F r.

Proof. Proposition 5.11 together with Corollary 3.31 imply N (E
⊙

F ) is isomor-
phic (as a partially ordered set) to N (E

⊙
F )r0). By 5.5 the posets N (E

⊙
F )r0)

and N (Er
0

⊙
F r

0 ) are isomorphic, and the latter is isomorphic to N (Er
⊙

F r) by
Lemma 5.10. Thus N (E

⊙
F ) ∼= N (Er

⊙
F r). Similarly we have N (E

⊙
F ) ∼=

N (El
⊙

F l). �

Corollary 5.13. Let E and F be C∗-trings. Then there exist a maximum C∗-
norm ‖ · ‖max on E

⊙
F , and a minimum C∗-norm ‖ · ‖min on E

⊙
F , and(

E
⊗
max

F
)l

= El
⊗
max

F l,
(
E

⊗
max

F
)r

= Er
⊗
max

F r,

(
E

⊗
min

F
)l

= El
⊗
min

F l
(
E

⊗
min

F
)r

= Er
⊗
min

F r.

Corollary 5.14 (cf. [5, Theorem 6.5]). The following assertions are equivalent
for a C∗-tring E:

(1) E is a nuclear C∗-tring (5.7).
(2) El is a nuclear C∗-algebra.
(3) Er is a nuclear C∗-algebra.

The equivalence between 2. and 3. in 5.14 is exactly the following well-known
result ([3], [11]): if A and B are two Morita–Rieffel equivalent C∗-algebras then
A is nuclear if and only if so is B.

5.3. Exact C∗-trings. To end the section we introduce the notion of exact C∗-
tring, extending the notion of exact TRO of [5], and we prove a result similar to
Corollary 5.14. The reader is referred to [9] for the theory of exact C∗-algebras.

Suppose that 0 // F1

φ // F2

ψ // F3
// 0 is an exact sequence of C∗-

trings, that is, φ and ψ are homomorphisms of C∗-trings, φ is injective, ψ is
surjective, and kerψ = φ(F1). Let E be a C∗-tring. Then the sequence

0 // E
⊙

F1
id�φ // E

⊙
F2

id�ψ // E
⊙

F3
// 0

also is exact. We have an inclusion

(E
⊙

F2)/(E
⊙

F1) ↪→ (E
⊗
min

F2)/(E
⊗
min

F1)

and the latter quotient is a C∗-tring. Then there exists a C∗-norm γ on E
⊙

F3

such that

0 // E
⊗

min F1
id⊗φ // E

⊗
min F2

id⊗ψ // E
⊗

γ F3 // 0

is exact. Since γ is greater or equal to the minimum norm, the identity map on
E

⊙
F3 extends to a surjective homomorphism E

⊗
γ F3 → E

⊗
min F3.
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Definition 5.15. We say that a C∗-tring E is exact if for each exact sequence

0 // F1
// F2

// F3
// 0

of C∗-trings we have that

0 // E
⊗

min F1
// E

⊗
min F2

// E
⊗

min F3
// 0

also is exact.

Proposition 5.16. Let E and F be C∗-trings, and suppose that G is an ideal of
F (Definition 4.1). Then

0 // E
⊗

minG
// E

⊗
min F

// E
⊗

min (F/G) // 0

is exact if and only if the following sequence is exact:

0 // Er
⊗

minG
r // Er

⊗
min F

r // Er
⊗

min

(
F r/Gr

)
// 0

Proof. Suppose first that the sequence below is exact:

0 //E
⊗

minG
//E

⊗
min F

//E
⊗

min (F/G) //0

By Corollaries 5.13 and 4.7, we have the following commutative diagram

0 //
(
E

⊗
minG

)r //

∼=
��

(
E

⊗
min F

)r //

∼=
��

(
E

⊗
min (F/G)

)r //

∼=
��

0

0 // Er
⊗

minG
r //

=

��

Er
⊗

min F
r //

=

��

Er
⊗

min (F/G)r //

∼=
��

0

0 // Er
⊗

minG
r // Er

⊗
min F

r // Er
⊗

min F
r/Gr // 0

Since the upper two rows are exact, the third one also is exact.
To prove the converse, note first that

0 //E
⊗

minG
//E

⊗
min F

//
(
E

⊗
min F

)
/
(
E

⊗
minG

)
//0

is exact, and
(
E

⊗
min F

)
/
(
E

⊗
minG

)
is a C∗-completion of the ternary ring

E
⊙

(F/G). Denoting the corresponding C∗-norm by γ, we have a surjective
homomorphism φ : E

⊗
γ (F/G) → E

⊗
min (F/G) which extends the identity on

E
⊙

(F/G). Now, applying the exact functorE 7→ Er we obtain the commutative
diagram with exact rows that follows:

0 // Er
⊗

minG
r //

=

��

Er
⊗

min F
r //

=

��

Er
⊗

γ F
r/Gr //

φr

��

0

0 // Er
⊗

minG
r // Er

⊗
min F

r // Er
⊗

min F
r/Gr // 0

It follows that the homomorphism φr is an isomorphism. �

Corollary 5.17 (cf. [5, Theorem 6.1]). A C∗-tring E is exact (5.15) if and only
if Er is an exact C∗-algebra.

Proof. Immediate from Proposition 5.16 �
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As previously for nuclear C∗-algebras, we easily obtain from 5.17 the following
known result([7]): if A and B are Morita–Rieffel equivalent C∗-algebras, then A
is exact if and only if B is exact.
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