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VARIANTS OF WEYL’S THEOREM FOR DIRECT SUMS OF
CLOSED LINEAR OPERATORS
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Abstract. If T is an operator with compact resolvent and S is any densely
defined closed linear operator, then the orthogonal direct sum of T and S
satisfies various Weyl type theorems if some necessary conditions are imposed
on the operator S. It is shown that if S is isoloid and satisfies Weyl’s theorem,
then T ⊕ S satisfies Weyl’s theorem. Analogous result is proved for a-Weyl’s
theorem. Further, it is shown that Browder’s theorem is directly transmitted
from S to T ⊕ S. The converse of these results have also been studied.

1. Introduction

Let H and K be infinite dimensional separable complex Hilbert spaces and
C(H) be the set of all closed linear operators T from domain D(T ) ⊆ H to
H. By N (T ) and R(T ) we denote the null space and range of an operator T ,
respectively. We call an operator T ∈ C(H) upper semi-Fredholm (respectively,
lower semi-Fredholm) if R(T ) is closed and nullity of T , α(T ) = dimN (T ) < ∞
(respectively, defect of T , β(T ) = codimR(T ) < ∞). A semi-Fredholm operator
is an upper or lower semi-Fredholm operator. If T is both upper and lower
semi-Fredholm, that is, if both α(T ) and β(T ) are finite, then T is called a
Fredholm operator. By SF+(H) (respectively, SF−(H)) we denote the class of all
upper (respectively, lower) semi-Fredholm operators. For T ∈ SF+(H)∪SF−(H),
index of T is defined as ind(T ) = α(T )− β(T ). An operator T ∈ C(H) is called
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Weyl if it is Fredholm of index 0 and the Weyl spectrum of T is defined as
σW (T ) = {λ ∈ C : T − λI is not Weyl}. We shall use the following notations:

SF−
+ (H) = {T ∈ C(H) : T ∈ SF+(H) and ind(T ) 6 0}

SF+
− (H) = {T ∈ C(H) : T ∈ SF−(H) and ind(T ) > 0}

and these operators generate the following spectra

σSF−+
(T ) = {λ ∈ C : T − λI /∈ SF−

+ (H)}

σSF+
−
(T ) = {λ ∈ C : T − λI /∈ SF+

− (H)}.
The ascent p(T ) and descent q(T ) of an operator T ∈ C(H) are defined as

follows:
p(T ) = inf{n : N (T n) = N (T n+1)}
q(T ) = inf{n : R(T n) = R(T n+1)}.

An operator T ∈ C(H) is Browder if T is a Fredholm operator with ascent
p(T ) and descent q(T ) both finite. We denote by σb(T ) = {λ ∈ C : T − λI not
Browder}.

Clearly, σW (T) ⊆ σb(T).
Let σ(T ), σa(T ) and ρ(T ) denote the spectrum, approximate spectrum and

the resolvent set of T , respectively. By iso σ(T ) and iso σa(T ) we denote the
isolated points of σ(T ) and σa(T ), respectively. It is well known that the resolvent
operator Rλ(T ) = (T − λI)−1 is an analytic operator-valued function for all
λ ∈ ρ(T ) and the points of iso σ(T ) are either poles or essential singularities of
Rλ(T ). For T ∈ C(H) with ρ(T ) 6= ∅, λ ∈ iso σ(T ) is said to be a pole of order p
if p = p(T − λI) < ∞ and q(T − λI) < ∞ ([6]). Let πo(T ) denote the set of all
poles of finite multiplicity.

Let Eo(T ) and Ea
o (T ) denote the set of all eigenvalues of finite multiplicities in

iso σ(T ) and iso σa(T ), respectively. If T ∈ C(H), then T satisfies:

(i) Weyl’s Theorem if σ(T ) \ σW (T ) = Eo(T ).
(ii) a-Weyl’s Theorem if σa(T ) \ σSF−+

(T ) = Ea
o (T ).

(iii) Browder’s Theorem if σ(T ) \ σW (T ) = πo(T ).
(iv) a-Browder’s Theorem if σSF−+

(T ) = σub(T ).

An operator T is called isoloid if each λ ∈ iso σ(T ) is an eigenvalue of T and
a-isoloid if each λ ∈ iso σa(T ) is an eigenvalue of T .

