$\hat{A} \otimes \mathcal{T}^{*}$

Adv. Oper. Theory 2 (2017), no. 4, 468-474
http://doi.org/10.22034/aot.1703-1147
ISSN: 2538-225X (electronic)
http://aot-math.org

ON SKEW [$m, C]$-SYMMETRIC OPERATORS

MUNEO CHŌ, ${ }^{1}$ BILJANA NAČEVSKA, ${ }^{2 *}$ and JUN TOMIYAMA ${ }^{3}$
Dedicated to the memory of Professor Takayuki Furuta with deep sorrow

Communicated by D. S. Djordjević

Abstract

In this paper, first we characterize the spectra of skew $[m, C]$ symmetric operators and we also prove that if operators T and S are C-doubly commuting operators, T is a skew $[m, C]$-symmetric operator and Q is an n nilpotent operator, then $T+Q$ is a skew $[m+2 n-2, C]$-symmetric operator. Finally, we show that if T is skew $[m, C]$-symmetric and S is $[n, D]$-symmetric, then $T \otimes S$ is skew $[m+n-1, C \otimes D]$-symmetric.

1. Introduction and preliminaries

Let \mathcal{H} be a complex Hilbert space with the inner product \langle,$\rangle and B(\mathcal{H})$ be the set of all bounded linear operators on \mathcal{H}. J. Agler and M. Stankus studied m-isometric operators ([1]). L.W. Helton introduced m-symmetric operators for the study of Jordan operators ([6]). For an operator $T \in B(\mathcal{H})$, the operator $\alpha_{m}(T)$ is defined by

$$
\alpha_{m}(T):=\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} T^{* m-j} T^{j} \quad(m \in \mathbb{N}),
$$

where \mathbb{N} is the set of all natural numbers. In particular, if T is normal, then $\alpha_{m}(T)=\left(T^{*}-T\right)^{m}$. An operator $T \in B(\mathcal{H})$ is said to be m-symmetric if $\alpha_{m}(T)=0$. Hence it is clear that if T is normal and m-symmetric, then T

[^0]is Hermitian. Since, $\alpha_{m+1}(T)=T^{*} \cdot \alpha_{m}(T)-\alpha_{m}(T) \cdot T$, it holds that if T is m-symmetric, then T is n-symmetric for all $n \geq m$. S. A. McCullough and L. Rodman proved that if T is m-symmetric and m is even, then T is always $(m-1)$ symmetric (Theorem 3.4 of [9]). For an operator $T \in B(\mathcal{H})$, the spectrum, the point spectrum, the approximate point spectrum and the surjective spectrum of T are denoted by $\sigma(T), \sigma_{p}(T), \sigma_{a}(T)$ and $\sigma_{s}(T)$, respectively. It's well known that $\sigma(T)=\sigma_{a}(T) \bigcup \sigma_{s}(T)$ and $\sigma_{a}(T)^{*}=\sigma_{s}\left(T^{*}\right)$, where $A^{*}=\{\bar{a}: a \in A \subset \mathbb{C}\}$.

Recently, C. Gu and M. Stankus ([5]) showed interesting properties of m symmetric operators. An antilinear operator C on \mathcal{H} is said to be a conjugation if C satisfies $C^{2}=I$ and $\langle C x, C y\rangle=\langle y, x\rangle$ for all $x, y \in \mathcal{H}$, where I is the identity operator on \mathcal{H}. An operator $T \in B(\mathcal{H})$ is said to be a complex symmetric operator if $C T C=T^{*}$ for some conjugation C. An operator $T \in B(\mathcal{H})$ is said to be a skew symmetric operator if $C T C=-T^{*}$ for some conjugation C. For an operator $T \in B(\mathcal{H})$ and a conjugation C, let $A=\frac{1}{2}\left(T+C T^{*} C\right)$ and $B=\frac{1}{2}\left(T-C T^{*} C\right)$. Then it is easy to see that A is complex symmetric, B is skew symmetric and $T=A+B$. In [8], C. G. Li and S. Zhu showed Structure Theorem for skew symmetric normal operators as follows:

Theorem 1.1. (Theorem 1.10, [8]) Let $T \in B(\mathcal{H})$ be normal. Then the following are equivalent:
(1) T is skew symmetric;
(2) $T_{\mid \operatorname{ker}(T)^{\perp}} \simeq N \oplus(-N)$, where N is a normal operator on some Hilbert space \mathcal{K}.

See [2], [4], [7] and [8] for examples and details of conjugations, complex symmetric operators and skew symmetric operators. In [7], S. Jung, E. Ko, M. Lee, and J. E. Lee studied spectral properties of complex symmetric operators and they proved the following.

