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FOURIER MULTIPLIER NORMS OF SPHERICAL FUNCTIONS
ON THE GENERALIZED LORENTZ GROUPS

TROELS STEENSTRUP

Dedicated to the memory of Professor Uffe Haagerup

Communicated by M. S. Moslehian

Abstract. Our main result provides a closed expression for the completely
bounded Fourier multiplier norm of the spherical functions on the generalized
Lorentz groups SO0(1, n) (for n ≥ 2). As a corollary, we find that there is
no uniform bound on the completely bounded Fourier multiplier norm of the
spherical functions on the generalized Lorentz groups. We extend the latter
result to the groups SU(1, n), Sp(1, n) (for n ≥ 2) and the exceptional group
F4(−20), and as an application we obtain that each of the above mentioned
groups has a completely bounded Fourier multiplier, which is not the coefficient
of a uniformly bounded representation of the group on a Hilbert space.

Introduction

Let Y be a non-empty set. A function ψ : Y×Y → C is called a Schur multiplier
if for every operator A = (ax,y)x,y∈Y ∈ B(`2(Y )) the matrix (ψ(x, y)ax,y)x,y∈Y
again represents an operator from B(`2(Y )) (this operator is denoted by MψA).
If ψ is a Schur multiplier it follows easily from the closed graph theorem that
Mψ ∈ B(B(`2(Y ))), and one referrers to ‖Mψ‖ as the Schur norm of ψ and
denotes it by ‖ψ‖S.

Let G be a locally compact group. In [19], Herz introduced a class of functions
on G, which was later denoted the class of Herz–Schur multipliers on G. By the
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introduction to [2], a continuous function ϕ : G → C is a Herz–Schur multiplier
if and only if the function

ϕ̂(x, y) = ϕ(y−1x) (x, y ∈ G) (0.1)

is a Schur multiplier, and the Herz–Schur norm of ϕ is given by

‖ϕ‖HS = ‖ϕ̂‖S.
In [7] De Cannière and Haagerup introduced the Banach algebra MA(G) of

Fourier multipliers of G, consisting of functions ϕ : G→ C such that

ϕψ ∈ A(G) (ψ ∈ A(G)),

where A(G) is the Fourier algebra of G as introduced by Eymard in [11] (the
Fourier–Stieltjes algebra B(G) of G is also introduced in this paper). The norm
of ϕ (denoted ‖ϕ‖MA(G)) is given by considering ϕ as an operator on A(G). Ac-
cording to [7, Proposition 1.2] a Fourier multiplier of G can also be characterized
as a continuous function ϕ : G→ C such that

λ(g)
Mϕ7→ ϕ(g)λ(g) (g ∈ G)

extends to a σ-weakly continuous operator (still denoted Mϕ) on the group von
Neumann algebra (λ : G → B(L2(G)) is the left regular representation and
the group von Neumann algebra is the closure of the span of λ(G) in the weak
operator topology). Moreover, one has ‖ϕ‖MA(G) = ‖Mϕ‖. The Banach algebra
M0A(G) of completely bounded Fourier multipliers of G consists of the Fourier
multipliers of G, ϕ, for which Mϕ is completely bounded. In this case they put
‖ϕ‖M0A(G) = ‖Mϕ‖cb.

In [2] Bożejko and Fendler show that the completely bounded Fourier multi-
pliers coincide isometrically with the continuous Herz–Schur multipliers. In [21]
Jolissaint gives a short and self-contained proof of the result from [2] in the form
stated below.

Proposition 0.1 ([2], [21]). Let G be a locally compact group and assume that
ϕ : G→ C and k ≥ 0 are given, then the following are equivalent:

(i) ϕ is a completely bounded Fourier multiplier of G with ‖ϕ‖M0A(G) ≤ k.
(ii) ϕ is a continuous Herz–Schur multiplier on G with ‖ϕ‖HS ≤ k.
(iii) There exists a Hilbert space H and two bounded, continuous maps P,Q :

G→ H such that

ϕ(y−1x) = 〈P (x), Q(y)〉 (x, y ∈ G)

and
‖P‖∞‖Q‖∞ ≤ k,

where

‖P‖∞ = sup
x∈G

‖P (x)‖ and ‖Q‖∞ = sup
y∈G

‖Q(y)‖.

Let G be a locally compact group and K a compact subgroup. A function f
on G is called K-bi-invariant if

f(kgk′) = f(g) (g ∈ G, k, k′ ∈ K).
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Let Cc(G)\ denote the set of compactly supported continuous functions on G
which are K-bi-invariant (throughout, we let the superscripts \ on a set of func-
tions on G denote the subset consisting of the K-bi-invariant functions—in gen-
eral, there should be no confusion over which K is meant). The pair (G,K) is a
Gelfand pair if Cc(G)\ is commutative with respect to convolution. This implies
that L1(G)\ is commutative with respect to convolution and that G is unimodular
(cf. [5]).

A spherical function on a Gelfand pair (G,K) is a function ϕ ∈ C(G)\ such
that

f 7→ 〈f, ϕ〉 (f ∈ Cc(G)\)

is a non-zero character, where

〈f, ϕ〉 =

∫
G

f(g)ϕ(g)dµG(g) (f ∈ Cc(G)\, ϕ ∈ C(G)\)

and µG is a left and right invariant Haar measure on G.
In [7] it was proved that the reduced C∗-algebra of any closed discrete subgroup

of the generalized Lorentz groups SO0(1, n) (for n ≥ 2) have the completely
bounded approximation property (CBAP). The proof relied on finding good upper
bounds on the M0A(G)-norm of the spherical functions on SO0(1, n). The main
result of section 1 (Theorem 1.12) is an exact computation of the M0A(G)-norm
of the spherical functions on SO0(1, n):

Theorem 0.2. Let (G,K) be the Gelfand pair with G = SO0(1, n) and K =
SO(n) for n ≥ 2 and put m = n− 1. Let (ϕs)s∈C denote the spherical functions
on (G,K) indexed in the same way as in [15, Example 4.2.4]. Then the completely
bounded Fourier multiplier norm is given by

‖ϕs‖M0A(G) =
Γ
(
m
2

+ Re(s)
)
Γ
(
m
2
− Re(s)

)
Γ
(
m
2

+ iIm(s)
)
Γ
(
m
2
− iIm(s)

)
Γ
(
m
2

)
Γ
(
m
2

) ∣∣Γ (m
2

+ s
)
Γ
(
m
2
− s
)∣∣

for |Re(s)| < m
2
, where Γ is the Gamma function, and

‖ϕs‖M0A(G) = 1

for s = ±m
2
.

The spherical functions considered in Theorem 0.2 constitute all spherical func-
tions on SO0(1, n) which are completely bounded Fourier multipliers—this is
contained in Theorem 0.3 (i).

The main result of [7] was generalized in [6] to all connected, real rank one,
simple Lie groups with finite center. These Lie groups are locally isomorphic
to SO0(1, n), SU(1, n), Sp(1, n) (for n ≥ 2) or to the exceptional group F4(−20)

(cf. [17]). The exact value of the M0A(G)-norm of the spherical functions on
SU(1, n), Sp(1, n) or F4(−20) are not known. In section 2 we prove (cf. Theorem 2.4
and 2.5):

Theorem 0.3. Let G be SO0(1, n), SU(1, n), Sp(1, n) (for n ≥ 2) or F4(−20) and
let K be the corresponding maximal compact subgroup coming from the Iwasawa



196 T. STEENSTRUP

Table 1. Computation of p and q.

