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Abstract. Let S and G be a commutative semigroup and a commutative
group respectively, C and R+ the sets of complex numbers and nonnegative real
numbers respectively, σ : S → S or σ : G→ G an involution and ψ : G→ R+

be fixed. In this paper, we first investigate general solutions of the equation

g(x+ σy) = g(x)g(y) + f(x)f(y)

for all x, y ∈ S, where f, g : S → C are unknown functions to be determined.
Secondly, we consider the Hyers-Ulam stability of the equation, i.e., we study
the functional inequality

|g(x+ σy)− g(x)g(y)− f(x)f(y)| ≤ ψ(y)

for all x, y ∈ G, where f, g : G→ C.

1. Introduction

The cosine function admits the following decomposition

cos(x− y) = cosx cos y + sinx sin y

and g(x) = cosx, f(x) = sinx satisfies the functional equation

g(x− y) = g(x)g(y) + f(x)f(y). (1.2)
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The functional equation (1.1) was treated by Gerretsen [11] and Vaughan [22]
among others. The general solutions of (1.1) are described in [2, pp. 216–217]
when the unknown functions g, f are functions from a group G into a field F. For
some related equations we refer the reader to [1, p. 177] and [2, pp. 209–217].

The Hyers-Ulam stability problems of functional equations go back to 1940
when S. M. Ulam proposed a question concerning the approximate homormor-
phisms from a group to a metric group(see [21]). A partial answer was given
by D.H. Hyers[12] under the assumption that the target space of the involved
mappings is a Banach space. After the result of Hyers, T. Aoki [3] and D.G.
Bourgin [5] dealt with this problem, however, there were no other results on this
problem until 1978 when Th.M. Rassias [17] dealt again with the inequality of
Aoki [3]. Following Rassias’ result a great number of papers on the subject have
been published concerning numerous functional equations in various directions
[4, 6, 7, 12, 14, 15, 17, 18, 20]. In particular, Székelyhidi [20] investigated the
Hyers-Ulam stability of the trigonometric functional equations

f(x+ y) = f(x)g(y) + g(x)f(y) (1.3)

and

g(x+ y) = g(x)g(y)− f(x)f(y) (1.4)

for all x, y ∈ G, where f, g : G→ C without the commutativity of G. Using the
elegant method of Székelyhidi, Chung and Chang [6, 7] obtained the Hyers-Ulam
stability of functional equations

f(x− y) = f(x)g(y)− g(x)f(y) (1.5)

and

g(x− y) = g(x)g(y) + f(x)f(y) (1.6)

for all x, y ∈ G.

Recently, several authors [9, 16, 19] have studied functional equations with in-
volutions which generalize previous results on some classical functional equations
such as the d’Alembert’s functional equation [10] and the Wilson’s functional
equation [23]. In particular, generalizing (1.4), Chung, Choi and Kim [8] de-
termined the general solutions and the Hyers-Ulam stability of the functional
equation

f(x+ σy) = f(x)g(y)− g(x)f(y) (1.7)

for all x, y ∈ S, where f, g : S → C and σ is an involution on the semigroup S.
In this paper, generalizing the functional equation (1.5), we first determine all
general solutions of the functional equation

g(x+ σy) = g(x)g(y) + f(x)f(y) (1.8)

for all x, y ∈ S. Secondly, generalizing the results in [6, 7] we prove the Hyers-
Ulam stability for (1.7), i.e., we study the behavior of functions g and f satisfying
functional inequality

|g(x+ σy)− g(x)g(y)− f(x)f(y)| ≤ ψ(y) (1.9)
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for all x, y ∈ G, where f, g : G→ C and ψ : G→ R+ (the set of nonnegative real
numbers).

2. General solutions of the functional equation (1.7)

In this section we present the general solutions (g, f) of the functional equations
(1.7) on semigroups. Throughout this section we denote by S a commutative
semigroup with an identity element. A function σ : S → S is said to be an
involution if σ(x+y) = σ(x)+σ(y) for all x, y ∈ S and σ(σ(x)) = x for all x ∈ S.
For simplicity we write σx instead of σ(x). A function m : S → C is called an
exponential function provided that m(x + y) = m(x)m(y) for all x, y ∈ S and
a : S → C is called an additive function provided that a(x+ y) = a(x) + a(y) for
all x, y ∈ S.

As a direct consequence of a theorem of Sinopoulos [19] we have the following
lemma.

Lemma 2.1. Let g : S → C satisfy the functional equation

g(x+ y) + g(x+ σy) = 2g(x)g(y) (2.1)

for all x, y ∈ S. Then there exists an exponential function m : S → C such that

g(x) =
m(x) +m(σx)

2
(2.2)

for all x ∈ S.