Proposition 1.2. (Lemma 3.21, [7]). For $T \in B(\mathcal{H})$ and a conjugation C it holds
$\sigma(C T C)=\sigma(T)^{*}, \sigma_{p}(C T C)=\sigma_{p}(T)^{*}, \sigma_{a}(C T C)=\sigma_{a}(T)^{*}$ and $\sigma_{s}(C T C)=\sigma_{s}(T)^{*}$.
Remark 1.3. In the above proposition, there is no relation between T and $C T C$.
Definition 1.4. For $T \in B(\mathcal{H})$ and a conjugation C, set

$$
\zeta_{m}(T ; C):=\sum_{j=0}^{m}\binom{m}{j} C T^{m-j} C \cdot T^{j}
$$

An operator T is said to be skew $[m, C]$-symmetric if $\zeta_{m}(T ; C)=0$.
It holds that $C T C \cdot \zeta_{m}(T ; C)+\zeta_{m}(T ; C) \cdot T=\zeta_{m+1}(T ; C)$. Hence, if T is skew [$m, C]$-symmetric, then T is skew $[n, C]$-symmetric for all $n \geq m$. In [2], M. Chō, Dragan S. Djordjevic, Ji Eun Lee and B. Načevska Nastovska have been studied
properties of the approximate point spectra of skew $[m, C]$-symmetric operators and others.

If T is skew $[1, C]$-symmetric, then it holds $C T C=-T$. For $A \subset \mathbb{C}$, let $-A=\{-a: a \in A\}$. By Proposition 1.2, if T is skew [1, C]-symmetric, then it clearly holds

$$
\sigma(T)^{*}=-\sigma(T), \quad \sigma_{p}(T)^{*}=-\sigma_{p}(T), \quad \sigma_{a}(T)^{*}=-\sigma_{a}(T) \quad \text { and } \quad \sigma_{s}(T)^{*}=-\sigma_{s}(T)
$$

Throughout this paper, let C be a conjugation on \mathcal{H} and m, n be natural numbers. An operator $Q \in B(\mathcal{H})$ is said to be an n-nilpotent operator if $Q^{n}=0$.

2. Main Results

First we show the following result for skew [m, C]-symmetric operators.
Theorem 2.1. Let $T \in B(\mathcal{H})$ be skew $[m, C]$-symmetric. Then the following statements hold:
$\sigma(T)^{*}=-\sigma(T), \quad \sigma_{p}(T)^{*}=-\sigma_{p}(T), \quad \sigma_{a}(T)^{*}=-\sigma_{a}(T) \quad$ and $\quad \sigma_{s}(T)^{*}=-\sigma_{s}(T)$.
Proof. Proof of $\sigma_{a}(T)^{*}=-\sigma_{a}(T)$. Let $a \in \sigma_{a}(T)$. Then there exists a sequence $\left\{x_{n}\right\}$ of unit vectors such that $(T-a) x_{n} \rightarrow 0$ as $n \rightarrow \infty$. Since
$0=\sum_{j=0}^{m}\binom{m}{j} C T^{m-j} C \cdot T^{j} x_{n}=(C T C+a)^{m} x_{n}+\sum_{j=1}^{m}\binom{m}{j} C T^{m-j} C \cdot\left(T^{j}-a^{j}\right) x_{n}$,
it holds that $\lim _{n \rightarrow \infty}(C T C+a)^{m} x_{n}=0$. So, since $-a \in \sigma_{a}(C T C)=\sigma_{a}(T)^{*}$, we get $-\sigma_{a}(T) \subset \sigma_{a}(T)^{*}$, and also $-\sigma_{a}(T)^{*} \subset \sigma_{a}(T)$, which proves $\sigma_{a}(T)^{*}=-\sigma_{a}(T)$. Furthermore, it is clear that $\sigma_{p}(T)^{*}=-\sigma_{p}(T)$.

