
Adv. Oper. Theory 3 (2018), no. 1, 1–16
http://doi.org/10.22034/aot.1611-1061
ISSN: 2538-225X (electronic)
http://aot-math.org

COMPLEX INTERPOLATION AND NON-COMMUTATIVE
INTEGRATION

KLAUS WERNER

This paper is dedicated to Uffe Haagerup
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Abstract. We show that under suitable conditions interpolation between a
Banach space and its dual yields a Hilbert space at θ = 1

2 . By application of
this result to the special case of the non-commutative L

p-spaces of Leinert [Int.
J. Math. 2 (1991), no. 2, 177–182] and Terp [J. Operator Theory 8 (1982),
327–360] we conclude that L2 is a Hilbert space and that L

p is isometrically
isomorphic to the dual of L

q without using the isomorphisms of these spaces
to L

p-spaces of Hilsum [J. Funct. Anal. 40 (1981), 151–169.] and Haagerup
[Colloq. Internat. CNRS, 274, CNRS, Paris, 1979].
Haagerup and Pisier [Canad. J. Math. 41 (1989), no. 5, 882–906.], Pisier
[Mem. Amer. Math. Soc. 122 (1996), no. 585, viii+103 pp] and Watbled [C.
R. Acad. Sci. Paris, t. 321, Série I, p. 1437–1440, 1995] gave conditions under
which interpolation between a Banach space and its conjugate dual yields a
Hilbert space at 1

2 . The result mentioned above when put in “conjugate form”
extends their results.

Historical Remark

Some 20 years ago, Klaus Werner proved a theorem on interpolation (that under certain
conditions the ”middle” interpolation space between a Banach space and its dual (or antidual)
is a Hilbert space). His result was stronger than the best results of this time (due to Pisier
and to Watbled, see [12]) and at the same time solved an open problem in noncommutative
integration. He earned his PhD for this in 1996 at Heidelberg University. In 1998, Cobos and
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Schonbek [4] proved an interpolation theorem of similar strength, and similarly Watbled [13] in
a second paper in 2000. Since Werner’s result was not published in a journal, his achievement
was not properly recognised at the time. This is a pity, because he was the first to prove such
a strong type of interpolation result. I therefore urged him to have it published in a journal. It
seems suitable for this issue dedicated to Uffe Haagerup, since Haagerup and Pisier in [7] also
proved a version of the above-mentioned interpolation theorem.
Werner’s PhD thesis was written in German. He also prepared a shorter English version, but
he did not care too much about publishing, since he was going into industry anyway.
Except for this historical remark and the addition of the just mentioned references [4] and [13],
this note is the original English version of twenty years ago.

M. Leinert

1. Preliminaries

Details on complex interpolation can be found in [2] and [3]. If (A0, A1) is a
compatible couple of Banach spaces we denote the complex interpolation spaces
by ((A0, A1)[θ], ‖ ·‖[θ]) and ((A0, A1)

[θ], ‖ ·‖[θ]). The corresponding function spaces
are denoted by F(A0, A1) and G(A0, A1) respectively.

Let A be a von Neumann algebra on a Hilbert space H and ϕ a normal faithful
semifinite weight on A.

Nϕ := {x ∈ A | ϕ(x∗x) <∞}
Mϕ := Lin{x∗y | x, y ∈ Nϕ}.

One has Mϕ ⊂ Nϕ since Nϕ is a left ideal in A. Let Hϕ be the completion of
Nϕ with respect to the scalar product 〈x, y〉Hϕ = ϕ(y∗x). Let xϕ be the image of

x ∈ Nϕ under the inclusionNϕ ↪→ Hϕ. Let J∆
1
2
ϕ be the polar decomposition of the

closure of the involution operator on Nϕ ∩N∗
ϕ (as an operator in Hϕ). For x ∈ A

denote by Lx the bounded operator on Hϕ which on Nϕ is left multiplication by
x. Let L be the set of all x ∈ A for which there exists an element ϕx of the
predual A∗ of A such that

〈ϕx, z
∗y〉 = 〈J(Lx)

∗Jyϕ, zϕ〉Hϕ ∀y, z ∈ Nϕ,

with the norm ‖x‖L := max{‖ϕx‖, ‖x‖}. The set L contains Mϕ. Using the
inclusion map x 7→ ϕx one may consider L as a subset of A∗.
Some of Terp’s results are summarized in the following theorem (cf. [11]):
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Theorem 1.1 ([11]).

(i) L = {x ∈ A | ∃ϕx ∈ A∗, such that 〈ϕx, y〉 = 〈ϕy, x〉 ∀y ∈Mϕ}.

(ii) L is a norm dense subset of A∗.

(iii) Mϕ ⊂ L and for x ∈ L there exists a net (xi)i∈I in Mϕ, such that

sup{‖xi‖L | i ∈ I} <∞,
xi −→ x σ-weakly,

‖ϕxi
− ϕx‖ −→ 0.