In the following, we exclude the trivial cases when f(x) = g(x) ≡ 0.

Theorem 2.2. Let f, g : S → C satisfy the functional equation

g(x+ σy) = g(x)g(y) + f(x)f(y) (2.3)

for all x, y ∈ S. Then either (g, f) has the form

g(x) =
m(x) +m(σx)

2
, f(x) = c1

m(x)−m(σx)

2
(2.4)

for all x ∈ S, where m : S → C is an arbitrary exponential function and c1 ∈ C
with c21 = −1, or{

g(x) = c2E(x)

f(x) = c3E(x)
or

{
g(x) = µ(x)(1− a(x))

f(x) = c1µ(x)a(x)

or

{
g(x) = (1− c2)µ(x) + c2ν(x)

f(x) = c3(µ(x)− ν(x))
(2.6)

for all x, y ∈ S, where E, µ : S → C are exponential functions satisfying E ◦ σ =
E, µ ◦ σ = µ and a, ν are an additive function and an exponential function on
S∗ := {x ∈ S : µ(x) 6= 0} satisfying a ◦ σ = a on S∗ with arbitrary values on
S \ S∗, ν ◦ σ = ν on S∗ and ν = 0 on S \ S∗, and c1, c2, c3 ∈ C are arbitrary
constants satisfying c21 = −1, c22 + c23 = c2 with c2 6= 0, 1.
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Proof. Replacing (x, y) by (y, x) in (2.3) we have

g(y + σx)− g(y)g(x)− f(x)f(y) = 0 (2.7)

for all x, y ∈ S. Subtracting (2.6) from (2.3) we have

g(y + σx) = g(x+ σy) (2.8)

for all x, y ∈ S. Putting y = 0 in (2.7) we have

g(σx) = g(x) (2.9)

for all x ∈ S. Replacing x by σx and y by σy in (2.3) we have

g(σx+ y)− g(σx)g(σy)− f(σx)f(σy) = 0 (2.10)

for all x, y ∈ S. From (2.8) we have

g(σx+ y)− g(x)g(y)− f(σx)f(σy) = 0 (2.11)

for all x, y ∈ S. Subtracting (2.10) from (2.3) and by (2.7) we have

f(σx)f(σy) = f(x)f(y) (2.12)

for all x, y ∈ S. Letting y = x in (2.11), for each x ∈ S we have f(σx) = f(x)
or f(σx) = −f(x). Assume that there exists a y0 ∈ S such that f(σy0) 6= f(y0).
Then we have f(σy0) = −f(y0). Putting y = y0 in (2.11) we obtain f(x) =
−f(σx) for all x ∈ S. Thus we have

f(σx) = −f(x) (2.13)

for all x ∈ S, or
f(σx) = f(x) (2.14)

for all x ∈ S.
Case (i). Suppose that (2.12) holds. Interchanging y with σy in (2.3) and

using the fact that g(σy) = g(y) and f(σy) = −f(y) we have

g(x+ y) = g(x)g(y)− f(x)f(y) (2.15)

for all x, y ∈ S. Adding (2.3) and (2.14) we obtain

g(x+ y) + g(x+ σy) = 2g(x)g(y) (2.16)

for all x, y ∈ S. The general solution of the functional equation can be obtained
from Lemma 2.1 as

g(x) =
m(x) +m(σx)

2
(2.17)

for all x ∈ S, where m : S → C is an exponential function. Using (2.16) in (2.14)
and simplifying we obtain

f(x)f(y) = −
(
m(x)−m(σx)

2

) (
m(y)−m(σy)

2

)
(2.18)

for all x, y ∈ S. Hence

f(x) = c1
m(x)−m(σx)

2
(2.19)

for all x ∈ S, where c1 ∈ C such that c21 = −1. Hence for this case we have the
asserted solution (2.4).
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Case (ii). Suppose (2.13) holds. Letting σy for y in (2.3) and using the fact
g(σy) = g(y), f(σy) = f(y) we get

g(x+ y) = g(x)g(y) + f(x)f(y) (2.20)

for all x, y ∈ S. Computing g(x + y + z) first as g(x + (y + z)) and then as
g((x+ y) + z), using (2.19) we obtain

g(x+ y + z) = g(x)g(y + z) + f(x)f(y + z)

= g(x)[g(y)g(z) + f(y)f(z)] + f(x)f(y + z)

= g(x)g(y)g(z) + g(x)f(y)f(z) + f(x)f(y + z),

g(x+ y + z) = g(x+ y)g(z) + f(x+ y)f(z)

