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ON ORTHOGONAL DECOMPOSITION OF A SOBOLEV SPACE

DEJENIE A. LAKEW

Communicated by P. Aiena

Abstract. The theme of this short article is to investigate an orthogonal
decomposition of the Sobolev space W 1,2 (Ω) as

W 1,2 (Ω) = A2,2 (Ω)⊕D2
(
W 3,2

0 (Ω)
)

and look at some of the properties of the inner product therein and the dis-
tance defined by the inner product. We also determine the dimension of the

orthogonal difference space W 1,2 (Ω) 	
(
W 1,2

0 (Ω)
)⊥

and show the expansion
of Sobolev spaces as their regularity increases.

1. Introduction

This is an extension work of [1] and [2] in which the space under consideration
is a Sobolev space of regularity exponent one. The change in regularity, from
the Lebesgue space of regularity zero to Sobolev spaces of higher regularities,
causes increase in length or norm, expansion of the space in terms of distance or
separation between distinct elements and change in orthogonality.

In addition to the regular properties we develop in the decomposition process,
we obtain some geometric properties of distance and apertures between non zero
elements.

First, let us adopt the following notations that are used in this short article.
Ω := [0, 1],
⊕ := Direct sum for sets,
	 := Direct difference of sets,
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] := Direct sum of elements from orthogonal sets,
Dα := dα

dxα for α = 0, 1, 2,
C∞ (Ω) =

⋃∞
n=0 Cn (Ω),

C∞
0 (Ω) = {f ∈ C∞ (Ω) : suppf ⊆ K ⊆ Ω}.

Definition 1.1. We say that a function h : Ω −→ R is a weak derivative of g of
order α if

∫
Ω

h(x)φ(x)dx = (−1)α ∫
Ω

g(x)Dαφ (x) dx for all φ ∈ C∞
0 (Ω).

Clearly functions which are differentiable in the regular sense of a certain order
are weakly differentiable of that order but the converse is not true in general.

Example 1.2. Let the function be given by f(x) =

{
x− 1

2
1
2
≤ x ≤ 1

0 0 ≤ x ≤ 1
2

. Then

f ∈ C0 (Ω) \C1(Ω), i.e. f is continuous but not differentiable in the regular sense

but weakly differentiable with weak derivative Df = g =

{
1 1

2
< x ≤ 1

0 0 ≤ x < 1
2

.

Indeed,∫
Ω

fφ′dx =

∫
Ω

(
x− 1

2

)
φ′dx = −

∫ (
x− 1

2

)′
φdx = −

∫ 1

1
2

φdx = −
∫ 1

0

Dfφdx.

Definition 1.3. The Sobolev space W 1,2 (Ω) is defined as {f ∈ L2 (Ω) : Df ∈
L2(Ω)} and W 1,2

0 (Ω) =
{
f ∈ W 1,2 (Ω) : f|∂Ω = 0

}
, where Df is in the sense

of weak distributional derivative.

Remark 1.4. W 1,2 (Ω) ⊆ L2 (Ω) but the converse is not true. For example, the
function f (x) =

√
x ∈ L2 (Ω) but f /∈ W 1,2 (Ω), since f ′ (x) has a singularity at

x = 0, where the improper integral
∫

Ω
| f ′ (x) |2 dx diverges. That is f ′ /∈ L2 (Ω)

Question: Is there a non trivial function f ∈ W 1,2 (Ω)	W 1,2
0 (Ω) and how big

is W 1,2 (Ω)	W 1,2
0 (Ω)?

Embedding. Clearly the Sobolev space W 1,2 (Ω) is not a collection of wildly
behaved generalized functions but some how well behaved functions that are more
than continuous.

In fact, the space is embedded in the Hölder space Cγ for 0 ≤ γ ≤ 1
2
, in

particularly W 1,2 (Ω) ↪→ C
1
2 (Ω). Recall that the Hölder space C

1
2 (Ω) is the

space of functions f with property ‖ f (x) − f (y) ‖≤ λf ‖ x − y ‖ 1
2 for all

x, y ∈ Ω for some non negative constant λf that depends on f .