F G p = (n− 1) dimR(F) q = dimR(F)− 1
R SO0(1, n) n− 1 0
C SU(1, n) 2n− 2 1
H Sp(1, n) 4n− 4 3
O F4(−20) 8 7

decomposition as in [15]. Let (ϕs)s∈C be the spherical functions on (G,K) indexed
as in [15, Example 4.2.4], and put

m = p+ 2q,

where p, q are computed according to Table 1. Then

(i) ϕs ∈M0A(G) if and only if |Re(s)| < m
2

or s = ±m
2
.

(ii) ‖ϕs‖M0A(G) is not uniformly bounded on the strip |Re(s)| < m
2
.

The “if” part of Theorem 0.3 (i) was proved in [7] for SO0(1, n) and in [6] for
SU(1, n), Sp(1, n) and F4(−20). Not that, according to [6, Proposition 1.6 (b)], a
spherical function, on one of the Gelfand pairs considered in Theorem 0.3, is a
Fourier multiplier if and only if it is a completely bounded Fourier multiplier (and
the two norms coincide). Hence, we could choose to formulate Theorem 0.3 (and
other theorems) in terms of Fourier multipliers instead of completely bounded
Fourier multipliers. We will not do that, since completely bounded Fourier mul-
tipliers seem to be the more canonical concept (and the one we consider in sec-
tion 3).

Results corresponding to Theorem 0.2 and Theorem 0.3 are obtained in [20,
Theorem 5.8] for the Gelfand pair (PGL2(Qq), PGL2(Zq)), where Qq is the field
of p-adic numbers for a prime number q and Zq is the subring of p-adic integers.

Let G be one of the groups SO0(1, n), SU(1, n), Sp(1, n) (for n ≥ 2) or F4(−20),
then G has an Iwasawa decomposition G = KAN (or g = k+a+n at the level of
Lie algebras), where K is a maximal compact subgroup, A is an abelian subgroup
and N is a nilpotent subgroup. Since G has real rank one, A is one dimensional
and is customarily written

A = {ar : r ∈ R},
where

ar = exp(rH) (0.2)

for a certain H ∈ a+.

Remark 0.4. There is a unique positive simple root in a∗, which will be denoted
α. The reader familiar with the Iwasawa decomposition will observe that p and
q from Table 1 are given by p = dim(gα) and q = dim(g2α), where n = gα + g2α

is the sum of the positive root spaces. The choice of H ∈ a+ is made such that
α(H) = 1 (cf. [15, Example 4.2.4]).

For SO0(1, n), N is abelian while for the remaining groups N is step-two nilpo-
tent. It is well known that (G,K) is a Gelfand pair for all these groups (cf. [15,
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Corollary 1.5.6])—it is the canonical Gelfand pair on G, so we will often refer to
the spherical functions on the Gelfand pair (G,K) as the spherical functions on
G. The polar decomposition of G (cf. [15, Lemma 2.2.3]) is given by G = KĀ+K,
where A+ = {ar : r > 0} and Ā+ = {ar : r ≥ 0}. Since the spherical functions
on (G,K) are K-bi-invariant they can be thought of as functions on Ā+ (or A,
using that a−1

r = a−r and that the spherical functions are invariant under taking
inverse).

Let (G,K) be one of the above Gelfand pairs, and put

m = p+ 2q (0.3)

and
m0 = p+ 2, (0.4)

where q and p are given in Table 1. According to [15, (4.2.23)] the spherical
function ϕs (s ∈ C) on (G,K) is given by

ϕs(ar) = F
(m

4
+
s

2
,
m

4
− s

2
;
m+m0

4
;− sinh(r)2

)
(r ∈ R), (0.5)

where F (a, b; c; z) is the Hypergeometric function of the complex variable z with
parameters a, b, c ∈ C as defined in [9, § 2.1]. Let Sm be the strip in the complex
plane given by Sm = {σ + it ∈ C : |σ| < m

2
, t ∈ R}. We list here some well

known results about the spherical functions on G (general references are [15], [5]
and [18]):

• Every spherical function on (G,K) equals ϕs for some s ∈ C.
• ϕs = ϕs′ if and only if s = ±s′.
• ϕs = 1 (the constant function 1) for s = ±m

2
.

• ϕs is bounded if and only if s ∈ S̄m, and in this case ‖ϕ‖∞ = 1.
• For every g ∈ G the map s 7→ ϕs(g) is analytic.
• ϕs (considered as a function on G/K) is an eigenfunction of the Laplace–

Beltrami operator with eigenvalue s2 − (m
2
)2.

By a representation (π,H ) of a locally compact group G on a Hilbert space
H we mean a homomorphism of G into the invertible elements of B(G). A
representation (π,H ) of G is said to be uniformly bounded if

sup
g∈G

‖π(g)‖ <∞

and one usually writes ‖π‖ for supg∈G ‖π(g)‖. If g 7→ π(g) is continuous with
respect to the strong operator topology on B(G) then we say that (π,H ) is
strongly continuous. Let (π,H ) be a strongly continuous, uniformly bounded
representation of G then, according to [7, Theorem 2.2], any coefficient of (π,H )
is a continuous Herz–Schur multiplier, i.e.,

g
ϕ7→ 〈π(g)ξ, η〉 (g ∈ G)

This Hypergeometric function is sometimes called 2F1(a, b; c; z) instead of just F (a, b; c; z),
but since we do not use any other types of generalized Hypergeometric functions we choose to
omit the extra subscripts. It is defined through a power series that converges absolutely for
|z| < 1 (and also for |z| = 1 if Re(a + b) < Re(c)). If |z| exceeds 1 in our formulas we are
implicitly using an analytic continuation.
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is a continuous Herz–Schur multiplier with

‖ϕ‖M0A(G) ≤ ‖π‖2‖ξ‖‖η‖
for any ξ, η ∈ H (note that this result also follows as a corollary to Proposi-
tion 0.1).

For second countable groups, all Herz-Schur multipliers can be realized as the
coefficient of a (not necessarily uniformly bounded) strongly continuous repre-
sentation (cf. [27]), but U. Haagerup has shown that on the non-abelian free
groups there are Herz–Schur multipliers which can not be realized as coefficients
of uniformly bounded representations. The proof by Haagerup has remained un-
published, but Pisier has later given a different proof, cf. [24]. In section 3 we
use [20, Theorem 5.8] and Theorem 0.3 (ii) together with a modified version of
Haagerup’s proof to show (cf. Theorem 3.6 and Remark 3.7):

Theorem 0.5. Let G be a group of the form SO0(1, n), SU(1, n), Sp(1, n) (with
n ≥ 2), F4(−20) or PGL2(Qq) (with q a prime number). There is a completely
bounded Fourier multiplier of G which is not the coefficient of a uniformly bounded
representation of G.

By permission of Haagerup, his proof for the non-abelian free groups is included
in section 3 (cf. Theorem 3.8).

1. Spherical functions on SO0(1, n)

The linear transformations of n + 1 (n ≥ 2) dimensional Minkowski space
leaving invariant the quadratic form

−x2
0 + x2

1 + · · ·+ x2
n

consists of the real n+ 1× n+ 1 matrices satisfying

gTJg = J, (1.1)

where gT denotes the transposed of g and J is the n+ 1× n+ 1 matrix given by

J =


−1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 .

If g = (gij)
n
i,j=0 is a real n + 1 × n + 1 matrix satisfying (1.1), then it is easily

verified that det(g) = ±1 and |g00| =
√

1 + g2
10 + · · ·+ g2

n0 ≥ 1. We also mention
that the inverse of g is given by

g−1 = JgTJ =


g00 −g10 · · · −gn0

−g01 g11 · · · gn1
...

...
. . .

...
−g0n g1n · · · gnn

 .