Proof of $\sigma_{s}(T)^{*}=-\sigma_{s}(T)$. Having in mind that $\sigma_{s}(T)^{*}=\sigma_{a}\left(T^{*}\right)$ and for $a \in$ $\sigma_{a}\left(T^{*}\right)$, there exists a sequence $\left\{x_{n}\right\}$ of unit vectors such that $\left(T^{*}-a\right) x_{n} \rightarrow 0$ as $n \rightarrow \infty$.
Since, $0=\sum_{j=0}^{m}\binom{m}{j} C T^{m-j} C \cdot T^{j}$, it holds that $0=\sum_{j=0}^{m}\binom{m}{j} T^{* j} \cdot C T^{* m-j} C$.
Then multiplying it by C from both sides, we have

$$
0=\sum_{j=0}^{m}\binom{m}{j} C T^{* j} C \cdot T^{* m-j}
$$

Hence,

$$
\begin{aligned}
0 & =\sum_{j=0}^{m}\binom{m}{j} C T^{* j} C \cdot T^{* m-j} x_{n} \\
& =\left(C T^{*} C+a\right)^{m} x_{n}+\sum_{j=0}^{m}\binom{m}{j} C T^{* j} C \cdot\left(T^{* m-j}-a^{m-j}\right) x_{n} .
\end{aligned}
$$

Therefore, since $\lim _{n \rightarrow \infty}\left(C T^{*} C+a\right)^{m} x_{n}=0$, we have $-a \in \sigma_{a}\left(C T^{*} C\right)=\sigma_{a}\left(T^{*}\right)^{*}=$ $\sigma_{s}(T)$ and $-\sigma_{s}(T)^{*} \subset \sigma_{s}(T)$. So, we have $\sigma_{s}(T)^{*} \subset-\sigma_{s}(T)$ and also it holds
that $\sigma_{s}(T) \subset-\sigma_{s}(T)^{*}$. Therefore, $\sigma_{s}(T)^{*}=-\sigma_{s}(T)$ holds. This implies $\sigma(T)^{*}=$ $-\sigma(T)$.

Theorem 2.2. Let $T \in B(\mathcal{H})$ be skew $[m, C]$-symmetric.
(1) Then T^{*} is skew $[m, C]$-symmetric.
(2) If there exists T^{-1}, then T^{-1} is also skew $[m, C]$-symmetric.
(3) If T_{n} are skew $[m, C]$-symmetric and $\lim _{n \rightarrow \infty} T_{n}=T$, then T is skew $[m, C]$ symmetric.

Proof. Proof of (1). Since

$$
\begin{gathered}
0=\left(\sum_{j=0}^{m}\binom{m}{j} C T^{m-j} C \cdot T^{j}\right)^{*}=\sum_{j=0}^{m}\binom{m}{j} T^{* j} \cdot C T^{* m-j} C, \\
0=C\left(\sum_{j=0}^{m}\binom{m}{j} T^{* j} \cdot C T^{* m-j} C\right) C=\sum_{j=0}^{m}\binom{m}{j} C T^{* j} C \cdot T^{* m-j}=\zeta_{m}\left(T^{*}, C\right) .
\end{gathered}
$$

It completes (1).
Proof of (2). Multiplying by C from the left side in the equation $\zeta_{m}(T ; C)=0$, i.e., $0=\sum_{j=0}^{m}\binom{m}{j} C T^{m-j} C \cdot T^{j}$, we have

$$
0=\sum_{j=0}^{m}\binom{m}{j} T^{m-j} C \cdot T^{j}
$$

Then again, multiplying by T^{-m} from both sides in the last equation, it follows that $0=\sum_{j=0}^{m}\binom{m}{j} T^{-j} C \cdot T^{-m+j}$. Now, multiplying by C from the left side of this equation we get

$$
0=\sum_{j=0}^{m}\binom{m}{j} C T^{-j} C \cdot T^{-m+j}=\sum_{j=0}^{m}\binom{m}{j} C\left(T^{-1}\right)^{j} C \cdot\left(T^{-1}\right)^{m-j} .
$$

Hence (2) has been proved.
Proof of (3). Since, $\lim _{n \rightarrow \infty} T_{n}^{j}=T^{j}$ and $\lim _{n \rightarrow \infty} C T_{n}^{j} C=C T^{j} C$ for any $j \in \mathbb{N}$, we have $0=\zeta_{m}\left(T_{n} ; C\right) \longrightarrow \zeta_{m}(T ; C)$, as $n \rightarrow \infty$. Therefore, we have $\zeta_{m}(T ; C)=0$.
Theorem 2.3. If Q is m-nilpotent, then Q is skew $[2 m-1, C]$-symmetric for any conjugation C.

Proof. It holds

$$
\zeta_{2 m-1}(Q ; C)=\sum_{j=0}^{2 m-1}\binom{2 m-1}{j} C Q^{2 m-1-j} C \cdot Q^{j} .
$$

(1) If $j \geq m$, then $Q^{j}=0$. (2) If $j \leq m-1$, then since $2 m-1-j \geq$ $2 m-1-(m-1)=m, C Q^{2 m-1-j} C=0$. Hence it completes the proof.