2. Inner Product and Orthogonality

The Sobolev space W 1,2 (Ω) is an inner product space under the inner product
defined as

〈f, g〉W 1,2(Ω) :=

∫
Ω

fg + f ′g′dx (2.1)

and from this inner product a norm is defined as

‖ f ‖W 1,2(Ω)=
(
〈f, f〉W 1,2(Ω)

) 1
2
. (2.2)

Clearly one can verify the following
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(1) ‖ • ‖W 1,2(Ω)≥‖ • ‖L2(Ω),
(2) 〈f, g〉W 1,2(Ω) = 〈f, g〉L2(Ω) + 〈f ′, g′〉L2(Ω).

Definition 2.1. Two functions f and g of W 1,2 (Ω) are said to be orthogonal with
respect to the inner product (2.1) defined above if and only if 〈f, g〉W 1,2(Ω) = 0.

Example 2.2. (1) 〈sin x, sin x〉
W1,2(Ω)

=
(∫

Ω
sin2 x + cos2 xdx

) 1
2 = 1. Hence

‖ sin x ‖W 1,2(Ω)= 1.
(2) 〈sin x, cos x〉

W1,2(Ω)
= 0 and hence sin x and cos x are orthogonal in W 1,2 (Ω)

but not in L2 (Ω).
(3)

〈
eαx, eβx

〉
W1,2(Ω)

= 0 for αβ = −1 but not in 〈·, ·〉L2(Ω). Hence for αβ = −1,

eαx and eβx are orthogonal in W 1,2 (Ω) not in L2 (Ω). In particular, for
α = 1, β = −1, 〈ex, e−x〉

W1,2(Ω)
= 0.

Proposition 2.3. For λ > 0, f ∈ W 1,2 (Ω), it holds that

〈f, λf〉
W1,2(Ω)

= λ ‖ f ‖2
W 1,2(Ω) .

Proof. 〈f, λf〉
W1,2(Ω)

=
∫

Ω
λf 2 + λ (f ′)2 dx = λ

(∫
Ω

f 2 + (f ′)2) dx = λ ‖ f ‖2
W 1,2(Ω).

�

Proposition 2.4. Norm is longer in W 1,2 (Ω) than in L2 (Ω), i.e.

(1) For f ∈ W 1,2 (Ω) it holds that

‖ f ‖W 1,2(Ω)≥‖ f ‖L2(Ω) .

(2) For f ∈ W 1,2 (Ω) ∩ C1 (Ω) with f ′ = αf for some α 6= 0 it holds that

‖ f ‖W 1,2(Ω)=
√

1 + α2 ‖ f ‖L2(Ω) .

Proof. Let f ∈ W 1,2 (Ω). Then

(1) ‖ f ‖W 1,2(Ω)=
(∫

Ω
f 2 + f ′2dx

) 1
2 ≥

(∫
Ω

f 2dx
) 1

2 = ‖ f ‖L2(Ω).
(2) For f ∈ W 1,2 (Ω) ∩ C1 (Ω) with f ′ = αf for some α 6= 0, we have

‖ f ‖W 1,2(Ω) =

(∫
Ω

f 2 + f ′2dx

) 1
2

=

(∫
Ω

f 2 + (αf)2dx

) 1
2

=

(∫
Ω

f 2 + α2f 2dx

) 1
2

=

(∫
Ω

(1 + α2)f 2dx

) 1
2

=
√

1 + α2 ‖ f ‖L2(Ω) .

�

Note that (1) follows from (2) since
√

1 + α2 ≥ 1.
An important question one can pause: which elements f ∈ W 1,2 (Ω) maintain

their norms of L2 (Ω)? The answer lies in the next proposition.

Proposition 2.5. A function f ∈ W 1,2 (Ω) which is a.e. a constant over Ω
maintains its norm of L2 (Ω).
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Proof. Let f ∈ W 1,2 (Ω) which is a.e. a constant. That is f ′ = 0 a.e. over Ω.
Then

‖ f ‖W 1,2(Ω)=
√
〈f, f〉W 1,2(Ω) =

√∫
Ω

(f 2 + f ′2) dx and√∫
Ω

(f 2 + f ′2) dx =‖ f ‖L2(Ω) only when
∫

Ω
f ′2dx = 0. That is, f ′ = 0 a.e.

over Ω means f is a constant a.e. �

Example 2.6. (1) ‖ e±x ‖W 1,2(Ω)=
√

2 ‖ e±x ‖L2(Ω).
(2) ‖ x ‖W 1,2(Ω)= 2 ‖ x ‖L2(Ω).