= [g(x)g(y) + f(x)f(y)]g(z) + f(x+ y)f(z)

= g(x)g(y)g(z) + f(x)f(y)g(z) + f(x+ y)f(z)

for all x, y, z ∈ S. Comparing the last two expressions we have

f(x+ y)f(z)− g(x)f(y)f(z) = f(x)f(y + z)− f(x)f(y)g(z) (2.21)

for all x, y, z ∈ S. Subtracting f(x)g(y)f(z) from both sides of (2.20), we get

[f(x+y)−g(x)f(y)−g(y)f(x)]f(z) = [f(y+z)−g(y)f(z)−g(z)f(y)]f(x) (2.22)

for all x, y, z ∈ S. We fix z = z0 with f(z0) 6= 0 and obtain

f(x+ y)− g(x)f(y)− g(y)f(x) = f(x)k(y) (2.23)

for all x, y ∈ S, where k(y) := f(z0)
−1[f(y+z0)−g(y)f(z0)−g(z0)f(y)]. Replacing

(x, y) by (y, x) in (2.20) we see that

f(x)k(y) = f(y)k(x) (2.24)

for all x, y, z ∈ S. Put y = z0 we have

k(x) = βf(x) (2.25)

for all x ∈ S, where β =
k(z0)

f(z0)
. Hence (2.24) in (2.22) yields

f(x+ y) = g(x)f(y) + g(y)f(x) + βf(x)f(y) (2.26)

for all x, y ∈ S. Multiplying (2.25) by λ and adding the resulting expression to
(2.19) we have

g(x+ y) + λf(x+ y)

= g(x)g(y) + f(x)f(y) + λg(x)f(y) + λf(x)g(y) + βλf(x)f(y) (2.27)

for all x, y ∈ S. The functional equation can be written as

g(x+ y) + λf(x+ y) = [g(x) + λf(x)][g(y) + λf(y)] (2.28)

if and only if λ satisfies

λ2 − βλ− 1 = 0. (2.29)

By fixing λ to be such a constant, we get

g(x) + λf(x) = µ(x) (2.30)
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for all x ∈ S, where µ : S → C is an exponential map. From (2.28) it is easy to
see that λ 6= 0. From (2.29) we have

g(x) = µ(x)− λf(x) (2.31)

for all x ∈ S and letting this into (2.19) and simplifying we obtain

λf(x+ y) = λf(x)µ(y) + λf(y)µ(x)− (λ2 + 1)f(x)f(y) (2.32)

for all x, y ∈ S. There are two possibilities: (1) µ = 0 and (2) µ 6= 0. If µ = 0,
then from (2.31), we get

f(x+ y) = −λ−1(λ2 + 1)f(x)f(y) (2.33)

for all x, y ∈ S. We define E : S → C given by

E(x) = −λ−1(λ2 + 1)f(x) (2.34)

for all x ∈ S. Then by (2.33), the equation (2.34) reduces to

E(x+ y) = E(x)E(y) (2.35)

for all x, y ∈ S. From (2.13), (2.33) and (2.34), E : S → C is an exponential
function satisfying E(x) = E(σx).

Hence from (2.30) and (2.33) we get

g(x) = c2E(x) and f(x) = c3E(x) (2.36)

for all x ∈ S, where c2 := λ2

λ2+1
and c3 := − λ

λ2+1
with λ 6= 0. Note that the

constants (c2, c3) represents all solutions of the equation c22 + c23 = c2 such that
c2 6= 0, 1. Thus we have the first case of the asserted solutions (2.5).

The other possibility is µ 6= 0. Let S∗ = {x ∈ S : µ(x) 6= 0}. Then S \S∗ is an
ideal in S and S∗ is a subsemigroup of S. Dividing (2.31) by

µ(x+ y) = µ(x)µ(y) (2.37)

side by side, we obtain

λf(x+ y)

µ(x+ y)
=
λf(x)

µ(x)
+
λf(y)

µ(y)
− λ2 + 1

λ2

(
λf(x)

µ(x)

) (
λf(y)

µ(y)

)
(2.38)

for all x, y ∈ S∗. When λ2 + 1 = 0, we have

λf(x+ y)

µ(x+ y)
=
λf(x)

µ(x)
+
λf(y)

µ(y)
(2.39)

for all x, y ∈ S∗. Hence
λf(x)

µ(x)
= a(x) (2.40)

for all x ∈ S∗, where a : S∗ → C is an additive function. Therefore

f(x) = λ−1µ(x)a(x) (2.41)

for all x ∈ S∗ and by (2.30) and (2.40), we get

g(x) = µ(x)− µ(x)a(x) (2.42)
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for all x ∈ S∗. Letting c1 = λ−1 from (2.40) and (2.41) we have the second case
of the asserted solutions (2.5). It is easy to check that the constant c1 satisfies
c21 = −1 because of λ2 + 1 = 0.