An important property of closed linear operators in Fredholm theory is the
single valued extension property (SVEP). We mainly concern with the SVEP at
a point, localized version of SVEP introduced by Finch [4], and relate it to the
finiteness of the ascent of a closed linear operator. Let T : D(T ) ⊂ H → H be
a closed linear mapping and let λo be a complex number. The operator T has
the single valued extension property (SVEP) at λo if f = 0 is the only solution
to (T − λI)f(λ) = 0 that is analytic in every neighborhood of λo. Also, T has
SVEP if it has this property at every point λo in the complex plane.

M. Berkani & H. Zariouh [2], B. P. Duggal & C. S. Kubrusly [3] and W. Y. Lee
[7] have given sufficient conditions on the direct summands to ensure that Weyl-
type theorems hold for the direct sum when both the operators are bounded. We
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aim to extend this study of direct sums of bounded linear operators to the classes
of unbounded operators. A particularly simple yet important class of operators
is the class of unbounded operators with compact resolvent. Important examples
include the diagonal operator and most of the differential operators.

The following is the definition of unbounded operators with compact resolvent.
Using the Spectral Mapping theorem for resolvents, several spectral properties for
such class of operators follow analogously from the spectral properties of compact
operators.

Definition 1.1. [5] Let T ∈ C(H) be such that the resolvent operator Rλ(T ) =
(T − λI)−1 exists and is compact for some λ. Then the spectrum of T consists
entirely of isolated eigenvalues of finite multiplicities, and Rλ(T ) is compact for
every λ ∈ ρ(T ). Such an operator is called an operator with compact resolvent.
[see Kato [5]]

In this paper, we take one of the summands T to be a closed linear operator
with additional condition that it is an operator with compact resolvent and we
shall give sufficient conditions on densely defined closed linear operator S to
ensure that T ⊕ S satisfies various Weyl-type theorems. Throughout the article,
we assume that ρ(S) 6= ∅. In the second section we are mainly concerned with
the Weyl’s and a-Weyl’s Theorem and in the third section we deal with the
Browder’s Theorem for direct sums of unbounded operators. Example has been
given to illustrate the results proved in this paper.

2. Weyl’s and a-Weyl’s Theorem for Direct sums of operators

We begin this section with the following theorem, which is instrumental in
proving all the subsequent theorems.

Definition 2.1. [5, Ch IV, §1] Let T ∈ C(H). Let A be an operator such that
D(T ) ⊂ D(A) and ‖Au‖ 6 a‖u‖ + b‖Tu‖, u ∈ D(T ) where a, b are non-negative
constants. Then we say that A is relatively bounded with respect to T or T -bounded
and the T -bound of A is inf b.

Of course, every bounded operator is T -bounded, for any T , with T -bound
equal to zero. Let γ(T ) denote the reduced minimum modulus of T ∈ C(H).
Then, we know R(T ) is closed if and only if γ(T ) > 0 for every T ∈ C(H).

Theorem 2.2. Let T ∈ C(H) be a semi-Fredholm operator with ρ(T ) 6= ∅. Then
the following are equivalent:

(i) T has SVEP at 0
(ii) σa(T) does not cluster at 0
(iii) p(T ) < ∞.

Proof. (i) ⇔ (iii) This follows from [4, Theorem 15, p.68].
(i) ⇒ (ii) Suppose T has SVEP at zero. Since T is semi-Fredholm operator, so

is T n for all n ∈ N. Then R(T n) is closed for all n, so that T∞(H) =
∞
∩

n=1
R(T n)

is closed.
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Since T is semi-Fredholm, so thatR(T ) is closed, there exists an ε > 0 such that
γ(T ) > ε. Consider λ in 0 < |λ| < ε. Then ‖λIx‖ = |λ|‖x‖ < ε‖x‖ < γ(T )‖x‖,
for all x ∈ H. By [5, Theorem 5.22, p. 236], T − λI is a closed semi-Fredholm
operator, so that R(T − λI) is closed for all 0 < |λ| < ε. Thus we have that if 0
< |λ| < ε, then λ ∈ σa(T ) iff λ ∈ σp(T ).

If 0 6= x ∈ N (T−λI) then x = 1
λ
Tx ∈ R(T ). Also, T 2x = T (λx) = λTx = λ2x.