In the following proposition, we show that if a function f ∈ C1 (Ω) and its
derivative f ′ have a vanishing property over the boundary of Ω, then always f
and its derivative f ′ are orthogonal over Ω.

Proposition 2.7. For f ∈ C1 (Ω) with boundary conditions f|∂Ω = 0, f ′|∂Ω = 0,

the functions f and f ′ are orthogonal in W 1,2 (Ω), i.e. 〈f, f ′〉W 1,2(Ω) = 0.

Proof. Let f ∈ C1 (Ω). Then 〈f, f ′〉
W1,2(Ω)

=
∫

Ω
ff ′ + f ′f ′′dx but ff ′ + f ′f ′′ =

1
2

(
(f 2)

′
+
(
(f ′)2)′) = 1

2

(
f 2 + (f ′)2)′.

Thus
∫

Ω
ff ′ + f ′f ′′dx = 1

2

∫
Ω

(
f 2 + (f ′)2)′ dx = 1

2

(
f 2 + (f ′)2) |10 = 0. �

Remark 2.8. The converse of Proposition 2.7 does not hold true, since sin x and
cos x are W 1,2 (Ω)-orthogonal but sin x|∂Ω 6= 0 and cos x|∂Ω 6= 0.

Example 2.9. For α > 1, β > 1 let f(x) = xα (x− 1)β. Then from the above
proposition we have 〈f, f ′〉W 1,2(Ω) = 0.

Proposition 2.10. Let f, g ∈ W 1,2 (Ω).

(1) 〈f, g〉W 1,2(Ω) = 0 =⇒ 〈f, g〉L2(Ω) = −〈f ′, g′〉L2(Ω).

(2) 〈f, g〉L2(Ω) = 0 =⇒ 〈f, g〉W 1,2(Ω) = 〈f ′, g′〉L2(Ω).

(3) When pair wise f and g and f ′and g′ are L2 (Ω)-orthogonal, then f and
g are W 1,2 (Ω)-orthogonal.

Proposition 2.11. Let f be a function in W 1,2 (Ω) with non zero norm and α

be a non zero constant. Then cos θ〈f, αf) =

{
1, for α > 0
−1, for α < 0

.

Proof. cos θ〈(f, αf)W 1,2(Ω) =
〈f,αf〉W1,2(Ω)

|α|‖f‖2
W1,2(Ω)

=
α‖f‖2

W1,2(Ω)

|α|‖f‖2
W1,2(Ω)

= α
|α| =

{
1, for α > 0
−1, for α < 0

.

Thus α > 0 =⇒ θ = 0 and α < 0 =⇒ θ = π. �

Definition 2.12. The distance ρ
W1,2(Ω)

between two elements f and g of W 1,2 (Ω)

is given by ρ
W1,2(Ω)

(f, g) = ‖ f − g ‖W 1,2(Ω).

Proposition 2.13. For λ (6= 0) ∈ R,

ρ
W1,2(Ω)

(f, λf) =| 1− λ |‖ f ‖W 1,2(Ω) .
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Proof.

ρ
W1,2(Ω)

(f, λf) =

(∫
Ω

(f − λf)2 + (f ′ − λf ′)
2
dx

) 1
2

=

(∫
Ω

f 2 (1− λ)2 + f ′2 (1− λ)2 dx

) 1
2

=
(
(1− λ)2) 1

2

(∫
Ω

f 2 + f ′2dx

) 1
2

= | 1− λ |‖ f ‖W 1,2(Ω) .

�

Corollary 2.14. For λ (6= 0) ∈ R, only when λ = 2 that ρ
W1,2(Ω)

(f, λf) =

ρ
W1,2(Ω)

(f, 2f) =‖ f ‖W 1,2(Ω).

Corollary 2.15. For λ < 0 and λ > 2, ρ
W1,2(Ω)

(f, λf) >‖ f ‖W 1,2(Ω) and for

0 < λ < 2 it holds that ρ
W1,2(Ω)

(f, λf) <‖ f ‖W 1,2(Ω).

We also have

(1) ρ
W1,2(Ω)

(cos x, sin x) =
√

2.

(2) ρ
W1,2(Ω)

(ex, e−x) =
√

e4−1
e

.