(iv) 〈ϕx, y〉 = 〈ϕy, x〉 for all x, y ∈ L.

(v) Let x ∈ A. Then

x ∈ L ⇐⇒ ∃C ≥ 0, such that |〈ϕy, x〉| ≤ C‖y‖ ∀y ∈Mϕ.

In the following A∗ is denoted by L1, ‖ϕx‖ by ‖x‖1 for x ∈ L, A by L∞ and
its norm by ‖ · ‖. Put Lp := (L∞, L1)[ 1

p ] for 1 < p <∞ as defined in [9] and [11].

First, we show that the duality on L1 and L∞ defines a scalar product on L.

2. The Scalar Product on L

Lemma 2.1. Let x, y ∈Mϕ. Then 〈ϕx, y
∗〉 = 〈∆

1
2
ϕxϕ, yϕ〉Hϕ, hence

〈x, y〉H0 := 〈ϕx, y
∗〉

is a scalar product on Mϕ. The completion of Mϕ with respect to this scalar
product is denoted by H0.

Proof. Let x =
n∑

i=1

w∗
i vi with vi, wi ∈ Nϕ for 1 ≤ i ≤ n.

〈ϕx, y
∗〉 =

n∑
i=1

〈JLyJ(vi)ϕ, (wi)ϕ〉Hϕ =
n∑

i=1

〈Lvi
Jyϕ, (wi)ϕ〉Hϕ

=
n∑

i=1

〈Jyϕ, (Lvi
)∗(wi)ϕ〉Hϕ =

n∑
i=1

〈Jyϕ, (v
∗
iwi)ϕ〉Hϕ

=

〈
Jyϕ,

(
n∑

i=1

v∗iwi

)
ϕ

〉
Hϕ

= 〈Jyϕ, x
∗
ϕ〉Hϕ

= 〈Jyϕ, J∆
1
2
ϕxϕ〉Hϕ = 〈yϕ,∆

1
2
ϕxϕ〉Hϕ

= 〈∆
1
2
ϕxϕ, yϕ〉Hϕ .

�

Lemma 2.2. 〈x, y〉H := 〈ϕx, y
∗〉, x, y ∈ L is a scalar product on L. The comple-

tion H of L with respect to this scalar product is isometrically isomorphic to H0

by the extension of the inclusion Mϕ ↪→ L.
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Proof. Obviously 〈·, ·〉H is a sesquilinear form which coincides with 〈·, ·〉H0 on
Mϕ.
Let x, y ∈ L and (xi)i∈I , (yj)k∈K resp. be nets as in Theorem 1.1,(iii). Since
(yk)k∈K is bounded in ‖ · ‖L and thus also in ‖ · ‖ (the norm of L∞) and xi → x
in ‖ · ‖1, we have

〈ϕx − ϕxi
, y∗k〉 −→ 0

uniformly in k. As y∗k −→ y∗ σ-weakly, we conclude

〈ϕx, y
∗
k〉 −→ 〈ϕx, y

∗〉.
Hence 〈xi, yk〉H converges to 〈x, y〉H:

〈x, y〉H − 〈xi, yk〉H = 〈ϕx, y
∗〉 − 〈ϕxi

, y∗k〉
= 〈ϕx − ϕxi

, y∗〉+ 〈ϕxi
, y∗〉 − 〈ϕx, y

∗
k〉+ 〈ϕx − ϕxi

, y∗k〉
−→ 0 + 〈ϕx, y

∗〉 − 〈ϕx, y
∗〉+ 0

= 0.

This convergence yields first that 〈·, ·〉H is Hermitian

〈x, y〉H ←− 〈xi, yk〉H = 〈yk, xi〉H −→ 〈y, x〉H,
and secondly, with x = y, that 〈·, ·〉H is positive semidefinite,

0 ≤ 〈xi, xi〉H −→ 〈x, x〉H ≥ 0.

It remains to show that 〈·, ·〉H is positive definite.

Let 〈x, x〉H = 0. By the Cauchy-Schwarz inequality (for positive semi-definite
sesquilinear forms) we get

0 = 〈x, y∗〉H = 〈ϕx, y〉 = 〈ϕy, x〉 ∀y ∈ L.

Hence x = 0, because ϕy, y ∈ L, are dense in the predual.
So 〈·, ·〉H is a scalar product on L which coincides with the scalar product 〈·, ·〉H0

on Mϕ ⊂ L. Mϕ is dense in H, as for x ∈ L, (xi)i∈I (as above), xi converges to x
in ‖ · ‖H:

‖x− xi‖2H = 〈ϕ(x−xi), (x− xi)
∗〉 = 〈ϕx − ϕxi

, x∗ − x∗i 〉 −→ 0,

since the set {x∗ − x∗i | i ∈ I} is norm-bounded.
Hence H is isometrically isomorphic to H0. �

Lemma 2.3. On (L, 〈·, ·〉H) and on (L, ‖ · ‖1) the involution is an isometric
mapping.