This implies x = 1
λ2 T

2x ∈ R(T 2). Continuing like this, we get x ∈ T∞(H). Thus,
N (T − λI) ⊆ T∞(H) for all λ 6= 0. This implies that every non-zero eigenvalue
of T belongs to σ(T |T∞(H)).

Suppose that 0 is a cluster point of σa(T ). There exists a sequence (λn) of
non-zero eigenvalues of T such that λn → 0 as n → ∞. Then λn ∈ σ(T |T∞(H))
so that 0 ∈ σ(T |T∞(H)), as the spectrum of an operator is closed. Since T is
semi-Fredholm operator, either α(T ) or β(T ) is finite and R(T ) is closed. Then
T |T∞(H) is onto. Also since T has SVEP at 0, from [4, Corollary 3, p. 62], we
have that T |T∞(H) is injective so that 0 /∈ σ(T |T∞(H)), which is a contradiction.
Therefore, σa(T ) does not cluster at 0.

(ii) ⇒ (i) This holds for all closed linear operators. �

Throughout the rest of the article, we denote by Λ(H) = {T ∈ C(H) : D(T ) is
dense and T is an operator with compact resolvent}.

If T and S (both bounded) satisfy Weyl’s theorem, it does not necessarily fol-
low that the orthogonal direct sum T ⊕ S satisfies Weyl’s Theorem (for example
refer [3]). The case is similar for a-Weyl’s Theorem. W.Y. Lee [7] and B.P. Dug-
gal & C.S. Kubrusly [3] gave sufficient conditions on bounded operators T and
S to ensure that T ⊕ S satisfies Weyl’s Theorem. In this section, we generalize
these results to unbounded operators and give sufficient conditions on S ∈ C(K),
when T ∈ Λ(H), to ensure that T ⊕ S satisfies Weyl’s and a-Weyl’s Theorem.

We begin by giving an example where T ∈ Λ(H) and densely defined operator
S ∈ C(K) is such that it satisfies Weyl’s theorem, however their orthogonal direct
sum T ⊕ S does not satisfy Weyl’s theorem.

Example 2.3. Let H = K = `2 and let T be the operator defined as

T (x1, x2, x3, . . . ) = (0, x2, 2x3, 3x4, 4x5, . . . ).

Then T is an unbounded operator with compact resolvent. We have σ(T ) =
σa(T ) = {0, 1, 2, 3, 4 . . . } = Eo(T ). Also, σW (T ) = ∅. Consider S1 ∈ C(K)
defined as S1(x1, x2, x3, . . . ) = (0, x1,

1
2
x2,

1
3
x3,

1
4
x4, . . . ). Then σ(S1) = {0} and

σp(S1) = ∅ = Eo(S1). Also, α(S1) = 0 6= β(S1), so that σW (S1) = {0}. Fur-
ther, let S2 ∈ C(K) be defined as S2(x1, x2, x3, . . . ) = (x1, 2x2, 3x3, 4x4, . . . ).
Then σ(S2) = {1, 2, 3, . . . } and σW (S2) = ∅. Let S = S1 ⊕ S2. Then σ(S) =
{0, 1, 2, 3, . . . }, σW (S) = {0} and Eo(S) = {1, 2, 3, . . . } so that S satisfies Weyl’s
theorem.

Let R = T ⊕ S defined on D(T ) ⊕ D(S) ⊆ H ⊕K = `2 ⊕ `2. Then, σ(R) =
{0, 1, 2, 3, 4, . . . } = Eo(R). However, since α(R) 6= β(R), σW (R) = {0}. Hence,
0 /∈ σ(R) \ σW (R) but 0 ∈ Eo(R), that is, R = T ⊕ S does not satisfy Weyl’s
theorem even though both its summands do so.
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Lemma 2.4. For every T ∈ Λ(H), σW (T ) = ∅.

Proof. Since T ∈ Λ(H), σ(T ) = Eo(T ) and Rλ = (T −λI)−1 is compact for every
λ ∈ ρ(T ).