For the study of the sum $T+S$, we need the following property.
Definition 2.4. Operators T and S are said to be C-doubly commuting if $T S=$ $S T$ and $C S C \cdot T=T \cdot C S C$.

From the equation

$$
(a+x+b+y)^{m}=((a+b)+(x+y))^{m}=\sum_{j=0}^{m}\binom{m}{j}(a+b)^{m-j} \cdot(x+y)^{j}
$$

if T and S are C-doubly commuting, then the following equation holds

$$
\begin{equation*}
\zeta_{m}(T+S ; C)=\sum_{j=0}^{m}\binom{m}{j} \zeta_{m-j}(T ; C) \cdot \zeta_{j}(S ; C) \tag{2.1}
\end{equation*}
$$

Using the equation (2.1), the next Theorem is proved.
Theorem 2.5. Let T be skew $[m, C]$-symmetric and S be skew $[n, C]$-symmetric. If T and S are C-doubly commuting, then $T+S$ is skew $[m+n-1, C]$-symmetric.
Proof. By (2.1) and similar proof as of Theorem 2.3, the result follows.
So we have the following corollary. Since the proof is easy, it's omitted.
Corollary 2.6. Let T be skew $[m, C]$-symmetric and Q be n-nilpotent. If T and Q are C-doubly commuting, then $T+Q$ is skew $[m+2 n-2, C]$-symmetric.
Remark 2.7. Let $\mathcal{H}=\mathbb{C}^{2}, C\binom{x}{y}:=\binom{\bar{y}}{\bar{x}}$ and, for a non-zero real number a, let $R=\left(\begin{array}{cc}i & a \\ 0 & i\end{array}\right)$. Then, it is easy to see that R is skew $[3, C]$-symmetric. Now, let $T=\left(\begin{array}{cc}0 & 1 \\ 0 & 0\end{array}\right)$ and $S=\left(\begin{array}{cc}i & 1 \\ 0 & i\end{array}\right)$. Then T and S are skew $[3, C]$-symmetric. And we have $T S=S T, C S C \cdot T \neq T \cdot C S C$ and $T+S=\left(\begin{array}{cc}i & 2 \\ 0 & i\end{array}\right)$. Hence $T+S$ is skew $[3, C]$-symmetric and also skew $[3+2 \cdot 3-2, C]$-symmetric, because $7>3$. Unfortunately, in this moment, we do not have a nice counterexample for the necessity of C-doubly commutingness.

For the study of properties of the product $T S$ of operators T and S, we need the following class of operators.

Definition 2.8. For an operator T and a conjugation C, set

$$
\alpha_{m}(T ; C)=\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} C T^{m-j} C \cdot T^{j}
$$

T is said to be $[m, C]$-symmetric if $\alpha_{m}(T ; C)=0$.
Having in mind that

$$
(a x+b y)^{m}=((a+b) x-b(x-y))^{m}=\sum_{j=0}^{m}(-1)^{j}(a+b)^{m-j} \cdot b^{j} \cdot x^{m-j} \cdot(x-y)^{j},
$$

if T and S are C-doubly commuting, the following holds

$$
\begin{equation*}
\zeta_{m}(T S ; C)=\sum_{j=0}^{m}(-1)^{j} \zeta_{m-j}(T ; C) \cdot T^{j} \cdot C S^{m-j} C \cdot \alpha_{j}(S ; C) \tag{2.2}
\end{equation*}
$$

So the next Theorem holds.
Theorem 2.9. Let T be skew $[m, C]$-symmetric and S be $[n, C]$-symmetric. If T and S are C-doubly commuting, then $T S$ is skew $[m+n-1, C]$-symmetric.

Proof. Using (2.2), it holds that

$$
\zeta_{m+n-1}(T S ; C)=\sum_{j=0}^{m+n-1}(-1)^{j} \zeta_{m+n-1-j}(T ; C) \cdot T^{j} \cdot C S^{m+n-1-j} C \cdot \alpha_{j}(S ; C)
$$

(1) If $j \geq n$, then $\alpha_{j}(S ; C)=0$. (2) If $j \leq n-1$, then $\zeta_{m+n-1-j}(T ; C)=0$. Therefore the proof is completed.

Remark 2.10. In general, it does not hold that if T is skew $[m, C]$-symmetric, then T^{2} is skew $[n, C]$-symmetric for some n. For example, let $T=\left(\begin{array}{cc}-1 & -2 i \\ -2 i & 1\end{array}\right)$. Then for the conjugation C such that $C\binom{x}{y}:=\binom{\bar{y}}{\bar{x}}, T$ is skew $[1, C]$-symmetric. But since $T^{2}=\left(\begin{array}{cc}-3 & 0 \\ 0 & -3\end{array}\right), T^{2}$ is symmetric, i.e., it is not skew symmetric.