Proof. Let x, y ∈ L.
The first part of the assertion follows from the equation

〈x∗, y∗〉H = 〈ϕx∗ , y〉 = 〈ϕy, x
∗〉 = 〈y, x〉H.

The second part is a consequence of the fact that (ϕx)
∗ = ϕx∗ :

〈ϕx∗ , y〉 = 〈x∗, y∗〉H = 〈y, x〉H = 〈x, y〉H = 〈ϕx, y∗〉
for all y ∈ L.
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Since Mϕ ⊂ L is σ-weakly dense in L∞, it follows that ϕx∗ = (ϕx)
∗. Hence

‖x∗‖1 = ‖ϕx∗‖ = ‖(ϕx)
∗‖ = ‖ϕx‖ = ‖x‖1.

�

3. Interpolation between a Banach Space and its Dual

By an involution on a Banach space (without multiplicative structure) we mean
a conjugate-linear self-inverse mapping. Lemma 3.1 includes the case of an iso-
metric involution.

Lemma 3.1. Let (A0, A1) be an interpolation couple of Banach spaces whose
intersection ∆ := A0 ∩ A1 is dense in Aj, j = 0, 1.
Let T : ∆→ ∆ be a conjugate-linear, surjective mapping that is isometric in both
‖ · ‖0 and ‖ · ‖1. Then T is also isometric with respect to the norms of (A0, A1)[θ]

and (A0, A1)
[θ], 0 ≤ θ ≤ 1.

Proof. T can be extended uniquely to a conjugate-linear isometric surjective map-
ping on A0, A1 and thus also on A0 + A1. This mapping again is denoted by T .
For a function f : S −→ A0 + A1 let T (f) : S −→ A0 + A1 be defined by

T (f)(z) = T (f(z)) and T
−1

(f) by T
−1

(f)(z) = T−1(f(z)).

Let a ∈ (A0, A1)[θ]. It is easy to see that T maps

Fa := {f : S −→ A0 + A1 | f ∈ F(A0, A1), f(θ) = a}
onto

FT (a) := {g : S −→ A0 + A1 | g ∈ F(A0, A1), g(θ) = T (a)}
bijectively and isometrically with respect to the norm of F(A0, A1). Hence
‖a‖[θ] = ‖T (a)‖[θ].
A similar proof yields the same result for the other interpolation method. �

Lemma 3.2. Let (A0, A1) be an interpolation couple of Banach spaces. If there
exists some θ0 ∈ [0, 1] such that (A0, A1)[θ0] is reflexive, then

(i) (A0, A1)[θ] is reflexive for 0 < θ < 1.

(ii) (A0, A1)[θ] = (A0, A1)
[θ] for 0 < θ < 1.

Proof. Let 0 < θ < 1, θ 6= θ0. By the reiteration theorem (see [5]) (A0, A1)[θ] is an
interpolation space of K := (A0, A1)[θ0] and Aj where j = 0 if θ < θ0 and j = 1
if θ > θ0. We may assume θ < θ0. With η = θ/θ0 we have

(A0, A1)[θ] = (A0, K)[η].

By assumption K is reflexive, hence (A0, A1)[θ] is also reflexive (see [3],[2]) and

(A0, K)[η] = (A0, K)[η]. As (A0, A1)
[θ] is contained in (A0, K)[η], we have

(A0, A1)
[θ] ⊂ (A0, K)[η] = (A0, K)[η] = (A0, A1)[θ].

The opposite inclusion is always true.
Since all interpolation spaces (A0, A1)[θ], 0 < θ < 1, are reflexive one can repeat
the proof with an arbitrary θ1 6= θ0 instead of θ0 to get assertion (ii) also for θ0

if θ0 6= 0, 1. �
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The next theorem yields sufficient conditions for the middle interpolation space
to be a Hilbert space. These conditions are fulfilled by the interpolation couple
(L∞, L1) as will be seen in Theorem 4.2.

Theorem 3.3. Let (A0, A1) be an interpolation couple of Banach spaces such
that A′

1 = A0 and the intersection ∆ := A0 ∩A1 is dense in A1. Suppose that for
x ∈ ∆

‖x‖A1 = sup{|〈x, y〉A1,A0| : y ∈ ∆, ‖y‖A0 ≤ 1}.
Assume that for any linear functional ψ on ∆ which is continuous with respect
to the norms of A0 and A1 there exists some z ∈ ∆ such that

ψ(x) = 〈x, z〉A1,A0 ∀x ∈ ∆.

Suppose further that on ∆ there is an involution ∗ such that

〈x, y〉H := 〈x, y∗〉A1,A0

is a scalar product on ∆. Let H denote the completion of ∆ with respect to this
scalar product. Assume that ∗ is isometric with respect to the norms of A0, A1

and H.
Then

(A0, A1)[ 1
2 ]
∼= H.