Suppose λo ∈ σW (T ) ⊆ σ(T ) = Eo(T ). Then λo ∈ iso σ(T ) so that there exists
ε > 0 such that whenever 0 < |λ − λo| < ε, λ ∈ ρ(T ) and hence Rλ is compact.
Consider

(T − λoI)Rλ = (T − λoI)(T − λI)−1

= (T − λI + λI − λoI)(T − λI)−1

= I − (λo − λ)(T − λI)−1

= I −K1 on H, and

(T − λI)−1(T − λoI) = I −K2, on D(T )

where K1 and K2 are compact operators. By [8, Theorem 7.2, p. 157], (T − λoI)
is a Fredholm operator with ind (T − λoI) + ind {(T − λI)−1} = 0. Therefore,
ind(T − λoI) = 0 and λo /∈ σW (T ), which is a contradiction. Hence σW (T ) =
∅. �

Remark 2.5. For T ∈ Λ(H), since σW (T ) = ∅, it follows that ind(T −λI) = 0 for
every λ ∈ C.

Theorem 2.6. Let T ∈ Λ(H). Then, T satisfies:

(i) σ(T ) \ σW (T ) = Eo(T )
(ii) σa(T ) \ σSF−+

(T ) = Ea
o (T ).

Proof. Since T ∈ Λ(H), σ(T ) = σa(T ) = Eo(T ) = Ea
o (T ). Also, for any closed

linear operator, we have that σSF−+
(T ) ⊆ σW (T ). The proof now follows from

the previous Lemma. �

Q. Bai et al [1] proved that if T is a closed upper triangular operator matrix

T =

(
A B
0 D

)
where A and D are densely defined closed operators and B is a closable operator,
then σW (A) ∪ σW (D) = σW (T ) if and only if

σp+(D) ∩ σp+(A∗)∗ ⊆ σW (T ),
σp+(A) ∩ σp+(D∗)∗ ⊆ σW (T )

where σp+(.) = {λ ∈ σp(.) : α(. − λI) > β(. − λI)}. and σp+(.)∗ = {λ ∈ C : λ ∈
σp+(.)}.

In particular, if σp+(D) ∩ σp+(A∗)∗ = ∅ and σp+(A) ∩ σp+(D∗)∗ = ∅, then
σW (A) ∪ σW (D) = σW (T ) holds.

We now extend the result of W.Y. Lee [7] for Weyl’s theorem for direct sums
of bounded linear operators to the case when the summands are not necessarily
bounded.
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Theorem 2.7. If T ∈ Λ(H) and S ∈ C(K) is a densely defined isoloid operator
satisfying Weyl’s theorem, then T ⊕ S satisfies Weyl’s theorem.

Proof. Since T ∈ Λ(H), ind(T − λI) = 0 for every λ ∈ C. Hence, σp+(T ) =
σp+(T ∗)∗ = ∅ and σW (T ) ∪ σW (S) = σW (T ⊕ S).

Clearly, T is isoloid and S is isoloid by hypothesis. Using that σ(T ⊕ S) =
σ(T ) ∪ σ(S) for any two closed operators S and T , we have that

Eo(T ⊕ S) = {Eo(T ) ∩ ρ(S)} ∪ {ρ(T ) ∩ Eo(S)} ∪ {Eo(T ) ∩ Eo(S)}.
By hypothesis, S satisfies Weyl’s theorem and by Theorem 2.6(i), T satisfies
Weyl’s theorem, thus we have

σ(T ⊕ S) \ σW (T ⊕ S)

= {σ(T ) ∪ σ(S)} \ {σW (T ) ∪ σW (S)}
= {(σ(T ) \ σW (T )) ∩ ρ(S)} ∪ {ρ(T ) ∩ (σ(S) \ σW (S))} ∪

{(σ(T ) \ σW (T )) ∩ (σ(S) \ σW (S))}
= {Eo(T ) ∩ ρ(S)} ∪ {ρ(T ) ∩ Eo(S)} ∪ {Eo(T ) ∩ Eo(S)}
= Eo(T ⊕ S).

Hence, T ⊕ S satisfies Weyl’s theorem. �

Remark 2.8. Example 2.3 shows that the condition that S ∈ C(K) is “isoloid”,
in the above theorem, cannot be dropped.

The following corollary is an immediate consequence of the above theorem.

Corollary 2.9. Let T ∈ Λ(H) and suppose S ∈ C(K) is densely defined and
satisfies Weyl’s theorem such that iso σ(S) = ∅. Then, T ⊕ S satisfies Weyl’s
theorem.