When λ2 + 1 6= 0, (2.37) yields

ν(x+ y) = ν(x)ν(y) (2.43)

for all x, y ∈ S∗, where ν(x) = 1 − λ2+1
λ2

(
λf(x)
µ(x)

)
. Hence ν : S∗ → C is an

exponential function. Therefore

f(x) = c3µ(x)− c3ν(x)µ(x) (2.44)

for all x ∈ S∗ and by (2.30) and (2.43), we get

g(x) = (1− c2)µ(x) + c2ν(x)µ(x) (2.45)

for all x ∈ S∗, where c2 := λ2

λ2+1
and c3 := − λ

λ2+1
. Replacing µ(x)ν(x) by ν(x) in

(2.43) and (2.44) we get the third case of the asserted solutions (2.5). It follows
from (2.30), (2.33), (2.39) and (2.43) that µ(σx) = µ(x), E(σx) = E(x), a(σx) =
a(x), ν(σx) = ν(x) and the proof of the theorem is now complete. �

Remark 2.3. Let σ = I be the identity involution. Then as a direct consequence of
Theorem 2.2 we obtain the solutions of hyperbolic cosine-sine functional equation

g(x+ y) = g(x)g(y) + f(x)f(y) (2.46)

for all x, y ∈ S. Indeed, all solutions of (2.45) are given by (2.5) with exponential
functions E, µ : S → C, ν : S∗ → C, an additive function a : S∗ → C, and
constants c2, c3 ∈ C satisfying c22 + c23 = c2, c2 6= 0.

Let (H,+) be a commutative semigroup and f, g : H × H → C. As a con-
sequence of Theorem 2.2, we determine all general solutions of the functional
equation

g(x1 + y2, x2 + y1) = g(x1, x2)g(y1, y2) + f(x1, x2)f(y1, y2) (2.47)

for all x1, x2, y1, y2 ∈ H. We exclude the trivial cases when g is constant.

Letting σ(x1, x2) = (x2, x1) for all x1, x2 ∈ H and using the same argument as
in [8, Theorem 5] we obtain the following.

Corollary 2.4. Let f, g : H × H → C satisfy the functional equation (2.46).
Then either (g, f) has the form

g(x1, x2) =
m1(x1)m2(x2) +m2(x1)m1(x2)

2
,

f(x1, x2) = c1
m1(x1)m2(x2)−m2(x1)m1(x2)

2
for all x1, x2 ∈ H, where m1,m2 : H → C are arbitrary exponential functions and
c1 ∈ C with c21 = −1, or{

g(x1, x2) = c2E(x1 + x2)

f(x1, x2) = c3E(x1 + x2)
or

{
g(x1, x2) = µ(x1 + x2)(1− a(x1 + x2))

f(x1, x2) = c1µ(x1 + x2)a(x1 + x2)
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or

{
g(x1, x2) = (1− c2)µ(x1 + x2) + c2ν(x1 + x2)

f(x1, x2) = c3(µ(x1 + x2)− ν(x1 + x2))

for all x1, x2 ∈ H, where E, µ : H → C are exponential functions on H, a is an
additive function on H∗ := {x ∈ H : µ(x) 6= 0} with arbitrary values on H \H∗,
ν is an exponential function on H∗ and ν = 0 on H \H∗, and c1, c2, c3 ∈ C are
arbitrary constants satisfying c21 = −1, c22 + c23 = c2 with c2 6= 0, 1.

If S = G is a commutative group and σ(x) = −x for all x ∈ G, we have the
following.

Corollary 2.5. Let f, g : G→ C satisfy the functional equation

g(x− y) = g(x)g(y) + f(x)f(y) (2.50)

for all x, y ∈ G. Then either (g, f) has the form

g(x) =
m(x) +m(−x)

2
, f(x) = c1

m(x)−m(−x)
2

(2.51)

for all x ∈ G, where m : G→ C is an arbitrary exponential function and c1 ∈ C
with c21 = −1, or{

g(x) = c2E(x)

f(x) = c3E(x)
or

{
g(x) = (1− c2)µ(x) + c2ν(x)

f(x) = c3(µ(x)− ν(x))
(2.52)

for all x, y ∈ G, where E, µ, ν : G → C are exponential functions satisfying
(E(x))2 = (µ(x))2 = (ν(x))2 = 1 for all x ∈ G and c1, c2, c3 ∈ C are arbitrary
constants satisfying c21 = −1, c22 + c23 = c2 with c2 6= 0, 1.