For 0 < θ < 1 the following holds:

(i) (A0, A1)[θ] is reflexive,

(ii) (A0, A1)[θ] = (A0, A1)
[θ],

(iii) (A0, A1)
′
[θ] = (A0, A1)[1−θ].

Remark 3.4. 1. Strictly speaking the last assertion should be (A0, A1)
′
[θ]
∼= (A0, A1)[1−θ].

In the proof all spaces are considered as subspaces of the dual of ∆. In this space
real equality holds.

2. It may be confusing that the Hilbert space (A0, A1)[ 1
2 ]

is equal to its dual

instead of its conjugate dual. That’s because the duality on H×H is an extension
of the duality of A1 and A0 on ∆×∆ (see remark after Theorem 5.1).

Proof. Put B0 := ∆
‖·‖A0 (the closure of ∆ in A0). Then we have (A0, A1)[θ] =

(B0, A1)[θ]. ∆ is dense in A1 and B0. Hence by the Duality Theorem (B0, A1)
′
[θ] =

(B′
0, A

′
1)

[θ], where (B′
0, A

′
1) is the dual interpolation couple defined by the canoni-

cal inclusions of B′
0 and A′

1 into the dual ∆′ of ∆. Especially ∆ ⊂ A0 = A′
1 ⊂ ∆′.

A1 can be regarded as a subspace of B′
0 ⊂ ∆′ because each x ∈ A1 defines a

functional iA1(x) on B0 by y 7→ 〈x, y〉A1,A0 , y ∈ B0. Since

‖iA1(x)‖B′
0

= sup{|〈x, y〉A1,A0| : y ∈ ∆, ‖y‖B0 ≤ 1} = ‖x‖A1 ∀x ∈ ∆

we infer that the embedding iA1 : A1 ↪→ B′
0 is isometric on ∆ and thus on all

of A1. The last equality holds by assumption because the norms of B0 and A0
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coincide on ∆.
The involution is isometric in the norm of H. For the scalar product this means:

〈x, y〉H = 1
4

(
3∑

n=0

in〈x+ iny, x+ iny〉H
)

= 1
4

(
3∑

n=0

in〈(x+ iny)∗, (x+ iny)∗〉H
)

= 1
4

(
3∑

n=0

in〈x∗ + i−ny∗, x∗ + i−ny∗〉H
)

= 1
4

(
3∑

n=0

i−n〈x∗ + i−ny∗, x∗ + i−ny∗〉H
)

= 〈x∗, y∗〉H
for all x, y ∈ ∆.
For x ∈ ∆ the values of the functionals iA1(x) ∈ B′

0 and x ∈ A′
1 are the same on

∆ since

〈y, iA1(x)〉B0,B′
0

= 〈x, y〉A1,A0 = 〈x, y∗〉H
= 〈y∗, x〉H = 〈y, x∗〉H
= 〈y, x〉A1,A0 ∀x, y ∈ ∆.

Hence iA1(x) = x as elements of ∆′ for all x ∈ ∆ ⊂ A0 = A′
1. The intersection of

A′
1 and B′

0 also equals ∆ as on the one hand ∆ ⊂ A′
1 ∩ B′

0. On the other hand
let y ∈ A′

1 ∩B′
0. Then by assumption there exists some z ∈ ∆ such that

〈x, y〉B0,B′
0

= 〈x, y〉A1,A′
1

= 〈x, z〉A1,A′
1

∀x ∈ ∆.

The last equation implies that z and y are equal as elements of ∆′. Hence we
also get A′

1 ∩B′
0 ⊂ ∆. For the closure of the intersection in B′

0 we have

∆
‖·‖B′

0 = ∆
‖·‖A′

0 = A1,

since the norms of B′
0, A

′
0 and A1 coincide on ∆. Altogether the above implies

(A0, A1)
′
[θ] = (B0, A1)

′
[θ] = (B′

0, A
′
1)

[θ] = (A1, A0)
[θ] = (A0, A1)

[1−θ]. (3.1)

Especially for θ = 1
2
: (A0, A1)

′
[ 1
2 ]

= (A0, A1)
[ 1
2 ].

By Bergh’s Theorem in [1] K := (A0, A1)[ 1
2 ]

is contained in (A0, A1)
[ 1
2 ] = K ′ and

the norms coincide, i. e. ‖x‖K = ‖x‖K′ for x ∈ K.
Let x ∈ ∆. Lemma 3.1 implies ‖x∗‖K = ‖x‖K .