The following theorem shows that the converse of the above theorem holds
true.

Theorem 2.10. Let T ∈ Λ(H) and S ∈ C(K) be a densely defined isoloid
operator. If T ⊕ S satisfies Weyl’s theorem, then so does S.

Proof. Since T ∈ Λ(H), σW (T ) ∪ σW (S) = σW (T ⊕S) for every densely defined
operator S ∈ C(K). Also,

Eo(T ⊕ S) = {Eo(T ) ∩ ρ(S)} ∪ {ρ(T ) ∩ Eo(S)} ∪ {Eo(T ) ∩ Eo(S)}
since T and S both are isoloid. We need to show σ(S) \ σW (S) = Eo(S).

Suppose λ ∈ σ(S) \ σW (S). Since σW (T ) = ∅, T − λI and S − λI both are
Weyl and thus, (T ⊕ S)− λ(I ⊕ I) is Weyl. Now,

λ ∈ σ(T ⊕ S) \ σW (T ⊕ S)

= Eo(T ⊕ S)

= {Eo(T ) ∩ ρ(S)} ∪ {ρ(T ) ∩ Eo(S)} ∪ {Eo(T ) ∩ Eo(S)}
⊆ {Eo(T ) ∩ ρ(S)} ∪ Eo(S).

As λ ∈ σ(S), we have λ ∈ Eo(S).
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Conversely, suppose λ ∈ Eo(S). Then λ ∈ σp(T ⊕S) and α(T ⊕S−λ(I⊕I)) =
α(T − λI) + α(S − λI) < ∞. We shall show that λ ∈ iso σ(T ⊕ S). We know
that,

iso σ(T ⊕ S) = [iso σ(T ) ∪ iso σ(S)] \ [{iso σ(T ) ∩ acc σ(S)}
∪ {iso σ(S) ∩ acc σ(T )}].

Since λ is isolated in σ(S) and acc σ(T ) = ∅, we have that λ ∈ iso σ(T ⊕ S).
Therefore, λ ∈ Eo(T ⊕ S) = σ(T ⊕ S) \ σW (T ⊕ S). Thus, ind(S − λI) =
ind(T −λI)+ind(S−λI) = ind(T ⊕S−λ(I⊕I)) = 0 and λ ∈ σ(S)\σW (S). �

Theorem 2.11. Let T ∈ Λ(H) and S ∈ C(K) be a densely defined a-isoloid
operator. Then S satisfies a-Weyl’s theorem if and only if T ⊕ S satisfies a-
Weyl’s theorem.

Proof. By theorem 2.6(ii), σSF−+
(T ) = ∅ and T satisfies a-Weyl’s theorem. Then

σSF−+
(T ⊕ S) ⊆ σSF−+

(T ) ∪ σSF−+
(S) = σSF−+

(S).

If λ /∈ σSF−+
(T⊕S), then α(T⊕S−λ(I⊕I)) < ∞, R(T⊕S−λ(I⊕I)) is closed

and ind(T⊕S−λ(I⊕I)) 6 0. Thus we get, α(S−λI) 6 α(T−λI)+α(S−λI) =
α(T ⊕ S − λ(I ⊕ I)) < ∞, R(S − λI) is closed and ind(S − λI) = ind(T − λI) +
ind(S − λI) = ind(T ⊕ S − λ(I ⊕ I)) 6 0. Therefore, λ /∈ σSF−+

(S) so that

σSF−+
(S) ⊆ σSF−+

(T ⊕ S). Hence, σSF−+
(T ⊕ S) = σSF−+

(S) = σSF−+
(T ) ∪ σSF−+

(S).

Suppose S satisfies a-Weyl’s theorem. Then, since T and S both satisfy a-
Weyl’s theorem, we have

σa(T ⊕ S) \ σSF−+
(T ⊕ S)

= {σa(T ) ∪ σa(S)} \ {σSF−+
(T ) ∪ σSF−+

(S)}
= {Ea

o (T ) ∩ ρa(S)} ∪ {ρa(T ) ∩ Ea
o (S)} ∪ {Ea

o (T ) ∩ Ea
o (S)}

= Ea
o (T ⊕ S) (∵ S and T are a-isoloid).

Hence, T ⊕ S satisfies a-Weyl’s theorem.
Suppose now that T⊕S satisfies a-Weyl’s theorem and let λ ∈ σa(S)\σSF−+

(S).