Proof. If S = G is a group, then we have G∗ = {x ∈ G : µ(x) 6= 0} = G.
Now, since the functions a,E, µ, ν : G → C satisfy a(−x) = a(x), E(−x) =
E(x), µ(−x) = µ(x), ν(−x) = ν(x) for all x ∈ G, we have a(x) = 0 for all x ∈ G
and (E(x))2 = (µ(x))2 = (ν(x))2 = 1 for all x ∈ G, and the second case of (2.5)
is reduced to the case m = m ◦ σ of (2.4). This completes the proof. �

In particular if S = G is a 2-divisible commutative group and σ(x) = −x for
all x ∈ G, then since E = µ = ν = 1 we have the following.

Corollary 2.6. Let f, g : G→ C satisfy the functional equation

g(x− y) = g(x)g(y) + f(x)f(y)

for all x, y ∈ G. Then either (g, f) has the form

g(x) = c2, f(x) = c3

for all x ∈ G, where c22 + c23 = c2, or

g(x) =
m(x) +m(−x)

2
, f(x) = c1

m(x)−m(−x)
2

for all x ∈ G, where m : G→ C is an arbitrary exponential function and c1 ∈ C
with c21 = −1.
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Remark 2.7. If G is not 2-divisible, we can find a nonconstant solution (g, f)
of (2.47) of the form (2.49). Indeed, let G = Z be the set of integers. Define
E : Z → C by E(2k) = 1, E(2k−1) = −1 for all k ∈ Z. Then E is a nonconstant
exponential function. Letting µ = E, ν = 1 and c22 + c23 = c2 we obtain the
following nonconstant solutions of the form (2.49){

g(x) = c2E(x)

f(x) = c3E(x)
or

{
g(x) = (1− c2)E(x) + c2
f(x) = c3E(x)− c3

3. Stability of the functional equation (1.7)

Throughout this section, let G be a commutative group, ψ : G → [0,∞) be
fixed and f, g : G→ C. In this section we consider the stability of the functional
equation (1.7), i.e., we deal with the functional inequality

|g(x+ σy)− g(x)g(y)− f(x)f(y)| ≤ ψ(y) (3.1)

for all x, y ∈ G. For the proof of the stability of (3.1) we need the following.

Lemma 3.1. Let f, g : G→ C satisfy the inequality (3.1) for all x, y ∈ G. Then
there exist µ1, µ2 ∈ C(not both zero) and M > 0 such that

|µ1f(x)− µ2g(x)| ≤M (3.2)

for all x ∈ G, or else

g(x+ σy)− g(x)g(y)− f(x)f(y) = 0 (3.3)

for all x, y ∈ G.

Proof. Suppose that µ1f(x)− µ2g(x) is bounded only when µ1 = µ2 = 0. Let

l(x, y) = g(x+ y)− g(x)g(σy)− f(x)f(σy) (3.4)

for all x, y ∈ G. Choose y1 satisfying f(σy1) 6= 0. Then from (3.4), we have

f(x) = ω1g(x) + ω2g(x+ y1)− ω2l(x, y1) (3.5)

for all x ∈ G, where ω1 = − g(σy1)
f(σy1)

and ω2 = 1
f(σy1)

. From (3.4) and (3.5) we have

g(x+ y + z) = g(x+ y)g(σz) + f(x+ y)f(σz) + l(x+ y, z)

=
(
g(x)g(σy) + f(x)f(σy) + l(x, y)

)
g(σz)

+
(
ω1g(x+ y) + ω2g(x+ y + y1)− ω2l(x+ y, y1)

)
f(σz)

+ l(x+ y, z)

=
(
g(x)g(σy) + f(x)f(σy) + l(x, y)

)
g(σz)

+ ω1

(
g(x)g(σy) + f(x)f(σy) + l(x, y)

)
f(σz)

+ ω2

(
g(x)g(σ(y + y1)) + f(x)f(σ(y + y1))

+ l(x, y + y1)
)
f(σz)− ω2l(x+ y, y1)f(σz) + l(x+ y, z) (3.6)
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for all x, y, z ∈ G. Also, from (3.4) we have

g(x+ y + z) = g(x)g(σ(y + z)) + f(x)f(σ(y + z)) + l(x, y + z) (3.7)

for all x, y, z ∈ G. Equating (3.6) and (3.7) and then isolating l(·, ·) terms into
the right hand sides, we have(

g(σy)g(σz) + ω1g(σy)f(σz) + ω2g(σ(y + y1))f(σz)− g(σ(y + z))
)
g(x)