From the assertion 2 above and from the following two propositions, we see a
Sobolev space is expanding as its regularity increases.

In the next proposition we see that non zero elements are going further apart
in W 1,2 (Ω) than they were in the Hilbert space L2 (Ω)

Proposition 2.16. For f, g ∈ W 1,2 (Ω), it holds that ρ
L2(Ω)

(f, g) ≤ ρ
W1,2(Ω)

(f, g).

Thus

(1) ρ
W1,2(Ω)

(cos x, sin x) =
√

2 ≥
√

1− sin2 1 = ρ
L2(Ω)

(cos x, sin x).

(2) ρ
W1,2(Ω)

(ex, e−x) =
√

e4−1
e

≥
√

e4−2e2−1
e
√

2
= ρL2(Ω) (ex, e−x).

Proposition 2.17 (Generalizing Proposition 2.16). The Sobolev space is expand-
ing with regularity, i.e.,

ρ
W (k−1),2(Ω)

(f, g) ≤ ρ
Wk,2(Ω)

(f, g)

for k ∈ Z+, f, g ∈ W k,2 (Ω).

Proof.

ρ
Wk,2(Ω)

(f, g) =

(
k∑

j=0

(
f (j) − g(j)

)2) 1
2

≥

(
k−1∑
j=0

(
f (j) − g(j)

)2) 1
2

= ρ
W (k−1),2(Ω)

(f, g) ,

where f (j) = dj

dxj (f). �
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3. Orthogonal Decomposition

We start this section with the following result.

Proposition 3.1 (Orthogonal Decomposition).

W 1,2 (Ω) = A2,2 (Ω)⊕D2
(
W 3,2

0 (Ω)
)
, (3.1)

where A2,2 (Ω) = ker D2 (Ω) ∩W 1,2 (Ω) is the Bergman space in one dimension.

Proof. Let f ∈ W 1,2 (Ω) and let η = D−4
0 (D2f). Define g = f − D2η. Then

clearly g ∈ ker D2 (Ω) and η ∈ W 3,2
0 (Ω). Therefore f = g ]D2η. �

From the orthogonal decomposition 3.1, there are canonical orthogonal projec-
tions P and Q with P : W 1,2 (Ω) −→ A2,2 (Ω) and Q : W 1,2 (Ω) −→ D2

(
W 3,2

0 (Ω)
)

such that P + Q = I, where I is the identity operator.

Corollary 3.2. PQ = QP = 0 and P 2 = P and Q2 = Q

Proof. Clearly PQ = 0 = QP . Then the other two follow from this and the fact
that P + Q = I �

Example 3.3. We present few but fundamental decompositions of elementary
functions

(1) For f(x) = x, P (f) = f and Q(f) = 0 so that f = f ] 0.
(2) For f (x) = x2, P (f) = x− 1

6
and Q(f) = x2 − x + 1

6
. So that

x2 =

(
x− 1

6

)
]
(

x2 − x +
1

6

)
.

(3) For the monomial function f(x) = xn, P (f) = 6n
n2+3n+2

x − 2n−2
n2+3n+2

and

Q(f) = xn − 6n
n2+3n+2

x + 2n−2
n2+3n+2

. Hence

xn =

(
6n

n2 + 3n + 2
x− 2n− 2

n2 + 3n + 2

)
]
(

xn − 6n

n2 + 3n + 2
x +

2n− 2

n2 + 3n + 2

)
.

(4) For f(x) = cos x, P (f) = (−12 + 6 sin 1 + 12 cos 1) x + 6− 6 cos 1− 2 sin 1
and Q(f) = (cos x + (12− 12 cos 1− 6 sin 1) x − 6 + 6 cos 1 + 2 sin 1. So
that f = P (f) ]Q(f).

(5) The last example is the natural exponential function f(x) = ex, and its
orthogonal decomposition is given as

ex = (−6ex + 4e)︸ ︷︷ ︸
P (f)

] (ex + 6ex− 4e)︸ ︷︷ ︸
Q(f)

.