The generalized Lorentz group SO0(1, n) consists of exactly those real n+1×n+1
matrices g = (gij)

n
i,j=0 satisfying (1.1) for which det(g) = 1 and g00 ≥ 1 (this is

the same as taking the connected component containing the identity). For more



FOURIER MULTIPLIER NORMS OF SPHERICAL FUNCTIONS 199

details, cf. [28, Ch. I § 1] or [23, § 2]. We choose the same Iwasawa decomposition
for SO0(1, n) as [28] and [23], i.e., we let the compact group K be given by

K = 1× SO(n),

the abelian group A be given by

A = {ar : r ∈ R}, ar =


cosh(r) sinh(r) 0 · · · 0
sinh(r) cosh(r) 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


and the nilpotent group N be given by

N = {nx : x ∈ Rm}, nx =


1 + ‖x‖2

2
−‖x‖2

2
x1 · · · xm

‖x‖2
2

1− ‖x‖2
2

x1 · · · xm
x1 −x1 1 · · · 0
...

...
...

. . .
...

xm −xm 0 · · · 1

 .

When no confusion is likely to arise, we will write K as SO(n). It is worth noting
that the maps

r 7→ ar (r ∈ R)

and

x 7→ nx (x ∈ Rm)

are group isomorphisms (so N as actually abelian). To tie this up with (0.2),
note that ar = exp(rH), where

H =


0 1 0 · · · 0
1 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 . (1.2)

In this section we will exclusively consider the Gelfand pair (G,K), where
G = SO0(1, n) and K = SO(n), and we remind the reader that in this case
m = n− 1 and m0 = n+1 = m+2 according to Table 1, (0.3) and (0.4) (we will
avoid using m0 in this section, and instead formulate everything in terms of m).
The spherical functions on (G,K) have many concrete realizations. We take as
starting point one such realization found in [28, Ch. I § 3] or [15, § 3.1] (we use
the same indexation of the spherical functions as the latter). Note that G leaves
the forward light cone

C = {x ∈ Rn+1 : −x2
0 + x2

1 + · · ·+ x2
n = 0, x0 > 0} (1.3)

invariant. Moreover, the map

ζ 7→ {t
(

1
ζ

)
: t > 0} (ζ ∈ Sm)



200 T. STEENSTRUP

is a bijection of Sm (the unit sphere in Rm+1 = Rn) onto the set of rays in the
light cone C. Therefore, the action of G on C induces an action of G on Sm .
Concretely, if g ∈ G and ζ ∈ Sm, then gζ ∈ Sm is given by

(gζ)p =
(
g00 +

n∑
q=1

g0qζq

)−1(
gp0 +

n∑
q=1

gpqζq

)
(p = 1, . . . , n).

This action can also be introduced using the Iwasawa decomposition in a way
that explains the following notation which we will adopt (for further explanation
the reader is referred to [28, p. 323])

r(gζ) = ln
(
g00 +

n∑
q=1

g0qζq

)
(g ∈ G, ζ ∈ Sm),

which makes sense since g leaves invariant the forward light cone, from which it
follows that g00 +

∑n
q=1 g0qζq > 0. The series of representations considered in [28,

Theorem 3.1] will be the starting point for the investigations in this section. For
s ∈ C let (ρs, L

2(Sm)) be the representation given by

(ρs(g)f)(ζ) = e−(m
2

+s)r(g−1ζ)f(g−1ζ) (ζ ∈ Sm, g ∈ G) (1.4)

for f ∈ L2(Sm). These are strongly continuous representations and when s ∈ iR
they are also unitary and irreducible. We mention that it is sometimes preferable
to introduce these representations on the Hilbert space L2(N) (cf. [4, § 5.3]).
The change from the Hilbert space L2(Sm) to L2(N) is implemented by the
stereographic projection of Sm on Rn+1—it will be written up explicitly later in
this section (cf. Lemma 1.2).

For s ∈ C let ϕs be given by the coefficient

ϕs(g) = 〈ρs(g)1,1〉L2(Sm) (g ∈ G), (1.5)

where 1 denotes the constant function 1 on Sm. It is well known (cf. [28] or [15])
that this definition agrees with (0.5), but—for the convenience of the reader—
we include a proof of the following proposition which starts from (1.5) and ends
with (0.5).

Proposition 1.1. For s ∈ C we have

ϕs(ar) =
Γ
(
m+1

2

)
√
πΓ
(
m
2

) ∫ π

0

sin(θ)m−1(
cosh(r) + sinh(r) cos(θ)

)s+m
2

dθ

= e−(m
2

+s)rF
(m

2
+ s,

m

2
;m; 1− e−2r

)
= F

(m
4

+
s

2
,
m

4
− s

2
;
m+ 1

2
;− sinh(r)2

)
for r ∈ R, where ϕs is given by (1.5).

Proof. From (1.5) it is elementary to verify the first expression for ϕs(ar), but we
simply give a reference to [28, Ch. I § 3 (17)]. Using the substitution cos(θ) =
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1− 2t we find that
√
πΓ
(
m
2

)
Γ
(
m+1

2

) ϕs(ar) =

∫ 1

0

(4t(1− t))
m−1

2 (t(1− t))−
1
2

(cosh(r) + sinh(r)(1− 2t))s+
m
2

dt

= 2m−1e−(s+m
2 )r
∫ 1

0

t
m
2
−1(1− t)

m
2
−1

(1− (1− e−2r)t))s+
m
2

dt

=
2m−1Γ

(
m
2

)2
Γ(m)

e−(s+m
2 )rF

(m
2

+ s,
m

2
;m; 1− e−2r

)
,

where the last equality follows from

F (a, b; c; z) =
Γ (c)

Γ (b) Γ (c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− tz)−adt,

which holds for z ∈ C \ [1,∞[ and Re(c) > Re(b) > 0 (cf. [9, § 2.1 (10)]). Using
Legendre’s duplication formula,

Γ(2z) =
22z−1

√
π

Γ(z)Γ
(
z +

1

2

)
(1.6)

(cf. [9, § 1.2 (15)]), with 2z = m we arrive at the second expression for ϕs(ar).
We continue from the second expression for ϕs(ar) in order to obtain the last

one. Since
4z

(1 + z)2
= 1− e−2r ⇐⇒ z = tanh

(r
2

)
we find, using

F
(
a, b; 2b;

4z

(1 + z)2

)
= (1 + z)2aF

(
a, a+

1

2
− b; b+

1

2
; z2
)

(cf. [9, § 2.1 (24)]), that

ϕs(ar) =

(
1 + tanh

(
r
2

))m+2s

e(
m
2

+s)r
F
(m

2
+ s,

1

2
+ s;

m+ 1

2
; tanh

(r
2

)2 )
= cosh

(r
2

)−m−2s

F
(m

2
+ s,

1

2
+ s;

m+ 1

2
; tanh

(r
2

)2 )
.

Since

z = tanh
(r

2

)2

⇐⇒ z

z − 1
= − sinh

(r
2

)2

and

1− tanh
(r

2

)2

=
1

cosh
(
r
2

)2
we find, using

F (a, b; c; z) = (1− z)−aF
(
a, c− b; c;

z

z − 1

)
(cf. [9, § 2.1 (22)]), that

ϕs(ar) = F
(m

2
+ s,

m

2
− s;

m+ 1

2
;− sinh

(r
2

)2 )
.