+
(
f(σy)g(σz) + ω1f(σy)f(σz) + ω2f(σ(y + y1))f(σz)− f(σ(y + z))

)
f(x)

= −l(x, y)g(σz)− ω1l(x, y)f(σz)− ω2l(x, y + y1)f(σz)

+ ω2l(x+ y, y1)f(σz)− l(x+ y, z) + l(x, y + z) (3.8)

for all x, y, z ∈ G. So the left side of (3.8) is the of the form µ1(y, z) f(x) −
µ2(y, z) g(x). Next we show that the right hand side of (3.8) is bounded as a
function of x. Taking the absolute value of right hand sides of (3.8) and using
triangle inequality and (3.1), we have

| − l(x, y)g(σz)− ω1l(x, y)f(σz)− ω2l(x, y + y1)f(σz)

+ ω2l(x+ y, y1)f(σz)− l(x+ y, z) + l(x, y + z)|
≤ |l(x, y)||g(σz)|+ |l(x, y)||ω1f(σz)|+ |l(x, y + y1)||ω2f(σz)|

+ |l(x+ y, y1)||ω2f(σz)|+ |l(x+ y, z)|+ |l(x, y + z)|
≤ ψ(σy)|g(σz)|+ ψ(σy)|ω1f(σz)|+ ψ(σ(y + y1))|ω2f(σz)|

+ ψ(σy1)|ω2f(σz)|+ ψ(σz) + ψ(σ(y + z)) (3.9)

for all x, y, z ∈ G. In view of (3.9), for fix y, z, the right hand side of (3.8) is
bounded as a function of x. So by our assumption, the left hand side of (3.8)
vanishes, so does its right hand side yielding

l(x, y) g(σz) +
(
ω1 l(x, y) + ω2 l(x, y + y1)−ω2 l(x+ y, y1)

)
f(σz)

= l(x, y + z)− l(x+ y, z) (3.10)

for all x, y, z ∈ G. From (3.4) we can write

l(x, y + z)− l(x+ y, z)

= g(x+ y + z)− g(x)g(σ(y + z))− f(x)f(σ(y + z))

− g(x+ y + z) + g(x+ y)g(σz) + f(x+ y)f(σz)

= g(σ(x+ y + z))− g(x)g(σ(y + z))− f(x)f(σ(y + z))

− g(σ(x+ y + z)) + g(x+ y)g(σz) + f(x+ y)f(σz)

= g(σ(y + z) + σx)− g(σ(y + z))g(x)− f(σ(y + z))f(x)

− g(σz + σ(x+ y)) + g(σz)g(x+ y) + f(σz)f(x+ y)

= l(σ(y + z), σx)− l(σz, σ(x+ y)) (3.11)

for all x, y, z ∈ G. Using (3.11) and the triangle inequality we have

|l(x, y + z)− l(x+ y, z)| = |l(σ(y + z), σx)− l(σz, σ(x+ y))|
≤ |l(σ(y + z), σx)|+ |l(σz, σ(x+ y))|
≤ ψ(x) + ψ(x+ y) (3.12)
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for all x, y, z ∈ G. Thus, if we fix x, y in (3.10) the left hand side of (3.10) is
a bounded function of z. Hence by our assumption, we have l(x, y) = 0 for all
x, y ∈ G. This completes the proof. �

For the proof of the main result we also need the following three lemmas.

Lemma 3.2. [13] Let Ψ : G → [0,∞) be a function. Assume that f, g : G → C
satisfy the inequality

|f(x+ y)− f(x)g(y)| ≤ Ψ(y) (3.13)

for all x, y ∈ G, then either f is a bounded function or g is an exponential
function.

Lemma 3.3. Let m : G→ C be a bounded exponential function satisfying m(y) 6=
m(σy) for some y ∈ G. Then there exists y0 ∈ G such that

|m(y0)−m(σy0)| ≥
√

3.

Furthermore,
√

3 is the best constant in general.

Proof. Since m is a bounded exponential, there exists C > 0 such that |m(x)|k =
|m(kx)| ≤ C for all k ∈ Z and x ∈ G, which implies |m(x)| = 1 for all x ∈ G.
Assume that m(σy) 6= m(y). Then we have m(σy) = eiθ1 , m(y) = eiθ2 for some
θ1, θ2 ∈ [0, 2π]. We may assume that θ1 < θ2. If θ2 − θ1 ∈ [2π

3
, 4π

3
], we have

|m(y)−m(σy)| = |eiθ2 − eiθ1| ≥
√

3. If θ2 − θ1 ∈ [0, 2π
3

] or θ2 − θ1 ∈ [4π
3
, 2π], then

there exists an integer k such that kθ2−kθ1 ∈ [2π
3

+2nπ, 4π
3

+2nπ] for some integer

n. Thus we have |m(ky)−m(σ(ky))| = |m(ky)−m(kσy)| = |eikθ2 − eikθ1 | ≥
√

3.