Then by [1, Lemma 2.2(ii)], we have

λ ∈ σa(T ⊕ S) \ σSF−+
(T ⊕ S) = Ea

o (T ⊕ S)

= {Ea
o (T ) ∩ ρa(S)} ∪ {ρa(T ) ∩ Ea

o (S)} ∪ {Ea
o (T ) ∩ Ea

o (S)}
⊆ {Ea

o (T ) ∩ ρa(S)} ∪ Ea
o (S).

Since λ ∈ σa(S), we have λ ∈ Ea
o (S). Conversely, suppose λ ∈ Ea

o (S). Using
similar argument as in Theorem 2.10, we have λ ∈ σa(T⊕S), α(T⊕S−λ(I⊕I)) <
∞ and λ ∈ iso σa(T⊕S). Thus, λ ∈ Ea

o (T⊕S). Then λ /∈ σSF−+
(T⊕S) = σSF−+

(S).

Hence, S satisfies a-Weyl’s theorem. �

As an immediate consequence of the above theorem, we have the following
corollary:

Corollary 2.12. Let T ∈ Λ(H) and S ∈ C(K) be a densely defined operator with
iso σa(S) = ∅. Then S satisfies a-Weyl’s theorem if and only if T ⊕ S satisfies
a-Weyl’s theorem.
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3. Browder’s Theorem for Direct sums of operators

In this section, we study the Browder’s theorem for direct sums of unbounded
operators. It is shown that if T ∈ Λ(H) and densely defined operator S ∈ C(K)
satisfies Browder’s Theorem then T ⊕ S satisfies Browder’s Theorem. The con-
verse also holds true. Another sufficient condition for T ⊕ S to satisfy the Brow-
der’s theorem, when T ∈ Λ(H), is that S has SVEP.

The following theorem proves the Browder and a-Browder’s Theorem for oper-
ators with compact resolvent.

Theorem 3.1. If T ∈ Λ(H), then T satisfies:

(i) σ(T ) \ σW (T ) = πo(T )
(ii) σSF−+

(T ) = σub(T ).

Proof. (i) Since σW (T ) = ∅, T − λI is Weyl for every λ ∈ σ(T ) so that
α(T − λI) = β(T − λI) < ∞. Also since every λ ∈ σ(T ) = Eo(T ) is
isolated, we have σa(T ) does not cluster at λ. By Theorem 2.2, we have
p(T−λI) < ∞, so that by [9, Theorem 4.5(c)], q(T−λI) = p(T−λI) < ∞.
Thus, λ ∈ πo(T ) and therefore σ(T ) ⊆ πo(T ). Since the reverse inclusion
holds for all operators, we have σ(T ) \ σW (T ) = σ(T ) = πo(T ). Hence, T
satisfies Browder’s theorem.

(ii) Suppose λ ∈ σa(T ). By Lemma 2.4, σW (T ) = ∅ so that T−λI is Fredholm.
Also every λ ∈ σ(T ) is isolated, so that by Theorem 2.2, p(T − λI) < ∞.
Thus, λ ∈ σa(T ) \ σub(T ) and σub(T ) ⊆ σSF−+

(T ). Since the reverse

inclusion holds for all operators, we get σSF−+
(T ) = σub(T ). Hence, T

satisfies a-Browder’s theorem.
�

Remark 3.2. In the proof of part (i) above we have implicitly proved that σb(T ) =
∅ when T ∈ Λ(H).

For any closed densely defined linear operator T with ρ(T ) 6= ∅, σ(T )\σb(T ) =
πo(T ) (see [6], [9]). Also, in [1] it is proved that if T is a closed upper triangular
operator matrix

T =

(
A B
0 D

)
where A and D are densely defined closed operators and B is a closable operator,
then σb(A) ∪ σb(D) = σb(T ) ∪ σasc(D) where σasc(.) = {λ ∈ C : p(.− λI) = ∞}.

We shall use these results to give some necessary conditions on S, when T ∈
Λ(H), which ensure that T ⊕ S satisfies Browder’s Theorem.

Theorem 3.3. Suppose T ∈ Λ(H) and S ∈ C(K) has dense domain and satisfies
Browder’s theorem. Then, T ⊕ S satisfies Browder’s theorem.