202 T. STEENSTRUP

Since

z = − sinh
(r

2

)2

⇐⇒ 4z(1− z) = − sinh(r)2

we find, using

F
(
a, b; a+ b+

1

2
; 4z(1− z)

)
= F

(
2a, 2b; a+ b+

1

2
; z
)

(cf. [9, § 2.1 (27)]), that

ϕs(ar) = F
(m

4
+
s

2
,
m

4
− s

2
;
m+ 1

2
;− sinh(r)2

)
,

which is the last of the claimed formulas. �

We now turn our attention to the main technical goal of this section, namely to
write up the spherical functions using only a single representation of NA (since
the spherical functions are K-bi-invariant we can view them as K-left-invariant
functions on G/K = NA). Much of the following resembles [4, Ch. 5], including
several of the techniques, but the end result is independent, since our setting is a
degenerate case of the one considered in [4, Ch. 5] (here N is step-one nilpotent
instead of step-two). We start by changing from the sphere to the plane through
stereographic projection from the vector ζ0 given by

ζ0 =


1
0
...
0

 .

We let xζ denote the stereographic projection of ζ ∈ Sm \ {ζ0} from ζ0, which
is given by

xζ =
1

1− ζ1


ζ2
ζ3
...
ζn

 (ζ ∈ Sm \ {ζ0}).

The inverse of this stereographic projection is given by

ζx =
1

‖x‖2 + 1


‖x‖2 − 1

2x1
...

2xm

 (x ∈ Rm).

In the following lemma we choose a family of unitaries from L2(Sm) to L2(Rm),
which effectuates the above stereographic projection.

Lemma 1.2. For t ∈ R
Uit : L2(Sm) → L2(Rm)

given by

(Uith)(x) =

(
Γ(m)

π
m
2 Γ
(
m
2

)) 1
2 (
‖x‖2 + 1

)−it−m
2 h(ζx) (x ∈ Rm)
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for h ∈ L2(Sm), is unitary. Furthermore, we have

(U∗
itf)(ζ) =

(
π

m
2 Γ
(
m
2

)
Γ(m)

) 1
2 (
‖xζ‖2 + 1

)it+m
2 f(xζ) (ζ ∈ Sm \ {ζ0})

for f ∈ L2(Rm).

Proof. For t ∈ R and h ∈ L2(Sm) we have

‖h‖2
2 =

∫
Sm

|h(ζ)|2dζ

=
Γ
(
m
2

+ 1
2

)
2π

m
2

+ 1
2

∫
Rm

|h(ζx)|2
(

2

‖x‖2 + 1

)m
dx,

where dζ denotes the normalized Lebesgue measure on the sphere Sm while dx
denotes the Lebesgue measure on Rm. The constant which shows up in the second
line is one over the surface area of Sm. In the last line we used that√

det

((
∂ζx

∂xi
· ∂ζx

∂xj

)m
i,j=1

)
=

(
2

‖x‖2 + 1

)m
.

Using Legendre’s duplication formula (cf. (1.6)) we find that

‖h‖2
2 =

Γ(m)

π
m
2 Γ
(
m
2

) ∫
Rm

|h(ζx)|2
(
‖x‖2 + 1

)−m
dx,

and finally

‖h‖2
2 = ‖Uith‖2

2.

To check surjectivity of Uit and the claimed expression for U∗
it, it is enough to

verify that the claimed expression for U∗
it is in fact the inverse of Uit, which is

easily done. �

Proposition 1.3. For t ∈ R

ϕit(g) = 〈πit(g)fit, fit〉L2(Rm) (g ∈ G),

where (πit, L
2(Rm)) is the strongly continuous, irreducible, unitary representation

of G given by

πit(g) = Uitρit(g)U
∗
it (g ∈ G),

and where fit is the K-invariant norm 1 vector in L2(Rm) given by

fit = Uit1.

More specifically,

(πit(g)f)(x) =
(

1
2
(‖x‖2 + 1)(1− (g−1ζx)1)e

r(g−1ζx)
)−it−m

2 f(xg−1ζx
)

for f ∈ L2(Rm), x ∈ Rm and g ∈ G, while

fit(x) =

(
Γ(m)

π
m
2 Γ
(
m
2

)) 1
2 (
‖x‖2 + 1

)−it−m
2 (x ∈ Rm).



204 T. STEENSTRUP

Proof. Everything, except for the specific form of πit follows straight from the
corresponding properties for the representation ρit. To prove the remaining we
let f ∈ L2(Rm) be given, and note that

(πit(g)f)(x) = (Uitρit(g)U
∗
itf)(x)

=

(
‖x‖2 + 1

‖xg−1ζx
‖2 + 1

er(g
−1ζx)

)−it−m
2

f(xg−1ζx
),

which follows from the explicit expressions for Uit, ρit and U∗
it (cf. Lemma 1.2

and (1.4)). Generally, we have

‖xζ‖2 =
1− ζ2

1

(1− ζ1)2
=

1 + ζ1
1− ζ1

(ζ ∈ Sm \ {ζ0}),

so

‖xg−1ζx
‖2 + 1 =

2

1− (g−1ζx)1

(x ∈ Rm),

which finishes the proof �

Proposition 1.4. For t ∈ R and f ∈ L2(Rm)

(πit(ar)f)(x) = e−(it+m
2 )rf(e−rx) (x ∈ Rm)

for r ∈ R, and

(πit(ny)f)(x) = f(x− y) (x ∈ Rm)

for y ∈ Rm.

Proof. This follows from Proposition 1.3 via easy (but tedious) calculations. �

From Proposition 1.4 it is easily seen that for t ∈ R the representation πit|NA
considered here corresponds to the representation π−it considered in [4, p. 72].

Proposition 1.5. For t ∈ R

ϕit(g) = 〈π̂it(g)f̂it, f̂it〉L2(Rm) (g ∈ G),

where (π̂it, L
2(Rm)) is the strongly continuous, irreducible, unitary representation

of G given by

π̂it(g) = Fπit(g)F∗ (g ∈ G),

and where f̂it is the K-invariant norm 1 vector in L2(Rm) given by

f̂it = Ffit,
where F is the Fourier–Plancherel transform on L2(Rm). More specifically,

f̂it(y) =

(
Γ(m)

π
m
2 Γ
(
m
2

)) 1
2

21−m
2

Γ
(
m
2

+ it
) (‖y‖

2

)it
Kit(‖y‖) (y ∈ Rm \ {0}),

where Kν(z) is the modified Bessel function of the second kind of order ν ∈ C in
the variable z ∈ C \ {0} as defined in [10, § 7.2].

In the reference given, Kν is called the modified Bessel function of the third kind.
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Proof. The only nontrivial part of the proposition is the explicit formula for f̂it
which we will now prove. From Proposition 1.3 we know that

fit(x) = cm(‖x‖2 + 1)−it−
m
2 (x ∈ Rm)

for t ∈ R, where we write cm instead of
( Γ(m)

π
m
2 Γ(m

2
)

) 1
2 for notational convenience.