Now define m : Z → C by m(k) = e
ikπ
3 and let σ(x) = −x. Then we have

|m(3k + 1)−m(−3k − 1)| =
√

3 for all k ∈ Z. Thus
√

3 is the biggest one. This
completes the proof. �

From now on we assume that

Φ1(x) :=
∞∑

k=0

2−k−1ψ
(
2kx

)
<∞ (3.14)

for all x ∈ G, or else

Φ2(x) :=
∞∑

k=0

2kψ
(
2−k−1x

)
<∞ (3.15)

for all x ∈ G.

Lemma 3.4. [3] Assume that f : G→ C satisfies the functional inequality

|f(x+ y)− f(x)− f(y)| ≤ ψ(y)

for all x, y ∈ G. Then there exists a unique additive function a1 given by

a1(x) = lim
n→∞

2−nf(2nx)

such that
|f(x)− a1(x)| ≤ Φ1(x)
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for all x ∈ G provided that (3.14) holds, and there exists a unique additive function
a2 given by

a2(x) = lim
n→∞

2nf(2−nx)

such that
|f(x)− a2(x)| ≤ Φ2(x)

for all x ∈ G provided that (3.15) holds.

Next we present the second main results of this paper.

Theorem 3.5. Let f, g : G→ C satisfy the inequality

|g(x+ σy)− g(x)g(y)− f(x)f(y)| ≤ ψ(y) (3.21)

for all x, y ∈ G, then (g, f) satisfies one of the following:
(i) g and f are bounded functions,
(ii) f is a bounded function and g = m is an unbounded exponential function

such that m = m ◦ σ,
(iii) there exist an unbounded exponential function m satisfying m = m ◦ σ

and a bounded function r such that

f(x) =
λm(x) + r(x)

λ2 + 1
, g(x) =

m(x)− λr(x)

λ2 + 1

for all x ∈ G,

(iv) g(x) = m(x)+m(σx)
2

and f(x) = c1
m(x)−m(σx)

2
, where m : G → C is an

exponential function,
(v) there is an additive function a : G→ C and exponential functions E, µ, ν :

G→ C satisfying a ◦ σ = a, E ◦ σ = E, µ ◦ σ = µ, ν ◦ σ = ν, and c1, c2, c3 ∈ C
such that c21 = −1, c22 + c23 = c2 with c2 6= 0, 1,{

g(x) = c2E(x)

f(x) = c3E(x)
or

{
g(x) = µ(x)(1− a(x))

f(x) = c1µ(x)a(x)

or

{
g(x) = (1− c2)µ(x) + c2ν(x)

f(x) = c3(µ(x)− ν(x))

for all x, y ∈ G,
(vi) there exist λ ∈ C with λ2 = −1, a bounded exponential function m satis-

fying m 6= m ◦ σ and d ≥ 0 such that

f(x) = λ(g(x)−m(x)), |g(x)| ≤ 2
√

3

3
(ψ(x) + d)

for all x ∈ G,
(vii) there exist λ ∈ C with λ2 = −1 and a bounded exponential function m

satisfying m = m ◦ σ such that

f(x) = λ(g(x)−m(x))

for all x ∈ G, and g satisfies one of the following; there exists an additive function
a1 : G→ C such that

|g(x)− (a1(x) + g(0))m(x)| ≤ 2Φ1(x)
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for all x ∈ G, or there exists an additive function a2 : G→ C such that

|g(x)− (a2(x) + g(0))m(x)| ≤ 2Φ2(x)

for all x ∈ G, where Φ1 and Φ2 are the functions given in (3.14) and (3.15) and
g(0) = 1 if ψ(0) = 0.

Proof. In view of Lemma 3.1, we first consider the case when f, g satisfies (3.2).
If f is bounded, then in view of the inequality (3.16), g(x + y) − g(x)g(σy) is
also bounded for each y. By Lemma 3.2, g is bounded or g ◦ σ is an unbounded
exponential function and so is g. If g is bounded, the case (i) follows. If g is an
unbounded exponential function, say g = m, then from (3.16), using the triangle
inequality we have for some d ≥ 0,

|m(x)(m(σy)−m(y))| ≤ ψ(y) + d (3.28)

for all x, y ∈ G. Thus, m(y) = m(σy) for all y ∈ G is bounded, which gives the
case (ii).