‖x‖2H = 〈x, x〉H
= 〈x, x∗〉A1,A0

= 〈x, x∗〉K,K′

≤ ‖x‖K‖x∗‖K′

= ‖x‖K‖x∗‖K
= ‖x‖2K
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Thus ‖x‖H ≤ ‖x‖K for all x ∈ ∆. The reverse inequality also holds since

‖x‖K = ‖x‖K′ = sup{ |〈y, x〉K,K′| : ‖y‖K ≤ 1, y ∈ ∆}

≤ sup{ |〈y, x〉K,K′| : ‖y‖H ≤ 1, y ∈ ∆}

= sup{ |〈y, x〉A1,A0| : ‖y‖H ≤ 1, y ∈ ∆}

= sup{ |〈y, x∗〉H| : ‖y‖H ≤ 1, y ∈ ∆}

= ‖x∗‖H
= ‖x‖H

for all x ∈ ∆.
Since ∆ is dense in both K and H it follows that K ∼= H. Consequently K is
reflexive. By Lemma 3.2 and equality (3.1) we infer

(A0, A1)[θ] = (A0, A1)
[θ]

and

(A0, A1)
′
[θ] = (A0, A1)

[1−θ] = (A0, A1)[1−θ]

for 0 < θ < 1. �

Remark 3.5. The isomorphism between (A0, A1)[ 1
2 ]

and H in the proof is the

extension of the identity mapping on the intersection ∆. If we assume that H is
contained in A0 + A1 we even get

(A0, A1)[ 1
2 ]

= H.

4. Application to the couple (L∞, L1)

Let L and and Lp, 1 ≤ p ≤ ∞ be defined as in the beginning. Theorem 3.3
is now applied to the interpolation couple (L∞, L1) in order to show that L2 is a
Hilbert space and that Lq is the dual of Lp.

Lemma 4.1. Let ψ be a linear functional on L which is continuous with respect
to the norms of L1 and L∞. Then there exists an element z of L such that

〈x, ψ〉 = 〈ϕx, z〉 ∀x ∈ L.

Proof. L is dense in L1. Hence there exists a unique extension of ψ to a continuous
linear functional on L1. Consequently there is a z ∈ L∞ such that

〈x, ψ〉 = 〈ϕx, z〉 ∀x ∈ L.

Since ψ is continuous with respect to the norm of L∞ there exists a C ≥ 0 such
that |〈ϕx, z〉| = |〈x, ψ〉| ≤ C‖x‖ ∀x ∈ L. Theorem 1.1,(v) implies z ∈ L. �

Theorem 4.2. L2 = (L∞, L1)[ 1
2 ]

is a Hilbert space and

(L
p
)′ = L

q

for 1
p + 1

q = 1, 1 < p, q <∞.
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Proof. Put A0 = L∞ and A1 = L1. Then the conditions of Theorem 3.3 are
fulfilled:
Mϕ ⊂ ∆ = L is dense in L1.
Let x ∈ ∆ = L.

‖x‖A1 = ‖ϕx‖ = sup{ |〈ϕx, y〉| : y ∈ A, ‖y‖ ≤ 1}
= sup{ |〈ϕx, y〉| : y ∈Mϕ, ‖y‖ ≤ 1}
= sup{ |〈ϕx, y〉| : y ∈ L, ‖y‖ ≤ 1},

as Mϕ ⊂ L and Mϕ is σ-weakly dense in A.
By Lemma 4.1, for a linear functional ψ on ∆ which is continuous with respect

to the norms of A0 and A1 there exists an element z of ∆ such that

ψ(x) = 〈x, z〉A1,A0 ∀x ∈ ∆.

The involution ∗ on ∆ yields a scalar product

〈x, y〉H := 〈x, y∗〉A1,A0 , x, y ∈ ∆

by Lemma 2.2 and ∗ is isometric in ‖ · ‖A1 and ‖ · ‖H by Lemma 2.3. Obviously
the involution is also isometric on A0. �

Remark 4.3. By Lemma 2.2 and the remark after Theorem 3.3, L2 is the com-
pletion of Mϕ (within L∞ + L1) with respect to the scalar product

〈x, y〉 = 〈∆
1
2
ϕ xϕ, yϕ〉Hϕ , x, y ∈Mϕ.

5. Interpolation with the Conjugate Dual

Let X be the conjugate space of a complex vector space X, i.e. the space
consisting of the same elements as X with conjugate scalar multiplication. Let
x ∈ X denote the element corresponding to x ∈ X.

For a topological complex vector space X we have X
′
= X ′ by

〈x, y〉X,X′ := 〈x, y〉X,X′ .

Let (A0, A1) be an interpolation couple of Banach spaces. Then

(A0, A1)[θ] =
(
A0, A1

)
[θ]
,

(A0, A1)[θ] =
(
A0, A1

)[θ]
.

We get the analogous result to Theorem 3.3 for interpolation between a Banach
space and its conjugate dual. The proof is similar to the proof of Theorem 3.3
and can easily be done by the reader.