Unfortunately, fit ∈ L2(Rm) \ L1(Rm), so it is not trivial to obtain f̂it. To see
that fit /∈ L1(Rm) one can use the substitutions r = ‖x‖ and u = r2 in

‖fit‖1 = cm

∫
Rm

(‖x‖2 + 1)−
m
2 dx

= c′m

∫ ∞

0

(r2 + 1)−
m
2 rm−1dr

=
c′m
2

∫ ∞

0

(u+ 1)−
m
2 u

m
2
−1du = ∞,

where c′m is the (strictly positive) constant which equals cm times the surface area
of the m− 1 dimensional sphere Sm−1 in Rm. For s = σ + it ∈ C we let

fσ+it(x) = cm(‖x‖2 + 1)−σ−it−
m
2 (x ∈ Rm)

be a perturbation of fit by σ. Using similar calculations as above we find that

‖fσ+it‖2
2 =

cmc
′
m

2
B
(m

2
,
m

2
+ 2σ

)
and ‖fσ+it‖1 =

c′m
2
B
(m

2
, σ
)

for σ > 0, where B(a, b) is the Beta function in two complex variables a, b with
strictly positive real part, as defined in [9, § 1.5]. Since the Beta function is finite,
we conclude that fσ+it ∈ L2(Rm) ∩ L1(Rm) for σ > 0. We will now show that

limσ→0+ ‖fσ+it − fit‖2 = 0, from which it follows that limσ→0+ ‖f̂σ+it − f̂it‖2 = 0,

which is our starting point for finding f̂it. We find

‖fσ+it − fit‖2
2 = c2m

∫
Rm

(
(‖x‖2 + 1)−

m
2 ((‖x‖2 + 1)−σ − 1)

)2
dx

= cmc
′
m

∫ ∞

0

(r2 + 1)−m
(
1− (r2 + 1)−σ

)2
rm−1dr,

where we note that the second term is bounded by 1 and converges point-wise
to 0, when σ converges to 0 from the right. We can therefore use Lebesgue’s
dominated convergence theorem to conclude that

lim
σ→0+

‖fσ+it − fit‖2 = 0,

since we as integrable dominator can use

r 7→ cmc
′
m(r2 + 1)−mrm−1 (r ∈ R+),

whose integral equals

cmc
′
m

2
B
(m

2
,
m

2

)
.
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We now turn our attention to finding f̂σ+it for σ > 0, and get

f̂σ+it(y) =
cm

(2π)
m
2

∫
Rm

(‖x‖2 + 1)−σ−it−
m
2 e−i〈x,y〉dx (y ∈ Rm),

where we immediately notice that f̂σ+it only depends on ‖y‖, since both the
Lebesgue measure and the inner product in Rm are invariant under rotation. We
therefore find (by rotating y into the first coordinate)

f̂σ+it(y) =
cm

(2π)
m
2

∫ ∞

−∞
hσ+it(x1)e

−ix1‖y‖dx1 (y ∈ Rm),

where

hσ+it(x1) =

{ ∫
Rm−1 (‖x‖2 + 1)

−σ−it−m
2 dx2 · · · dxm if m > 1

(x2
1 + 1)

−σ−it− 1
2 if m = 1.

For m > 1 we find, using first the substitution x′i = xi√
x2
1+1

for i = 2, . . . ,m, then

the substitution r =
√

(x′2)
2 + · · · (x′m)2, and finally the substitution u = r2:

hs(x1) = (x2
1 + 1)−s−

1
2

∫
Rm−1

(
(x′2)

2 + · · ·+ (x′m)2 + 1
)−s−m

2 dx′2 · · · dx′m

= (x2
1 + 1)−s−

1
2
c′m−1

cm−1

∫ ∞

0

(r2 + 1)−s−
m
2 rm−2dr

= (x2
1 + 1)−s−

1
2
c′m−1

2cm−1

∫ ∞

0

(u+ 1)−s−
m
2 u

m−1
2

−1du

= (x2
1 + 1)−s−

1
2
c′m−1

2cm−1

B
(m

2
− 1

2
,
1

2
+ s
)

= (x2
1 + 1)−s−

1
2
c′m−1

2cm−1

Γ
(
m
2
− 1

2

)
Γ
(

1
2

+ s
)

Γ
(
m
2

+ s
)

for x1 ∈ R, where we remember that
c′m−1

cm−1
is just the surface area of the m − 2

dimensional sphere Sm−2 in Rm−1. Before we can put it all together, we need the
following integral equation

Kν(z) =
Γ
(
ν + 1

2

)
2ν−1

π
1
2 zν

∫ ∞

0

eizt + e−izt

(t2 + 1)ν+
1
2

dt (z > 0)

for Re(ν) > −1
2

(cf. [1, (9.6.25)]). It now easily follows that

Kν(z) =
Γ
(
ν + 1

2

)
2ν−1

π
1
2 zν

∫ ∞

−∞

e−izt

(t2 + 1)ν+
1
2

dt (z > 0)
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for Re(ν) > −1
2
. For m > 1 and Re(s) > 0 we find

f̂s(y) =
cm

(2π)
m
2

c′m−1

2cm−1

Γ
(
m
2
− 1

2

)
Γ
(

1
2

+ s
)

Γ
(
m
2

+ s
) π

1
2‖y‖s

Γ
(

1
2

+ s
)
2s−1

Ks(‖y‖)

= cm
c′m−1

cm−1

Γ
(
m−1

2

)
2π

m−1
2

21−m
2

Γ
(
m
2

+ s
) (‖y‖

2

)s
Ks(‖y‖)

=

(
Γ(m)

π
m
2 Γ
(
m
2

)) 1
2 21−m

2

Γ
(
m
2

+ s
) (‖y‖

2

)s
Ks(‖y‖)

for y ∈ Rm \ {0}, where we in the last line used that
c′m−1

cm−1
= 2π

m−1
2

Γ(m−1
2

)
(the surface

area of Sm−2) together with cm =
( Γ(m)

π
m
2 Γ(m

2
)

) 1
2 . Redoing this last calculation for

m = 1, using hs(x1) = (x2
1 + 1)−s−

1
2 , we get precisely the same expression as

substituting m = 1 in the previous expression for f̂s.
Since

lim
σ→0+

‖f̂σ+it − f̂it‖2 = 0

we have

lim
n→∞

‖f̂ 1
n

+it − f̂it‖2 = 0,

which enables us to find a subsequence which converges point-wise, that is,

lim
k→∞

|f̂ 1
nk

+it(y)− f̂it(y)| = 0

for almost all y ∈ Rm. From our calculation of f̂σ+it for σ > 0 we conclude that

f̂it(y) =

(
Γ(m)

π
m
2 Γ
(
m
2

)) 1
2 21−m

2

Γ
(
m
2

+ it
) (‖y‖

2

)it
Kit(‖y‖)

for almost all y ∈ Rm, which finishes the proof. �

Proposition 1.6. For t ∈ R and f ∈ L2(Rm)

(π̂it(ar)f)(y) = (er)−it+
m
2 f(ery) (y ∈ Rm)

for r ∈ R, and

(π̂it(nx)f)(y) = e−i〈x,y〉f(y) (y ∈ Rm)

for x ∈ Rm.

Proof. With the inversion formula in our minds, we verify the formulas on f̂ in-
stead of f . Using Proposition 1.4 and standard results on the Fourier–Plancherel
transform, we find for f̂ ∈ L2(Rm)

(π̂it(ar)f̂)(y) = (πit(ar)f)ˆ(y) = (e−r)it−
m
2 f̂(ery) (y ∈ Rm)

for r ∈ R. Similarly for f̂ ∈ L2(Rm)

(π̂it(nx)f̂)(y) = (πit(nx)f)ˆ(y) = e−i〈x,y〉f̂(y) (y ∈ Rm)

for x ∈ Rm. �
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Lemma 1.7. For t ∈ R

Ũit : L2(Rm) → L2(Rm)

given by

(Ũitf)(x) = 2it‖x‖−itf(x) (x ∈ Rm)

for f ∈ L2(Rm), is unitary. Furthermore, we have

(Ũ∗
itf)(x) = 2−it‖x‖itf(x) (x ∈ Rm)

for f ∈ L2(Rm).

Proof. This is obvious. �

Proposition 1.8. For t ∈ R

ϕit(g) = 〈π̃it(g)f̃it, f̃it〉L2(Rm) (g ∈ G),

where (π̃it, L
2(Rm)) is the strongly continuous, irreducible, unitary representation

of G given by

π̃it(g) = Ũitπ̂it(g)Ũ
∗
it (g ∈ G),

and where f̃it is the K-invariant norm 1 vector in L2(Rm) given by

f̃it = Ũitf̂it.