Proof. If T ∈ Λ(H), we have shown that σW (T ⊕ S) = σW (T )∪ σW (S). Further,
since σb(T ) = ∅, it is easy to prove that σasc(S) ⊆ σb(T ⊕S) so that σb(T ⊕S) =
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σb(T ) ∪ σb(S). Therefore, we have

πo(T ⊕ S) = σ(T ⊕ S) \ σb(T ⊕ S)

= {σ(T ) ∪ σ(S)} \ {σb(T ) ∪ σb(S)}
= {(σ(T ) \ σb(T )) ∩ ρ(S)} ∪ {ρ(T ) ∩ (σ(S) \ σb(S))} ∪

{(σ(T ) \ σb(T )) ∩ (σ(S) \ σb(S))}
= {πo(T ) ∩ ρ(S)} ∪ {ρ(T ) ∩ πo(S)} ∪ {πo(T ) ∩ πo(S)}
= {(σ(T ) \ σW (T )) ∩ ρ(S)} ∪ {ρ(T ) ∩ (σ(S) \ σW (S))} ∪

{(σ(T ) \ σW (T )) ∩ (σ(S) \ σW (S))}
= {σ(T ) ∪ σ(S)} \ {σW (T ) ∪ σW (S)}
= σ(T ⊕ S) \ σW (T ⊕ S)

where the third last equality follows from the fact that T satisfies Browder’s
theorem by Theorem 3.1(i) and S satisfies Browder’s theorem by hypothesis.

Hence, T ⊕ S satisfies Browder’s theorem. �

Since every closed densely defined operator with SVEP satisfies Browder’s the-
orem, the following corollary is an immediate consequence of the above theorem:

Corollary 3.4. Suppose T ∈ Λ(H) and S ∈ C(K) with dense domain has SVEP.
Then, T ⊕ S satisfies Browder’s theorem.

We shall now prove the converse of Theorem 3.3:

Theorem 3.5. Suppose T ∈ Λ(H) and S ∈ C(K) has dense domain. Then, S
satisfies Browder’s theorem if T ⊕ S satisfies Browder’s theorem.

Proof. Since, σ(S) \ σb(S) = πo(S), we need to show that σb(S) = σW (S). It is
enough to show σb(S) ⊆ σW (S) since the reverse inclusion holds true for every
operator. Suppose λ /∈ σW (S), then S − λI is Weyl and hence T ⊕ S is Weyl.
Now T ⊕ S satisfies Browder’s theorem, so λ ∈ πo(T ⊕ S). Then p(S − λI) < ∞
and q(S − λI) < ∞, hence λ /∈ σb(S). �

The following example illustrates the results proved in this article.

Example 3.6. Let H = K = `2 and let T be the operator defined as

T (x1, x2, x3, . . . ) = (x1, 2x2, 3x3, 4x4, 5x5, . . . ).

Then T is an unbounded operator with compact resolvent. We have σ(T ) =
σa(T ) = {1, 2, 3, 4 . . . } = Eo(T ) = Ea

o (T ) = πo(T ) = πa
o(T ). Also, σW (T ) =

σSF−+
(T ) = σub(T ) = ∅. Consider S ∈ C(K) to be defined as

S(x1, x2, x3, . . . ) = (0, x1, 2x2, 3x3, . . . ).

Then σ(S) = C, σa(S) = ∅ and σp(S) = ∅ = Eo(S) = Ea
o (S) = πo(S). For any

arbitrary λ ∈ C, α(S − λI) = 0 6= β(S − λI) and R(S − λI) is closed. Thus
σW (S) = σb(S) = C and σSF−+

(S) = ∅. Hence, T and S satisfy Weyl’s theorem,

a-Weyl’s theorem and Browder’s theorem. Also, S is both isoloid and a-isoloid.
Now let R = T ⊕ S on the Hilbert space `2 ⊕ `2. Then, σ(R) = C, σa(R) =

{1, 2, 3, 4, . . . } = Ea
o (R) and since iso σ(R) = ∅, Eo(R) = πo(R) = ∅. Also,
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σW (R) = σb(R) = C and σSF−+
(R) = ∅. Hence, R satisfies Weyl’s theorem,

a-Weyl’s theorem and Browder’s theorem.
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