If f is unbounded, then in view of (3.16), g is also unbounded and we can write

f(x) = λg(x) + r(x) (3.29)

for all x ∈ G, where λ 6= 0 and r is a bounded function. Putting (3.18) in (3.16),
replacing y by σy and using the triangle inequality we have

|g(x+ y)− g(x)((λ2 + 1)g(σy) + λr(σy))|
≤ |(λg(σy) + r(σy))r(x)|+ ψ(σy) ≤ ψ∗(y) (3.30)

for all x, y ∈ G and for some ψ∗. From (3.19), using Lemma 3.2 we have

(λ2 + 1)g(y) + λr(y) = m(y) (3.31)

for all y ∈ G and for some exponential function m. If λ2 6= −1, we have

f(x) =
λm(x) + r(x)

λ2 + 1
, g(x) =

m(x)− λr(x)

λ2 + 1
(3.32)

for all x ∈ G. Putting (3.21) in (3.16), multiplying |λ2 +1| in the result and using
the triangle inequality we have for some d ≥ 0,

|m(x)(m(σy)−m(y))| ≤ |λ2 + 1|ψ(y) + d (3.33)

for all x, y ∈ G. Sincem is an unbounded function, from (3.22) we havem = m◦σ.
If λ2 = −1, then from (3.18) and (3.20) we have

f(x) = λ(g(x)−m(x)) (3.34)

for all x ∈ G, where λ2 = −1 and m is a bounded exponential function and hence
|m(x)| = 1 for all x ∈ G. Putting (3.23) in (3.16), we have

|g(x+ σy)− g(x)m(y)−m(x)g(y) +m(x)m(y)| ≤ ψ(y) (3.35)

for all x, y ∈ G. Since g is unbounded, we have m 6= 0 and hence m(0) = 1.
Putting x = y = 0 in (3.24) we see that g(0) = 1 if ψ(0) = 0. Replacing y by σy
in (3.24) we have

|g(x+ y)− g(x)m(σy)−m(x)g(σy) +m(x)m(σy)| ≤ ψ(σy) (3.36)
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for all x, y ∈ G. Putting x = 0 in (3.25) and multiplying |m(x)| in the result we
have

|m(x)g(y)− g(0)m(x)m(σy)−m(x)g(σy) +m(x)m(σy)| ≤ ψ(σy) (3.37)

for all x, y ∈ G.
From (3.25) and (3.26), using the triangle inequality we have

|g(x+ y)− g(x)m(σy)−m(x)g(y) + g(0)m(x)m(σy)| ≤ 2ψ(σy) (3.38)

for all x, y ∈ G.
First, we consider the case m(y0) 6= m(σy0) for some y0 ∈ G. Replacing x by

y and y by x in (3.27) we have

|g(y + x)−m(σx)g(y)− g(x)m(y) + g(0)m(σx)m(y)| ≤ 2ψ(σx) (3.39)

for all x, y ∈ G. From (3.27) and (3.28), using the triangle inequality we have

|g(x)(m(σy)−m(y))− g(y)(m(σx)−m(x))− g(0)(m(x)m(σy)−m(σx)m(y))|
≤ 2(ψ(σx) + ψ(σy)) (3.40)

for all x, y ∈ G. By Lemma 3.3, there exists a y0 ∈ G such that |m(σy0)−m(y0)| ≥√
3, putting y = y0 in (3.29), using the triangle inequality and dividing the result

by |m(σy0)−m(y0)| we have

|g(x)| ≤ 2
√

3

3
(ψ(σx) + d) (3.41)

for all x ∈ G, where d = ψ(y0) + |g(y0)| + |g(0)|, which gives (vi). Now, we
consider the case when m(x) = m(σx) for all x ∈ G. Dividing both the sides
(3.27) by |m(x+ y)| = |m(x)m(y)| we have

|F (x+ y)− F (x)− F (y)| ≤ 2ψ(y) (3.42)

for all x, y ∈ G, where F (x) = g(x)
m(x)

− g(0). Using Lemma 3.4 and multiplying

|m(x)| in the result we get (vii). If f, g satisfies (3.3), then by Theorem 2.2, all
solutions of (3.3) are given by (iv) or (v). This completes the proof. �

Remark 3.6. Let σ = I be the identity. Then as a direct consequence of Theorem
3.5 we obtain the Hyers-Ulam stability of the hyperbolic cosine-sine functional
equation

g(x+ y) = g(x)g(y) + f(x)f(y).
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