Theorem 5.1. Let (A0, A1) be an interpolation couple of Banach spaces such
that A′

1 = A0 and the intersection ∆ := A0 ∩A1 is dense in A1. Suppose that for
x ∈ ∆

‖x‖A1 = sup{|〈x, y〉A1,A0
| : y ∈ ∆, ‖y‖A0 ≤ 1}.
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Assume that for any linear functional ψ on ∆ which is continuous with respect
to the norms of A0 and A1 there exists some z ∈ ∆ such that

ψ(x) = 〈x, z〉A1,A0
∀x ∈ ∆.

Suppose further that

〈x, y〉H := 〈x, y〉A1,A0

is a scalar product on ∆. Let H denote the completion of ∆ with respect to this
scalar product.
Then

(A0, A1)[ 1
2 ]
∼= H.

For 0 < θ < 1 the following holds:

(i) (A0, A1)[θ] is reflexive,

(ii) (A0, A1)[θ] = (A0, A1)
[θ],

(iii) (A0, A1)′[θ] = (A0, A1)[1−θ].

Remark 5.2. 1. The isomorphism between (A0, A1)[ 1
2
] and H is the canonical

extension of the identity map on ∆. Whereas H is an abstract completion
of ∆, (A0, A1)[ 1

2
] is a very concrete one. If we assume H ⊂ A0 + A1, we

have (A0, A1)[ 1
2
] = H.

2. The reader may have noticed that no involution is needed for Theorem
5.1.

Consider the following case of interpolation between a Banach space and its
conjugate dual:

Let H be a Hilbert space and v : H → X a continuous embedding of H into a
Banach space X with dense image. Then the transposed mapping of v gives an
embedding v′ : X ′ → H′ = H. The composition

v ◦ v′ : X ′ → X.

defines an interpolation couple
(
X ′, X

)
the intersection of which is X ′. Then

(X ′, X)[ 1
2
] = H as shown by Pisier [10].

This result can be obtained as a consequence of Theorem 5.1:

Corollary 5.3. For v : H → X, with the above definitions and notations we have(
X ′, X

)
[ 1
2 ]

= H.

For 0 < θ < 1 we have (
X ′, X

)′
[θ]

=
(
X ′, X

)
[1−θ]

.

Proof. X ′ ∩X = X ′ is dense in X since it is dense in H.
To see the density in H, let y ∈ H with 〈x, y〉H = 0 for all x ∈ X ′. Then
〈y, x〉X,X′ = 〈y, x〉H = 0 for all x ∈ X ′ hence y = 0.
With A1 = X and A0 = X ′ all the conditions of Theorem 5.1 are fulfilled. The
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isometric isomorphy
(
X ′, X

)
[ 1
2 ]
∼= H is in fact an equality, since H is contained

in X. �

Conversely, let v be an embedding of X into H with dense image. Then we get
an embedding

v′ ◦ v : X → X ′

and thus an interpolation couple
(
X ′, X

)
with intersection X. Again the interpo-

lation space at 1
2

is H as shown by Watbled [12]. This result, too, can be derived
from Theorem 5.1:

Corollary 5.4. For v : X → H, with the above definitions and notations we have(
X ′, X

)
[ 1
2 ]

= H.

For 0 < θ < 1 we have (
X ′, X

)′
[θ]

=
(
X ′, X

)
[1−θ]

.

Proof. For the convenience of the reader we give a detailed proof but the fast
reader might be pleased to know that the first assertion already follows from the
first eight lines of Watbled’s proof ([12]) and Lemma 3.2.

Let B be the closure of X = X ′ ∩X in X ′ and ι : B ↪→ X ′ the corresponding
inclusion. The image of H = H′ under v′ is contained in B, because v(X) is

dense in H and v′ ◦ v(X) ⊂ B by definition of B. Since
(
v′

)−1
(B) is closed and

contains v(X) it contains H.
Let w : H → B, such that

ι ◦ w = v′.

By the duality theorem we get(
X ′, X

)′
[ 1
2 ]

= (B,X)′[ 1
2 ]

= (B′, X ′)[
1
2 ]. (5.1)

The interpolation couple (B′, X ′) is definied via the transpose v′ ◦ w′ : B′ → X ′

of the embedding w ◦ v : X → B.
When applying Corollary 5.3 to w : H → B we use the embedding w ◦ w′ :

B′ → B and because of

v′ ◦ w′ = ι ◦ w ◦ w′

we get the same interpolation couple as by the duality theorem except for con-
jugation and taking the closure of the intersection. Therefore the interpolation
spaces of one couple are the conjugate spaces of the other.
By Corollary 5.3 and Lemma 3.2 we get(

B′, X ′
)
[ 1
2 ]

=
(
B′, X ′

)[ 1
2 ] = H.

