

Adv. Oper. Theory 2 (2017), no. 4, 468–474 http://doi.org/10.22034/aot.1703-1147 ISSN: 2538-225X (electronic) http://aot-math.org

ON SKEW [m, C]-SYMMETRIC OPERATORS

MUNEO CHŌ, 1 BILJANA NAČEVSKA, 2* and JUN TOMIYAMA 3

Dedicated to the memory of Professor Takayuki Furuta with deep sorrow

Communicated by D. S. Djordjević

ABSTRACT. In this paper, first we characterize the spectra of skew [m, C]-symmetric operators and we also prove that if operators T and S are C-doubly commuting operators, T is a skew [m, C]-symmetric operator and Q is an n-nilpotent operator, then T + Q is a skew [m + 2n - 2, C]-symmetric operator. Finally, we show that if T is skew [m, C]-symmetric and S is [n, D]-symmetric, then $T \otimes S$ is skew $[m + n - 1, C \otimes D]$ -symmetric.

1. INTRODUCTION AND PRELIMINARIES

Let \mathcal{H} be a complex Hilbert space with the inner product \langle , \rangle and $B(\mathcal{H})$ be the set of all bounded linear operators on \mathcal{H} . J. Agler and M. Stankus studied *m*-isometric operators ([1]). L.W. Helton introduced *m*-symmetric operators for the study of Jordan operators ([6]). For an operator $T \in B(\mathcal{H})$, the operator $\alpha_m(T)$ is defined by

$$\alpha_m(T) := \sum_{j=0}^m (-1)^j \binom{m}{j} T^{*m-j} T^j \quad (m \in \mathbb{N}),$$

where \mathbb{N} is the set of all natural numbers. In particular, if T is normal, then $\alpha_m(T) = (T^* - T)^m$. An operator $T \in B(\mathcal{H})$ is said to be *m*-symmetric if $\alpha_m(T) = 0$. Hence it is clear that if T is normal and *m*-symmetric, then T

Copyright 2016 by the Tusi Mathematical Research Group.

Date: Received: Mar. 31, 2017; Accepted: Jul. 8, 2017.

^{*}Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 47A11, Secondary 47B25, 47B99.

Key words and phrases. Hilbert space, linear operator, conjugation, *m*-isometric operator, *m*-symmetric operator.

SKEW-SYMMETRIC

is Hermitian. Since, $\alpha_{m+1}(T) = T^* \cdot \alpha_m(T) - \alpha_m(T) \cdot T$, it holds that if T is m-symmetric, then T is n-symmetric for all $n \geq m$. S. A. McCullough and L. Rodman proved that if T is m-symmetric and m is even, then T is always (m-1)-symmetric (Theorem 3.4 of [9]). For an operator $T \in B(\mathcal{H})$, the spectrum, the point spectrum, the approximate point spectrum and the surjective spectrum of T are denoted by $\sigma(T)$, $\sigma_p(T)$, $\sigma_a(T)$ and $\sigma_s(T)$, respectively. It's well known that $\sigma(T) = \sigma_a(T) \bigcup \sigma_s(T)$ and $\sigma_a(T)^* = \sigma_s(T^*)$, where $A^* = \{\overline{a} : a \in A \subset \mathbb{C}\}$.

Recently, C. Gu and M. Stankus ([5]) showed interesting properties of *m*-symmetric operators. An antilinear operator C on \mathcal{H} is said to be a *conjugation* if C satisfies $C^2 = I$ and $\langle Cx, Cy \rangle = \langle y, x \rangle$ for all $x, y \in \mathcal{H}$, where I is the identity operator on \mathcal{H} . An operator $T \in B(\mathcal{H})$ is said to be a *complex symmetric* operator if $CTC = T^*$ for some conjugation C. An operator $T \in B(\mathcal{H})$ is said to be a *skew symmetric operator* if $CTC = -T^*$ for some conjugation C. For an operator $T \in B(\mathcal{H})$ and a conjugation C, let $A = \frac{1}{2}(T + CT^*C)$ and $B = \frac{1}{2}(T - CT^*C)$. Then it is easy to see that A is complex symmetric, B is skew symmetric and T = A + B. In [8], C. G. Li and S. Zhu showed Structure Theorem for skew symmetric normal operators as follows:

Theorem 1.1. (Theorem 1.10, [8]) Let $T \in B(\mathcal{H})$ be normal. Then the following are equivalent:

- (1) T is skew symmetric;
- (2) $T_{|\ker(T)^{\perp}} \simeq N \oplus (-N)$, where N is a normal operator on some Hilbert space \mathcal{K} .