More specifically,

f̃it(x) =

(
Γ(m)

π
m
2 Γ
(
m
2

)) 1
2 21−m

2

Γ
(
m
2

+ it
)Kit(‖x‖) (x ∈ Rm \ {0}).

Proof. This follows directly from Lemma 1.7 and Proposition 1.5. �

Proposition 1.9. For t ∈ R and f ∈ L2(Rm)

(π̃it(ar)f)(x) = e
m
2
rf(erx) (x ∈ Rm)

for r ∈ R, and

(π̃it(ny)f)(x) = e−i〈y,x〉f(x) (x ∈ Rm)

for y ∈ Rm.

Proof. For t ∈ R we verify the formulas on f̃ = Ũitf̂ instead of f . Using Propo-
sition 1.6, we find for f̃ ∈ L2(Rm)

(π̃it(ar)f̃)(x) = (Ũitπ̂it(ar)f̂)(x) = 2it‖x‖−it(er)−it+
m
2 f̂(erx) = e

m
2
rf̃(erx)

for x ∈ Rm and r ∈ R. Similarly for f̃ ∈ L2(Rm)

(π̃it(ny)f̃)(x) = (Ũitπ̂it(ny)f̂)(x) = 2it‖x‖−ite−i〈y,x〉f̂(x) = e−i〈y,x〉f̃(x)

for x ∈ Rm and y ∈ Rm. �

We have now arrived at a formulation, where the representation does not de-
pend on t ∈ R, as long as we only look at elements from NA, which we formulate
in the following corollary.
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Corollary 1.10. For t ∈ R
π̃it|NA = π̃0|NA,

why we shall henceforth refer to this restriction as just π̃. It follows that (π̃, L2(Rm))
is a strongly continuous, unitary representation of NA.

Proposition 1.11. For s ∈ Sm
ϕs(q) = 〈π̃(q)f̃s, f̃−s̄〉 (q ∈ NA),

where

f̃s(x) =

(
Γ(m)

π
m
2 Γ
(
m
2

)) 1
2 21−m

2

Γ
(
m
2

+ s
)Ks(‖x‖) (x ∈ Rm \ {0})

is an element in L2(Rm), with

‖f̃s‖2
2 =

Γ
(
m
2

+ σ
)
Γ
(
m
2
− σ

)
Γ
(
m
2

+ it
)
Γ
(
m
2
− it

)
Γ
(
m
2

)
Γ
(
m
2

)
Γ
(
m
2

+ s
)
Γ
(
m
2

+ s̄
) .

Proof. We start by finding ϕit(arny) for arbitrary r ∈ R and y ∈ Rm. According
to Proposition 1.8 we have

ϕit(arny) = 〈π̃it(arny)f̃it, f̃it〉,
where according to Proposition 1.9

(π̃it(arny)f̃it)(x) = e
m
2
r(π̃it(ny)f̃it)(e

rx) = e
m
2
re−i〈y,e

rx〉f̃it(e
rx)

for x ∈ Rm. Using the specific form of f̃it from Proposition 1.8 we find

ϕs(arny) =
π−

m
2 22−me

m
2
rΓ(m)

Γ
(
m
2

)
Γ
(
m
2

+ s
)
Γ
(
m
2
− s
) ∫

Rm

Ks(e
r‖x‖)Ks(‖x‖)e−ie

r〈y,x〉dx

(1.7)

for s = it, sinceK−ν(z) = Kν(z), Kν(z) = Kν̄(z), and Γ(z) = Γ(z̄). As mentioned
in the introduction s 7→ ϕs(g) is analytic for every g ∈ G, and as such has at
most one analytic continuation to Sm. We will now argue that the right hand side
of (1.7) is in fact analytic as a functions of s ∈ Sm (and therefore equal to ϕs(arny)
for all s ∈ Sm). Since the Gamma function is analytic, it is enough to show that
the integral is analytic. Using Morera’s theorem together with Cauchy’s integral
theorem (and an application of Fubini’s theorem) one easily reduces the problem
to showing continuity of the map

s 7→
∫

Rm

Ks(e
r‖x‖)Ks(‖x‖)e−ie

r〈y,x〉dx (s ∈ Sm).

We will show continuity of this map in the strips

S2a = {σ + it ∈ C : |σ| < a, t ∈ R} ⊂ Sm (0 < a <
m

2
),

which in turn will show continuity in the whole strip Sm. Continuity will follow
from the continuity lemma (cf. [26, Theorem 11.4]) once we have demonstrated
the existence of a dominating function, i.e., a positive function ga ∈ L1(Rm)
satisfying

|Ks(e
r‖x‖)Ks(‖x‖)| ≤ ga(x) (x ∈ Rm, s ∈ S2a).
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We will show that

ga(x) = Ka(e
r‖x‖)Ka(‖x‖) (x ∈ Rm)

does exactly that (for a fixed 0 < a < m
2
).

According to [1, (9.6.24)]

Kν(z) =

∫ ∞

0

e−z cosh(t) cosh(νt)dt (z > 0, ν ∈ C). (1.8)

From (1.8) it follows that

ν 7→ Kν(z) (ν > 0)

is a (positive) increasing function for z > 0. It also follows that

|Kν(z)| ≤ KRe(ν)(z) (z > 0, ν ∈ C)

since
| cosh(νt)| ≤ cosh(Re(νt)) = cosh(Re(ν)t) (t > 0, ν ∈ C).

Therefore, we conclude that

|Ks(e
r‖x‖)Ks(‖x‖)| ≤ KRe(s)(e

r‖x‖)KRe(s)(‖x‖) ≤ Ka(e
r‖x‖)Ka(‖x‖)

for s ∈ S2a, from which it follows that ga is in fact a dominating function. To
verify that ga ∈ L1(Rm) it is enough (using the Cauchy–Schwarz inequality) to
verify that x 7→ Ka(e

r‖x‖) and x 7→ Ka(‖x‖) both belong to L2(Rm), which is
easily done using

2ρ+2Γ(1− ρ)

∫ ∞

0

Kν(r)Kµ(r)r
−ρdr = (1.9)

Γ
(1 + ν + µ− ρ

2

)
Γ
(1 + ν − µ− ρ

2

)
Γ
(1− ν + µ− ρ

2

)
Γ
(1− ν − µ− ρ

2

)
for Re(1±ν±µ−ρ) > 0 (cf. [10, § 7.14 (36)], where there is a typo in the domain
requirements, which has been corrected here).

Thus, we have shown that

ϕs(q) = 〈π̃(q)f̃s, f̃−s̄〉 (q ∈ NA, s ∈ Sm),

with f̃s as claimed in the proposition, and we are left with the task of finding the
norm of f̃s. Using (1.9) with ν = s = σ + it, µ = s̄ = σ − it, and ρ = 1−m we
get

‖f̃s‖2
2 =

Γ(m)

π
m
2 Γ
(
m
2

) 22−m∣∣Γ (m
2

+ s
)∣∣2
∫

Rm

Ks(‖x‖)Ks̄(‖x‖)dx

=
23−mΓ(m)

Γ
(
m
2

)2 ∣∣Γ (m
2

+ s
)∣∣2
∫ ∞

0

Ks(r)Ks̄(r)r
m−1dr

=
Γ
(
m
2

+ σ
)
Γ
(
m
2

+ it
)
Γ
(
m
2
− it

)
Γ
(
m
2
− σ

)
Γ
(
m
2

)2 ∣∣Γ (m
2

+ s
)∣∣2

=
Γ
(
m
2

+ σ
)
Γ
(
m
2
− σ

)
Γ
(
m
2

+ it
)
Γ
(
m
2
− it

)
Γ
(
m
2

)
Γ
(
m
2

)
Γ
(
m
2

+ s
)
Γ
(
m
2

+ s̄
) .
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This finished the proof. �

Theorem 1.12. Let (G,K) be the Gelfand pair with G = SO0(1, n) and K =
SO(n) for n ≥ 2 and put m = n− 1. The spherical functions ϕs have completely
bounded Fourier multiplier norm given by

‖ϕs‖M0A(G) =
Γ
(
m
2

+ σ
)
Γ
(
m
2
− σ

)
Γ
(
m
2

+ it
)
Γ
(
m
2
− it

)
Γ
(
m
2

)
Γ
(
m
2

) ∣∣Γ (m
2

+ s
)
Γ
(
m
2
− s
)∣∣ (s ∈ Sm),

where s = σ + it, and

‖ϕs‖M0A(G) = 1 (s = ±m
2

).