This and equality (5.1) imply that the conjugate dual space of
(
X ′, X

)
[ 1
2 ]

is H,

hence
(
X ′, X

)
[ 1
2 ]

is canonically isomorphic to H.
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For 0 < θ < 1 we have (
X ′, X

)′
[θ]

= (B′, X ′)[θ]

= (B′, X ′)[θ]

= (B′, X ′)′[1−θ]

=
(
(B′, X ′)[1−θ]

)′
=

(
X ′, X

)′′
[1−θ]

. (5.2)

As in Theorem 3.3 and Theorem 5.1 equality is to be understood in B′′ = (B′ ∩
X ′)′, the dual of the intersection of the dual interpolation couple.(
X ′, X

)′
[θ]

=
(
X ′, X

)′′
[1−θ]

is canonically isomorphic to
(
X ′, X

)
[1−θ]

, since this

space is reflexive.
They are even equal. To see this it suffices in this case to show that one of the
spaces is contained in the other (because all identifications are based on canonical
embeddings):
X

(
⊂ H ⊂ X ′

)
is contained in B′

(
⊂ H ⊂ X ′

)
as for x ∈ X the embedding

v′ ◦ w′ : B′ → X ′ maps the element z ∈ B′ defined by

〈y, z〉B,B′ := 〈x, ι(y)〉X,X′ , y ∈ B

to the image of x under the embedding v′ ◦ v : X → X ′:

〈y, w′(z)〉H = 〈y, w′(z)〉H,H′

= 〈w(y), z〉B,B′

= 〈x, ι ◦ w(y)〉X,X′

= 〈x, v′(y)〉X,X′

= 〈v(x), y〉H,H′

= 〈v(x), y〉H
= 〈y, v(x)〉H

for all y ∈ H.
So w′(z) = v(x) in H and thus v′ ◦ w′(z) = v′ ◦ v(x) in X ′.
The inclusion of X into B′ is norm decreasing:

‖x‖X = sup{ |〈x, y〉X,X′| : y ∈ X ′, ‖y‖X′ ≤ 1}

≥ sup{ |〈x, ι(y)〉X,X′| : y ∈ B, ‖y‖B ≤ 1}

= sup{ |〈y, z〉B,B′| : y ∈ B, ‖y‖B ≤ 1}
= ‖z‖B′ .

Therefore F
(
X ′, X

)
⊂ F

(
X ′, B′

)
. We conclude(

X ′, X
)
[θ]
⊂

(
X ′, B′

)
[θ]

=
(
B′, X ′

)
[1−θ]

(3)
=

(
X ′, X

)′′
[θ]
.

�
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6. Symmetric Version of Theorem 5.1

In Theorem 5.1 A1 and B0 (the closure of ∆ in A0) play symmetric roles as both
spaces are subspaces of the conjugate dual of the other. The density assumption
can be replaced by (symmetric) norm conditions for both spaces:

Theorem 6.1. Let (A0, A1) be an interpolation couple of Banach spaces with
intersection ∆. Let H be a Hilbert space containing ∆ as a dense subset. Suppose
that for x ∈ ∆

‖x‖A1 = sup{|〈x, y〉H| : y ∈ ∆, ‖y‖A0 ≤ 1}
‖x‖A0 = sup{|〈x, y〉H| : y ∈ ∆, ‖y‖A1 ≤ 1}

Assume that for any linear functional ψ on ∆ which is continuous with respect
to the norms of A0 and A1 there exists some z ∈ ∆ such that

ψ(x) = 〈x, z〉H ∀x ∈ ∆.

Then

(A0, A1)[ 1
2 ]
∼= H.

For 0 < θ < 1 the following holds:

(A0, A1)′[θ] = (A0, A1)[1−θ].

Proof. Let Bj be the closure of ∆ in Aj. Embed B0 (isometrically) into B′
1 by

the extension of

〈x, y〉B1,B′
1

:= 〈x, y〉H ∀x, y ∈ ∆

and apply Theorem 5.1. �

Remark 6.2. Theorem 6.1 implies Theorem 3.3. Applying Theorem 6.1 to the
situation of Theorem 3.3 one implicitly uses the fact that there is a (linear!)
isometric isomorphism I : B0 → B0, y 7→ y∗, y ∈ ∆.

An interesting question is whether it is possible to get rid of the condition for
the functionals that are continuous in both norms. The idea used in Corollary
5.4 to show that the dual space and thus also the original space is a Hilbert space
can be of help.

Theorem 6.3. Let (A0, A1) be an interpolation couple of Banach spaces with
intersection ∆. Let Bj be the closure of ∆ in Aj, j = 0, 1. Let H ⊂ B0 +
B1 (continuous embedding) be a Hilbert space containing ∆ as a dense subset.
Suppose that for x ∈ ∆

‖x‖A1 = sup{|〈x, y〉H| : y ∈ ∆, ‖y‖A0 ≤ 1}
‖x‖A0 = sup{|〈x, y〉H| : y ∈ ∆, ‖y‖A1 ≤ 1}

The intersection ∆d of the dual interpolation couple is contained in H′ = H (see
proof).
Assume that

|〈x, y〉H| ≤ ‖x‖B′
0
‖y‖B′

1
∀x, y ∈ ∆d. (6.1)
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Then
(A0, A1)[ 1

2 ]
∼= H.