Indeed, let η = D−4
0 (D2f) = D−4

0 (ex) up on solving the differential equation
with vanishing boundary conditions inversely, we have η (x) = ex + ex3 − 2ex2.
Consider g := f − D2η = −6ex + 4e so that f = g ] D2η. Thus ex =
(−6ex + 4e) ] (ex + 6ex− 4e).
Up on calculations, we see P 2 (ex) = P (−6ex + 4e) = −6ex+4e and (Q ◦ P ) (ex) =
Q (−6ex + 4e) = 0 justifying the fact that P 2 = P and Q ◦ P = 0.
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Proposition 3.4. For f ∈ W 1,2 (Ω), it holds that

〈Pf, Qf〉L2(Ω) = −
〈
(Pf)′ , (Qf)′

〉
L2(Ω)

.

Proof. This follows from the fact that Pf and Qf are orthogonal in the W 1,2 (Ω).
�

Example 3.5. (1)
〈
x− 1

6
, x2 − x + 1

6

〉
L2(Ω)

= −〈1, 2x− 1〉L2(Ω)

(2) For αβ = −1,
〈
eαx, eβx

〉
L2(Ω)

= −
〈
αeαx, βeβx

〉
L2(Ω)

The space W−1,2 (Ω) of negative regularity exponent is the conjugate space of
the Sobolev space W 1,2 (Ω), i.e. W−1,2 (Ω) = (W 1,2 (Ω))

∗
, where (W 1,2 (Ω))

∗
:=

{τ : W 1,2 (Ω) −→ R, τ is a bounded linear functional}.
We have W 1,2

0 (Ω)⊥ =
{
f ∈ W 1,2 (Ω) : 〈f, g〉 = 0 for all g ∈ W 1,2

0 (Ω)
}

and from
linear algebra of vector spaces we have the direct sum

W 1,2 (Ω) = W 1,2
0 (Ω)⊕W 1,2

0 (Ω)⊥

and therefore we have an interesting relation W 1,2 (Ω)	W 1,2
0 (Ω) = W 1,2

0 (Ω)⊥.

Theorem 3.6. The direct difference or simply W 1,2
0 (Ω)⊥ is a bi-codimensional

subspace of W 1,2 (Ω).

Proof. Indeed W 1,2
0 (Ω)⊥ =

{
f ∈ W 1,2 (Ω) : 〈f, g〉 = 0 for all g ∈ W 1,2

0 (Ω)
}
, where

〈f, g〉 =
∫

Ω
(fg + f ′g′) dx = 0. Applying integration by parts with no boundary

integrals as g ∈ W 1,2
0 (Ω) , we have∫

Ω

(
fg − f ′

′
g
)
dx =

∫
Ω

(
f − f ′

′)
gdx = 0, ∀g ∈ W 1,2

0 (Ω) =⇒ f − f ′′ = 0
Solving the second order ordinary differential equation f ′′ − f = 0 we have

fc = αex + βe−x ∈ W 1,2
0 (Ω)⊥ for α, β arbitrary real constants.

Therefore we have
(
W 1,2

0 (Ω)
)⊥

= span〈ex, e−x〉. From the fact that W 1,2 (Ω) =

W 1,2
0 (Ω)⊕

(
W 1,2

0 (Ω)
)⊥

we have

W 1,2 (Ω)	W 1,2
0 (Ω) =

(
W 1,2

0 (Ω)
)⊥

= span〈ex, e−x〉.

Hence W 1,2 (Ω) 	 W 1,2
0 (Ω) is a skinny two dimensional subspace. This is inter-

esting by itself, showing the fact that when we remove all elements that vanish
on the boundary, the space what is left is a two dimensional subspace. �

From the direct sum W 1,2 (Ω) = W 1,2
0 (Ω) ⊕

(
W 1,2

0 (Ω)
)⊥

we have orthogonal

projections
∼
P : W 1,2 (Ω) −→ W 1,2

0 (Ω) and
∼
Q : W 1,2 (Ω) = W 1,2

0 (Ω)⊥ such

that
∼
P (f) = f − (αex + βe−x) ,

∼
Q(f) = αex + βe−x for all f ∈ W 1,2 (Ω), where

α = f(1)e−f(0)
e2−1

and β = f(0)e2−f(1)e
e2−1

.

Proposition 3.7.
∼
P (f)|∂Ω = 0 and

∼
Qf|∂Ω = f|∂Ω.