Finally we study the tensor product $T \otimes S$ according to B. Duggal [3]. Let $\mathcal{H} \bar{\otimes} \mathcal{H}$ denote the completion, endowed with a reasonable uniform cross-norm, of the algebraic tensor product $\mathcal{H} \otimes \mathcal{H}$ of \mathcal{H} with \mathcal{H}. For $T, S \in \mathcal{B}(\mathcal{H})$, let $T \otimes S \in$ $\mathcal{B}(\mathcal{H} \bar{\otimes} \mathcal{H})$ denote the tensor product on the Hilbert space $\mathcal{H} \bar{\otimes} \mathcal{H}$, when $T \otimes S$ is defined as follows

$$
\left\langle T \otimes S\left(\xi_{1} \otimes \eta_{1}\right),\left(\xi_{2} \otimes \eta_{2}\right)\right\rangle=\left\langle T \xi_{1}, \xi_{2}\right\rangle\left\langle S \eta_{1}, \eta_{2}\right\rangle
$$

See the details by S. R. Garcia and M. Putinar p. 1312 in [4].
We also have the following result.
Theorem 2.11. Let T be skew $[m, C]$-symmetric and S be $[n, D]$-symmetric, then $T \otimes S$ is skew $[m+n-1, C \otimes D]$-symmetric.

Proof. Let C and D be conjugations, then it is easy to see that $C \otimes D$ is a conjugation. Also, it is obvious that, if T is skew $[m, C]$-symmetric and S is skew $[n, D]$-symmetric, then $T \otimes I$ is skew $[m, C \otimes D]$-symmetric and $I \otimes S$ is $[n, C \otimes D]$-symmetric, too. Hence, $T \otimes I$ and $I \otimes S$ are $C \otimes D$-doubly commuting and since $(T \otimes I) \cdot(I \otimes S)=T \otimes S$, by Theorem 2.9 the result follows.

Acknowledgment. This is partially supported by Grant-in-Aid Scientific Research No. 15K04910.

REFERENCES

1. J. Agler and M. Stankus, m-Isometric transformations of Hilbert space I, Intgral Equations Operator Theory 21 (1995), 383-429.
2. M. Chō, D. S. Djordjevic, J. E. Lee, and B. Načevska Nastovska, On the approximate point spectra of m-complex symmetric operators, $[m, C]$-symmetric operators and others, preprint.
3. B. Duggal, Tensor product of n-isometries, Linear Algebra Appl. 437 (2012), 307-318.
4. S. R. Garcia and M. Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358(2006), 1285-1315.
5. C. Gu and M. Stankus, Some results on higher order isometries and symmetries: Products and sums a nilpotent operator, Linear Algebra Appl. 469 (2015), 500-509.
6. L. W. Helton, Infinite dimensional Jordan operators and Strum-Liouville conjugate point theory, Trans. Amer. Math. Soc. 170 (1972), 305-331.
7. S. Jung, E. Ko, M. Lee, and J. E. Lee, On local spectral properties of complex symmetric operators, J. Math. Anal. Appl. 379 (2011), 325-333.
8. C. G. Li and S. Zhu, Skew symmetric normal operators, Proc. Amer. Math. Soc. 141 (2013), 2755-2763.
9. S. A. McCullough and L. Rodman, Hereditary classes of operators and materices, Amer. Math. Monthly 104 (1997) 415-430.
${ }^{1}$ Department of Mathematics, Kanagawa University, Hiratsuka 259-1293, Japan. E-mail address: chiyom01@kanagawa-u.ac.jp

2 Department of Mathematics and Physics, Faculty of Electrical Engineering and Information Technologies, Ss. Cyril and Methodius University in Skopje, Macedonia.

E-mail address: bibanmath@gmail.com
${ }^{3}$ Meguro-ku Nakane 11-10-201, Tokyo 152-0031, Japan.
E-mail address: juntomi@med.email.ne.jp

[^0]: Copyright 2016 by the Tusi Mathematical Research Group.
 Date: Received: Mar. 31, 2017; Accepted: Jul. 8, 2017.
 *Corresponding author.
 2010 Mathematics Subject Classification. Primary 47A11, Secondary 47B25, 47B99.
 Key words and phrases. Hilbert space, linear operator, conjugation, m-isometric operator, m-symmetric operator.