Proof. Since ϕs is the constant function 1 for s = ±m
2
, it is trivial that ‖ϕs‖M0A(G) =

1 in this case. We will now treat the case s ∈ Sm. From Proposition 1.11 and 1.9
we find

ϕs(ny) =
22−mΓ(m)

π
m
2 Γ
(
m
2

)
Γ
(
m
2

+ s
)
Γ
(
m
2
− s
) ∫

Rm

Ks(‖x‖)2e−i〈y,x〉dx

for y ∈ Rm, or just

ϕs(ny) =

∫
Rm

hs(x)e−i〈y,x〉dx (y ∈ Rm),

with

hs(x) =
22−mΓ(m)

π
m
2 Γ
(
m
2

)
Γ
(
m
2

+ s
)
Γ
(
m
2
− s
)Ks(‖x‖)2 (x ∈ Rm \ {0}),

where hs ∈ L1(Rm)—we do the actual norm calculation shortly. Remember that

N is isomorphic as a group to Rm and that the dual group R̂m of Rm is again
Rm via the exponential map. Because of this, and the uniqueness of the Haar
measure, we can interpret the expression for ϕs(ny) as

ϕs|N = ĥs,

with now hs ∈ L1(N̂) (here we use the unnormalized Fourier transform, which
does not include the (2π)−

m
2 factor). From the definition of the norm on the

Fourier–Stieltjes algebra (the abelian case), we have

‖ϕs|N‖A(N) = ‖hs‖1, (1.10)

where

(1.11)

‖hs‖1 =
22−mΓ(m)

π
m
2 Γ
(
m
2

) ∣∣Γ (m
2

+ s
)
Γ
(
m
2
− s
)∣∣ ∫Rm

|Ks(‖x‖)2|dx

=
23−mΓ(m)

Γ
(
m
2

)2 ∣∣Γ (m
2

+ s
)
Γ
(
m
2
− s
)∣∣
∫ ∞

0

Ks(r)Ks̄(r)r
m−1dr

=
Γ
(
m
2

+ σ
)
Γ
(
m
2
− σ

)
Γ
(
m
2

+ it
)
Γ
(
m
2
− it

)
Γ
(
m
2

)
Γ
(
m
2

) ∣∣Γ (m
2

+ s
)
Γ
(
m
2
− s
)∣∣ .

Here we used (1.9) with ν = s = σ + it, µ = s̄ = σ − it, and ρ = 1−m.
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According to Proposition 1.11

ϕs(q) = 〈π̃(q)f̃s, f̃−s̄〉 (q ∈ NA)

for s ∈ Sm, so from the definition of the norm on the Fourier–Stieltjes algebra
(the non-abelian case), we have

‖ϕs|NA‖B(NA) ≤ ‖f̃s‖2‖f̃−s̄‖2.

Using

Γ
(m

2
+ s
)

Γ
(m

2
+ s̄
)

Γ
(m

2
− s̄
)

Γ
(m

2
− s
)

=
∣∣∣Γ(m

2
+ s
)

Γ
(m

2
− s
)∣∣∣2

we conclude that

‖ϕs|NA‖B(NA) ≤
Γ
(
m
2

+ σ
)
Γ
(
m
2
− σ

)
Γ
(
m
2

+ it
)
Γ
(
m
2
− it

)
Γ
(
m
2

)
Γ
(
m
2

) ∣∣Γ (m
2

+ s
)
Γ
(
m
2
− s
)∣∣ (s ∈ Sm).

(1.12)
Clearly,

‖ϕs|N‖A(N) = ‖ϕs|N‖B(N) ≤ ‖ϕs|NA‖B(NA).

Hence, by (1.10), (1.11) and (1.12)

‖ϕs|NA‖B(NA) =
Γ
(
m
2

+ σ
)
Γ
(
m
2
− σ

)
Γ
(
m
2

+ it
)
Γ
(
m
2
− it

)
Γ
(
m
2

)
Γ
(
m
2

) ∣∣Γ (m
2

+ s
)
Γ
(
m
2
− s
)∣∣ (s ∈ Sm).

Recall that NA is solvable (this is part of the properties of the Iwasawa de-
composition), and that solvable groups are amenable (cf. [14, p. 9]). Since ϕs is
K-bi-invariant it now follows from [6, Proposition 1.6 (b)] that ϕs ∈ M0A(G) if
and only if ϕs|NA ∈ B(NA) and the corresponding norms coincide. This ends
the proof. �

Corollary 1.13. There is no uniform bound on the M0A(SO0(1, n))-norm of the
spherical functions ϕs on the Gelfand pair (SO0(1, n), SO(n)) for s ∈ Sm.

Proof. This follows from Theorem 1.12 by taking s = σ + it with t 6= 0 and
|σ| < m

2
, and observing that

lim
σ→±m

2

‖ϕs‖M0A(G) = +∞,

since Γ
(
m
2
∓σ
)

converges to +∞ when σ converges to ±m
2
, while all other Γ-terms

behave nicely. �

2. Spherical functions on real rank one Lie groups

In this section G denotes SO0(1, n), SU(1, n), Sp(1, n) (with n ≥ 2) or F4(−20).
Let K be the maximal compact subgroup coming from the Iwasawa decompo-
sition, and recall that (G,K) is a Gelfand pair. Also, let m,m0 ∈ N be given
by (0.3) and (0.4), respectively.

It follows from [7, Proposition 3.5] and [6, Theorem 4.3] that the spherical func-
tions ϕs on the Gelfand pair (G,K) are completely bounded Fourier multipliers
of G when s ∈ Sm, and according to section 1 there there is no uniform bound
on their M0A(G)-norm when G is SO0(1, n). In this section we focus on what
happens on the border of the strip Sm in the general case. From these results we
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will deduce that, also in the general case, there is no uniform bound on the norm
‖ϕs‖M0A(G) for s ∈ Sm. For this, we need the asymptotic behavior of ϕs(ar) for r
going to infinity. The asymptotic behavior has been treated in [16, § 13], but we
give below a simple argument anyway.

Proposition 2.1. For s ∈ C

ϕs(ar) = cosh(r)s−
m
2 F
(m

4
− s

2
,
m0

4
− s

2
;
m+m0

4
; tanh(r)2

)
(r ∈ R). (2.1)

Proof. Since

z = − sinh(r)2 ⇐⇒ z

z − 1
= tanh(r)2

and

1 + sinh(r)2 = cosh(r)2

we find, using

F (a, b; c; z) = (1− z)−aF
(
a, c− b; c;

z

z − 1

)
(cf. [9, § 2.1 (22)]) and (0.5), that

ϕs(ar) = cosh(r)−(s+m
2

)F
(m

4
+
s

2
,
m0

4
+
s

2
;
m+m0

4
; tanh(r)2

)
(r ∈ R).