See [2], [4], [7] and [8] for examples and details of conjugations, complex symmetric operators and skew symmetric operators. In [7], S. Jung, E. Ko, M. Lee, and J. E. Lee studied spectral properties of complex symmetric operators and they proved the following.

Proposition 1.2. (Lemma 3.21, [7]). For $T \in B(\mathcal{H})$ and a conjugation C it holds

 $\sigma(CTC) = \sigma(T)^*, \sigma_p(CTC) = \sigma_p(T)^*, \sigma_a(CTC) = \sigma_a(T)^* \text{ and } \sigma_s(CTC) = \sigma_s(T)^*.$

Remark 1.3. In the above proposition, there is no relation between T and CTC.

Definition 1.4. For $T \in B(\mathcal{H})$ and a conjugation C, set

$$\zeta_m(T;C) := \sum_{j=0}^m \binom{m}{j} C T^{m-j} C \cdot T^j.$$

An operator T is said to be skew [m, C]-symmetric if $\zeta_m(T; C) = 0$.

It holds that $CTC \cdot \zeta_m(T; C) + \zeta_m(T; C) \cdot T = \zeta_{m+1}(T; C)$. Hence, if T is skew [m, C]-symmetric, then T is skew [n, C]-symmetric for all $n \ge m$. In [2], M. Chō, Dragan S. Djordjevic, Ji Eun Lee and B. Načevska Nastovska have been studied

properties of the approximate point spectra of skew [m, C]-symmetric operators and others.

If T is skew [1, C]-symmetric, then it holds CTC = -T. For $A \subset \mathbb{C}$, let $-A = \{-a : a \in A\}$. By Proposition 1.2, if T is skew [1, C]-symmetric, then it clearly holds

$$\sigma(T)^* = -\sigma(T), \ \sigma_p(T)^* = -\sigma_p(T), \ \sigma_a(T)^* = -\sigma_a(T) \ \text{and} \ \sigma_s(T)^* = -\sigma_s(T).$$

Throughout this paper, let C be a conjugation on \mathcal{H} and m, n be natural numbers. An operator $Q \in B(\mathcal{H})$ is said to be an n-nilpotent operator if $Q^n = 0$.

2. Main results

First we show the following result for skew [m, C]-symmetric operators.

Theorem 2.1. Let $T \in B(\mathcal{H})$ be skew [m, C]-symmetric. Then the following statements hold:

$$\sigma(T)^* = -\sigma(T), \ \sigma_p(T)^* = -\sigma_p(T), \ \sigma_a(T)^* = -\sigma_a(T) \ and \ \sigma_s(T)^* = -\sigma_s(T).$$

Proof. Proof of $\sigma_a(T)^* = -\sigma_a(T)$. Let $a \in \sigma_a(T)$. Then there exists a sequence $\{x_n\}$ of unit vectors such that $(T-a)x_n \to 0$ as $n \to \infty$. Since

$$0 = \sum_{j=0}^{m} \binom{m}{j} CT^{m-j}C \cdot T^{j}x_{n} = (CTC+a)^{m}x_{n} + \sum_{j=1}^{m} \binom{m}{j} CT^{m-j}C \cdot (T^{j}-a^{j})x_{n},$$

it holds that $\lim_{n \to \infty} (CTC + a)^m x_n = 0$. So, since $-a \in \sigma_a(CTC) = \sigma_a(T)^*$, we get $-\sigma_a(T) \subset \sigma_a(T)^*$, and also $-\sigma_a(T)^* \subset \sigma_a(T)$, which proves $\sigma_a(T)^* = -\sigma_a(T)$. Furthermore, it is clear that $\sigma_p(T)^* = -\sigma_p(T)$.