For 0 < θ < 1 the following holds:

(A0, A1)′[θ]
∼= (A0, A1)[1−θ].

Remark 6.4. ∆ ⊂ H ⊂ B0 +B1 is a necessary condition for the first assertion.

Proof. H is dense in B0 + B1 as it contains ∆. By transposition and the usual
identifications we get

∆d = (B0 +B1)
′ ⊂ H′ = H ⊂ B0 +B1 (6.2)

since the first equality always holds (see [2], Theorem 2.7.1)
For the scalar product we have

〈x, y〉H = 〈x, y〉B0+B1, ∆d

for all x, y ∈ ∆d.
Because of the norm conditions ∆ is isometrically contained in B′

0 and B′
1 with

respect to the norms of B1 and B0 respectively. So ∆ is contained in the inter-
section ∆d.
Now we show that the dual couple (B′

0, B
′
1) fulfills the conditions of Theorem 6.1.

∆ is dense in B0, hence

‖x‖B′
0

= ‖x‖B′
0

= sup{ |〈y, x〉B0,B′
0
| : y ∈ ∆, ‖y‖B0

≤ 1}

= sup{ |〈y, x〉B0+B1,∆d
| : y ∈ ∆, ‖y‖B0

≤ 1}

= sup{ |〈y, x〉H| : y ∈ ∆, ‖y‖B0
≤ 1}

= sup{ |〈y, x〉H| : y ∈ ∆, ‖y‖B′
1
≤ 1}

≤ sup{ |〈y, x〉H| : y ∈ ∆d, ‖y‖B′
1
≤ 1}

for all x ∈ ∆d.

Analogously

‖x‖B′
1
≤ sup{ |〈y, x〉H| : y ∈ ∆d, ‖y‖B′

0
≤ 1} ∀x ∈ ∆d.

By (6.1) we get the reverse inequality and thus

‖x‖B′
0

= sup{ |〈y, x〉H| : y ∈ ∆d, ‖y‖B′
1
≤ 1}

‖x‖B′
1

= sup{ |〈y, x〉H| : y ∈ ∆d, ‖y‖B′
0
≤ 1}

for all x ∈ ∆d.
Let ψ be a linear functional on ∆d which is continuous with respect to the

norms of B′
0 and B′

1. Then ψ (restricted to ∆ ) is also continuous with respect to
the norms of B1 and B0 because ∆ ⊂ ∆d isometrically. By definition of the dual
interpolation couple there is a z ∈ ∆d such that

ψ(x) = 〈x, z〉B0+B1, ∆d
∀x ∈ ∆.
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This equality also holds for x ∈ ∆d as ∆ is dense in ∆d with repect to the norm
of B0 +B1 and ψ is continuous with respect ot this norm:

|ψ(x)| ≤ |ψ(x0)|+ |ψ(x1)|
≤ C0‖x0‖B0

+ C1‖x1‖B1

≤ max(C0, C1)(‖x0‖B0
+ ‖x1‖B1

)

for x ∈ ∆d and xj ∈ Bj, j = 0, 1, with x = x0 + x1, where Cj are norm bounds
for ψ.
Therefore for all x ∈ ∆d we have

ψ(x) = 〈x, z〉B0+B1, ∆d

= 〈x, z〉H .

So (B′
0, B

′
1) fulfills all conditions of Theorem 6.1. Consequently

(B′
0, B

′
1)

[ 1
2 ] = (B′

0, B
′
1)[ 1

2 ]
∼= H.

Hence the dual space of (A0, A1)[ 1
2 ]

is a Hilbert space isomorphic to H. We

conclude

(A0, A1)[ 1
2 ]
∼= H.

We even have equality as H ⊂ B0 +B1 ⊂ A0 +A1 and all isomorphisms map the
intersection ∆ identically onto itself.

The second assertion of the theorem follows from

(A0, A1)′[θ] = (B′
0, B

′
1)

[θ]

= (B′
0, B

′
1)[θ]

= (B′
0, B

′
1)
′
[1−θ]

=
(
(B′

0, B
′
1)

[1−θ]
)′

= (A0, A1)
′′
[1−θ]

∼= (A0, A1)[1−θ],

for 0 < θ < 1 since (A0, A1)[1−θ] is reflexive. �

In Theorem 5.1 and Theorem 6.1 ∆d the intersection of the dual couple is equal
to ∆. In the last theorem ∆d can be bigger than ∆ as we can see by the example
(C0(R), L1(R)). Here ∆ obviously consists of continuous functions whereas ∆d

consists of all essentially bounded L1-functions.
Acknowledgement. I would like to thank Prof. Dr. Michael Leinert for his

indispensable help.
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d’opérateurs et leurs applications en physique mathématique (Proc. Colloq., Marseille,
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