Proof. Clearly
∼
P (f) (0) = 0 and

∼
P (f) (1) = 0

∼
Q(f)(0) = α + β = f(1)e−f(0)

e2−1
+ f(0)e2−f(1)e

e2−1
= f(0)(e2−1)

e2−1
= f(0) and

∼
Q(f)(1) = αe + βe−1 = f(1)e2−f(0)e

e2−1
+ f(0)e−f(1)

e2−1
=

f(1)(e2−1)
e2−1

= f(1). �
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Now from W 1,2 (Ω) = W 1,2
0 (Ω)⊕

(
W 1,2

0 (Ω)
)⊥

we have

W 1,2 (Ω)∗ = W 1,2
0 (Ω)∗ ⊕

(
W 1,2

0 (Ω)
)⊥∗

.

That is
W−1,2 (Ω) = W−1,2

0 (Ω)∗ ⊕
(
W 1,2

0 (Ω)
)⊥∗

.

Looking W−1,2
0 (Ω)∗ =

{
ζ : W 1,2

0 (Ω) −→ R, bounded linear functional
}
and from

the Riesz representation theorem there exists f ∈ W 1,2
0 (Ω) such that γ (g) =

〈γ, g〉 =
∫

Ω
gf + g′f ′dx for all g ∈ W 1,2

0 (Ω).
Then we have the representation of γ to be γ = f − f ′′, where f, f ′ ∈ L2 (Ω).
If γ 6= 0, then the function f that is used to represent γ is a solution of the

inhomogeneous differential equation γ = f − f ′′.
Special interest : The function that represents the zero linear functional γ = 0 is

a solution of the homogeneous ordinary differential equation given by f ′′−f = 0.
Up on solving the latter second order ordinary differential equation, we get the

function that represents the zero linear functional to be

fc = αex + βe−x (3.2)

with α, β some real constants.

Proposition 3.8 (Representation of a linear functional). Let ζ : W 1,2
0 (Ω) −→ R

be a bounded linear functional, then by the Riesz representation theorem, ∃f ∈
W 1,2

0 (Ω) such that ζ = f0 − d
dx

f1 with f0 = f, f1 = d
dx

f = f ′, where f,
f1 ∈ L2 (Ω).

Proof. For ζ ∈ W 1,2
0 (Ω)∗, ∃f ∈ W 1,2

0 (Ω) : ζ (g) = 〈ζ, g〉 =
∫

Ω
(fg + f ′g′) dx, ∀g ∈

W 1,2
0 (Ω). But∫

Ω

(fg + f ′g′) dx =

∫
Ω

(
fg − f

′′g
)

dx =

∫
Ω

(f − f ′′) gdx = 〈f − f ′′, g〉 .

Therefore ζ = f0− d
dx

f1 with f0 = f, f1 = d
dx

f = f ′, where f0, f1 ∈ L2 (Ω). �

Definition 3.9. Let f, g : Ω −→ R with ‖ g ‖W 1,2(Ω) 6= 0. Then we define the

projection of f over g by Projg (f)W 1,2(Ω) :=
〈f,g〉W1,2(Ω)

‖g‖2
W1,2(Ω)

g.

The last result reads as follows. Its proof is easy and so we omit it.

Proposition 3.10. For f, g, h : Ω −→ R with ‖ h ‖W 1,2(Ω) 6= 0 and α ∈ R, the
following statements hold:

(1) Projh (f + g)W 1,2(Ω) = Projh (f)W 1,2(Ω) + Projh (g)W 1,2(Ω).

(2) Projh (αf)W 1,2(Ω) = αProjh (f)W 1,2(Ω).

(3) If the two functions are orthogonal, then Projg (f)W 1,2(Ω) = 0.

(4) Projf (f)W 1,2(Ω) = f .
(5) Proj (βg) (f)W 1,2(Ω) = Projg (f)W 1,2(Ω).

(6) Proj(βg) (αf)W 1,2(Ω) = αProjg (f)W 1,2(Ω).

(7) Proj(x2)e
x
W 1,2(Ω) = 15e

23
x2.
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(8) Proj (e−x) ex
W 1,2(Ω) = 0.

(9) Proj (cos x) (sin x)W 1,2(Ω) = 0.

(10) Proj (eβx) eαx
W 1,2(Ω) = γeβx for α, β 6= 0 and γ = (2α+2β)eα+β−2αβ2−2β

(α+β)(β2+1)(e2β−1)
.
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