Proof of $\sigma_s(T)^* = -\sigma_s(T)$. Having in mind that $\sigma_s(T)^* = \sigma_a(T^*)$ and for $a \in \sigma_a(T^*)$, there exists a sequence $\{x_n\}$ of unit vectors such that $(T^* - a)x_n \to 0$ as $n \to \infty$. Since, $0 = \sum_{i=0}^m \binom{m}{j} CT^{m-j}C \cdot T^j$, it holds that $0 = \sum_{i=0}^m \binom{m}{j}T^{*j} \cdot CT^{*m-j}C$.

Then multiplying it by C from both sides, we have

$$0 = \sum_{j=0}^{m} \binom{m}{j} CT^{*j}C \cdot T^{*m-j}.$$

Hence,

$$0 = \sum_{j=0}^{m} {m \choose j} CT^{*j}C \cdot T^{*m-j}x_n$$

= $(CT^*C + a)^m x_n + \sum_{j=0}^{m} {m \choose j} CT^{*j}C \cdot (T^{*m-j} - a^{m-j})x_n.$

Therefore, since $\lim_{n \to \infty} (CT^*C + a)^m x_n = 0$, we have $-a \in \sigma_a(CT^*C) = \sigma_a(T^*)^* = \sigma_s(T)$ and $-\sigma_s(T)^* \subset \sigma_s(T)$. So, we have $\sigma_s(T)^* \subset -\sigma_s(T)$ and also it holds

that $\sigma_s(T) \subset -\sigma_s(T)^*$. Therefore, $\sigma_s(T)^* = -\sigma_s(T)$ holds. This implies $\sigma(T)^* = -\sigma(T)$.

Theorem 2.2. Let $T \in B(\mathcal{H})$ be skew [m, C]-symmetric.

- (1) Then T^* is skew [m, C]-symmetric.
- (2) If there exists T^{-1} , then T^{-1} is also skew [m, C]-symmetric.
- (3) If T_n are skew [m, C]-symmetric and $\lim_{n \to \infty} T_n = T$, then T is skew [m, C]-symmetric.

Proof. Proof of (1). Since

$$0 = \left(\sum_{j=0}^{m} \binom{m}{j} CT^{m-j}C \cdot T^{j}\right)^{*} = \sum_{j=0}^{m} \binom{m}{j} T^{*j} \cdot CT^{*m-j}C,$$

$$0 = C\left(\sum_{j=0}^{m} \binom{m}{j} T^{*j} \cdot CT^{*m-j}C\right)C = \sum_{j=0}^{m} \binom{m}{j} CT^{*j}C \cdot T^{*m-j} = \zeta_{m}(T^{*}, C)$$

It completes (1).

Proof of (2). Multiplying by C from the left side in the equation $\zeta_m(T;C) = 0$, i.e., $0 = \sum_{j=0}^m \binom{m}{j} CT^{m-j}C \cdot T^j$, we have

$$0 = \sum_{j=0}^{m} \binom{m}{j} T^{m-j} C \cdot T^{j}.$$

Then again, multiplying by T^{-m} from both sides in the last equation, it follows that $0 = \sum_{j=0}^{m} {m \choose j} T^{-j} C \cdot T^{-m+j}$. Now, multiplying by C from the left side of this equation we get

$$0 = \sum_{j=0}^{m} \binom{m}{j} CT^{-j}C \cdot T^{-m+j} = \sum_{j=0}^{m} \binom{m}{j} C(T^{-1})^{j}C \cdot (T^{-1})^{m-j}.$$

Hence (2) has been proved.

Proof of (3). Since, $\lim_{n\to\infty} T_n^j = T^j$ and $\lim_{n\to\infty} CT_n^j C = CT^j C$ for any $j \in \mathbb{N}$, we have $0 = \zeta_m(T_n; C) \longrightarrow \zeta_m(T; C)$, as $n \to \infty$. Therefore, we have $\zeta_m(T; C) = 0$. \Box **Theorem 2.3.** If Q is m-nilpotent, then Q is skew [2m - 1, C]-symmetric for any conjugation C.

Proof. It holds

$$\zeta_{2m-1}(Q;C) = \sum_{j=0}^{2m-1} {\binom{2m-1}{j}} CQ^{2m-1-j}C \cdot Q^j$$

(1) If $j \ge m$, then $Q^j = 0$. (2) If $j \le m - 1$, then since $2m - 1 - j \ge 2m - 1 - (m - 1) = m$, $CQ^{2m - 1 - j}C = 0$. Hence it completes the proof. \Box

For the study of the sum T + S, we need the following property.

Definition 2.4. Operators T and S are said to be C-doubly commuting if TS = ST and $CSC \cdot T = T \cdot CSC$.

From the equation

$$(a+x+b+y)^m = ((a+b) + (x+y))^m = \sum_{j=0}^m \binom{m}{j} (a+b)^{m-j} \cdot (x+y)^j,$$

if T and S are C-doubly commuting, then the following equation holds

$$\zeta_m(T+S;C) = \sum_{j=0}^m \binom{m}{j} \zeta_{m-j}(T;C) \cdot \zeta_j(S;C).$$
(2.1)

Using the equation (2.1), the next Theorem is proved.

Theorem 2.5. Let T be skew [m, C]-symmetric and S be skew [n, C]-symmetric. If T and S are C-doubly commuting, then T+S is skew [m+n-1, C]-symmetric.

Proof. By (2.1) and similar proof as of Theorem 2.3, the result follows.

So we have the following corollary. Since the proof is easy, it's omitted.

Corollary 2.6. Let T be skew [m, C]-symmetric and Q be n-nilpotent. If T and Q are C-doubly commuting, then T + Q is skew [m + 2n - 2, C]-symmetric.

Remark 2.7. Let $\mathcal{H} = \mathbb{C}^2$, $C\begin{pmatrix} x \\ y \end{pmatrix} := \begin{pmatrix} \overline{y} \\ \overline{x} \end{pmatrix}$ and, for a non-zero real number a, let $R = \begin{pmatrix} i & a \\ 0 & i \end{pmatrix}$. Then, it is easy to see that R is skew [3, C]-symmetric. Now, let $T = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $S = \begin{pmatrix} i & 1 \\ 0 & i \end{pmatrix}$. Then T and S are skew [3, C]-symmetric. And we have $TS = ST, CSC \cdot T \neq T \cdot CSC$ and $T + S = \begin{pmatrix} i & 2 \\ 0 & i \end{pmatrix}$. Hence T + S is skew [3, C]-symmetric and also skew $[3 + 2 \cdot 3 - 2, C]$ -symmetric, because 7 > 3. Unfortunately, in this moment, we do not have a nice counterexample for

the necessity of C-doubly commutingness.

For the study of properties of the product TS of operators T and S, we need the following class of operators.

Definition 2.8. For an operator T and a conjugation C, set

$$\alpha_m(T;C) = \sum_{j=0}^m (-1)^j \binom{m}{j} C T^{m-j} C \cdot T^j.$$

T is said to be [m, C]-symmetric if $\alpha_m(T; C) = 0$.

Having in mind that

$$(ax+by)^{m} = ((a+b)x - b(x-y))^{m} = \sum_{j=0}^{m} (-1)^{j} (a+b)^{m-j} \cdot b^{j} \cdot x^{m-j} \cdot (x-y)^{j},$$

if T and S are C-doubly commuting, the following holds

$$\zeta_m(TS;C) = \sum_{j=0}^m (-1)^j \zeta_{m-j}(T;C) \cdot T^j \cdot CS^{m-j}C \cdot \alpha_j(S;C).$$
(2.2)

So the next Theorem holds.

Theorem 2.9. Let T be skew [m, C]-symmetric and S be [n, C]-symmetric. If T and S are C-doubly commuting, then TS is skew [m + n - 1, C]-symmetric.

Proof. Using (2.2), it holds that

$$\zeta_{m+n-1}(TS;C) = \sum_{j=0}^{m+n-1} (-1)^j \zeta_{m+n-1-j}(T;C) \cdot T^j \cdot CS^{m+n-1-j}C \cdot \alpha_j(S;C).$$

(1) If $j \ge n$, then $\alpha_j(S; C) = 0$. (2) If $j \le n - 1$, then $\zeta_{m+n-1-j}(T; C) = 0$. Therefore the proof is completed.

Remark 2.10. In general, it does not hold that if T is skew [m, C]-symmetric, then T^2 is skew [n, C]-symmetric for some n. For example, let $T = \begin{pmatrix} -1 & -2i \\ -2i & 1 \end{pmatrix}$. Then for the conjugation C such that $C\begin{pmatrix} x \\ y \end{pmatrix} := \begin{pmatrix} \overline{y} \\ \overline{x} \end{pmatrix}$, T is skew [1, C]-symmetric.

But since $T^2 = \begin{pmatrix} -3 & 0 \\ 0 & -3 \end{pmatrix}$, T^2 is symmetric, i.e., it is not skew symmetric.

Finally we study the tensor product $T \otimes S$ according to B. Duggal [3]. Let $\mathcal{H} \otimes \mathcal{H}$ denote the completion, endowed with a reasonable uniform cross-norm, of the algebraic tensor product $\mathcal{H} \otimes \mathcal{H}$ of \mathcal{H} with \mathcal{H} . For $T, S \in \mathcal{B}(\mathcal{H})$, let $T \otimes S \in \mathcal{B}(\mathcal{H} \otimes \mathcal{H})$ denote the tensor product on the Hilbert space $\mathcal{H} \otimes \mathcal{H}$, when $T \otimes S$ is defined as follows

$$\langle T \otimes S(\xi_1 \otimes \eta_1), (\xi_2 \otimes \eta_2) \rangle = \langle T\xi_1, \xi_2 \rangle \langle S\eta_1, \eta_2 \rangle.$$

See the details by S. R. Garcia and M. Putinar p.1312 in [4].

We also have the following result.

Theorem 2.11. Let T be skew [m, C]-symmetric and S be [n, D]-symmetric, then $T \otimes S$ is skew $[m + n - 1, C \otimes D]$ -symmetric.

Proof. Let C and D be conjugations, then it is easy to see that $C \otimes D$ is a conjugation. Also, it is obvious that, if T is skew [m, C]-symmetric and S is skew [n, D]-symmetric, then $T \otimes I$ is skew $[m, C \otimes D]$ -symmetric and $I \otimes S$ is $[n, C \otimes D]$ -symmetric, too. Hence, $T \otimes I$ and $I \otimes S$ are $C \otimes D$ -doubly commuting and since $(T \otimes I) \cdot (I \otimes S) = T \otimes S$, by Theorem 2.9 the result follows. \Box

Acknowledgment. This is partially supported by Grant-in-Aid Scientific Research No. 15K04910.

References

- J. Agler and M. Stankus, m-Isometric transformations of Hilbert space I, Intgral Equations Operator Theory 21 (1995), 383–429.
- 2. M. Chō, D. S. Djordjevic, J. E. Lee, and B. Načevska Nastovska, On the approximate point spectra of m-complex symmetric operators, [m, C]-symmetric operators and others, preprint.
- 3. B. Duggal, Tensor product of n-isometries, Linear Algebra Appl. 437 (2012), 307–318.
- S. R. Garcia and M. Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358(2006), 1285–1315.
- 5. C. Gu and M. Stankus, Some results on higher order isometries and symmetries: Products and sums a nilpotent operator, Linear Algebra Appl. 469 (2015), 500–509.
- L. W. Helton, Infinite dimensional Jordan operators and Strum-Liouville conjugate point theory, Trans. Amer. Math. Soc. 170 (1972), 305–331.
- S. Jung, E. Ko, M. Lee, and J. E. Lee, On local spectral properties of complex symmetric operators, J. Math. Anal. Appl. 379 (2011), 325–333.
- C. G. Li and S. Zhu, Skew symmetric normal operators, Proc. Amer. Math. Soc. 141 (2013), 2755–2763.
- S. A. McCullough and L. Rodman, *Hereditary classes of operators and materices*, Amer. Math. Monthly **104** (1997) 415–430.

¹ DEPARTMENT OF MATHEMATICS, KANAGAWA UNIVERSITY, HIRATSUKA 259-1293, JAPAN. *E-mail address*: chiyom01@kanagawa-u.ac.jp

² Department of Mathematics and Physics, Faculty of Electrical Engineering and Information Technologies, Ss. Cyril and Methodius University in Skopje, Macedonia.

E-mail address: bibanmath@gmail.com

³ MEGURO-KU NAKANE 11-10-201, TOKYO 152-0031, JAPAN. *E-mail address*: juntomi@med.email.ne.jp