Now use that ϕ−s = ϕs. �

To determine the asymptotic behavior of ϕs for Re(s) 6= 0 it suffice to con-
sider the case Re(s) > 0 since ϕ−s = ϕs. In this case, the arguments of the
Hypergeometric function in (2.1) ensures absolute convergence as a function of
the last variable, when this has absolute value less than or equal to 1. Since
limr→∞ tanh(r)2 = 1, one therefore concludes that ϕs(ar) behaves asymptotically
like

e(s−
m
2

)r2−s+
m
2 F
(m

4
− s

2
,
m0

4
− s

2
;
m+m0

4
; 1
)
,

when Re(s) > 0 and r goes to plus infinity. According to [9, § 2.8 (46)] this can
be evaluated explicitly, and we find that ϕs(ar) behaves asymptotically like

c(s)e(s−
m
2

)r (r ∈ R) (2.2)

when Re(s) > 0 and r goes to plus infinity, where

c(s) = 2−s+
m
2

Γ
(
m+m0

4

)
Γ(s)

Γ
(
m
4

+ s
2

)
Γ
(
m0

4
+ s

2

) .
The function c is usually referred to as Harish-Chandra’s c-function. We note
that (2.2) can be found in [15, (4.7.24)].

Lemma 2.2. Let (In)n∈N be a sequence of intervals In = [an, bn] in R, such that
ln = bn − an converges to infinity as n converges to infinity. If µ is a complex-
valued regular measure on R, then

µ({x0}) = lim
n→∞

1

ln

∫
In

eirx0µ̂(r)dr,
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where

µ̂(r) =

∫ ∞

−∞
e−irxdµ(x) (r ∈ R).

Proof. Since every complex-valued regular measure is a (complex) linear combi-
nation of at most four positive finite regular measures, we assume that µ is a
positive finite regular measure. Using Fubini’s theorem we find that

1

ln

∫
In

eirx0µ̂(r)dr =
1

ln

∫ bn

an

∫ ∞

−∞
e−ir(x−x0)dµ(x)dr

=

∫ ∞

−∞

1

ln

∫ bn

an

e−ir(x−x0)drdµ(x)

=

∫ ∞

−∞
fn(x− x0)dµ(x),

where

fn(y) =

{
1
ln
e−ibny−e−iany

−iy if y 6= 0

1 if y = 0
(y ∈ R).

Since

|e−ibny − e−iany| ≤ 2 (y ∈ R)

we have that

lim
n→∞

fn(y) = 1{0}(y) (y ∈ R),

where 1{0} is the characteristic function on {0}. Furthermore,

|e−ibny − e−iany| ≤ |y|ln (y ∈ R)

implies that we can use the constant function 1 as an integrable dominator in
Lebesgue’s dominated convergence theorem, from which we find

lim
n→∞

∫ ∞

−∞
fn(x− x0)dµ(x) =

∫ ∞

−∞
1{x0}dµ(x) = µ({x0}).

�

Lemma 2.3. If ϕ is a continuous symmetric function on R, and there exist
x0 ∈ R \ {0} and c ∈ C \ {0} such that

lim
r→∞

ϕ(r)eirx0 = c,

then ϕ can not be an element in the Fourier–Stieltjes algebra B(R) of R.

Proof. If ϕ ∈ B(R), then there exists a measure µ ∈ M(R̂) = M(R) such that
ϕ = µ̂. Since ϕ is symmetric we have µ = µ̌, where

µ̌(E) = µ(−E) (E ∈ B(R)).

For n ∈ N put In = [n, 2n], and notice that ln = n converges to infinity as n
converges to infinity. Since

lim
r→∞

ϕ(r)eirx0 = c,
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we find

lim
r→∞

1

ln

∫
In

ϕ(r)eirx0dr = c,

which by Lemma 2.2 implies that µ({x0}) = c. Since µ̌ = µ we must have
µ({−x0}) = c. We will show that this is not the case, and hence arrive at a
contradiction.

Given ε > 0 we find n ∈ N such that

|ϕ(r)eirx0 − c| < ε (r ≥ n),

or equivalently
|ϕ(r)e−irx0 − ce−2irx0| < ε (r ≥ n),

and therefore ∣∣∣ 1
ln

∫
In

ϕ(r)e−irx0dr − 1

ln

∫
In

ce−2irx0dr
∣∣∣ < ε.

But the last integral can easily be evaluated as

1

ln

∫
In

ce−2irx0dr =
c

ln

e−4inx0 − e−2inx0

−2ix0

,

which converges to 0 as n tends to infinity. Using this and Lemma 2.2 we find
that

µ({−x0}) = lim
r→∞

1

ln

∫
In

ϕ(r)e−irx0dr = 0,

which is the desired contradiction. �

Theorem 2.4. Let G be SO0(1, n), SU(1, n), Sp(1, n) (for n ≥ 2) or F4(−20),
then ϕs ∈M0A(G) if and only if |Re(s)| < m

2
or s = ±m

2
.

Proof. According to [7, Proposition 3.5] the spherical function ϕs on SO0(1, n)
is a completely bounded Fourier multiplier of SO0(1, n) when |Re(s)| < m

2
(this

also comes out of Theorem 1.12). If |Re(s)| > m
2
, then ϕs is unbounded and

therefore not a completely bounded Fourier multiplier of SO0(1, n). The same
analysis holds for SU(1, n), Sp(1, n) (for n ≥ 2) and F4(−20) using [6, Theorem 4.3]
instead of [7, Proposition 3.5].

We are left with dealing with the case |Re(s)| = m
2
. Since ϕ−s = ϕs it is

enough to consider ϕs for s = m
2

+ it where t 6= 0 (for t = 0, ϕs = 1 and
therefore a completely bounded Fourier multiplier of G). If ϕs ∈ M0A(G), then
ϕs|A ∈M0A(A), but since A is abelian M0A(A) equals B(A) (cf. [7, Corollary 1.8
and Proposition 1.12]). Since G has real rank one, A is isomorphic to R, so we
can use the the asymptotic behavior of ϕs together with Lemma 2.3 to conclude
that ϕs /∈ M0A(G). Specifically, we use that ϕs is bounded together with (2.2)
to conclude that

lim
r→∞

ϕ(ar)e
−itr = 2−it

Γ
(
m+m0

4

)
Γ
(
m
2

+ it
)

Γ
(
m
2

+ i t
2

)
Γ
(
m+m0

4
+ i t

2

) 6= 0.

�

Theorem 2.5. Let G be SO0(1, n), SU(1, n), Sp(1, n) (for n ≥ 2) or F4(−20),
then ‖ϕs‖M0A(G) is not uniformly bounded on the strip Sm.
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Proof. We will show that if ‖ϕs‖M0A(G) ≤ c for s ∈ Sm for a fixed c > 0, then also
‖ϕs‖M0A(G) ≤ c for s ∈ S̄m, which contradicts Theorem 2.4.

Recall that s 7→ ϕs(g) is analytic and therefore continuous for every fixed g ∈ G
and that ‖ϕs‖∞ = 1 for s ∈ S̄m. Let (sn)n∈N ⊆ Sm be a sequence converging
to s ∈ S̄m. It follows from Lebesgue’s dominated convergence theorem that
limn→∞〈f, ϕsn〉 = 〈f, ϕs〉 for any f ∈ L1(G) and therefore that ϕsn converges
to ϕs in the σ(L∞(G), L1(G)) topology. But according to [7, Lemma 1.9] the
unit ball of M0A(G) is σ(L∞(G), L1(G))-closed. Therefore, if we assume that
‖ϕs‖M0A(G) ≤ c for every s ∈ Sm, we get that ‖ϕs‖M0A(G) ≤ c for every s ∈ S̄m,
which gives the desired contradiction. �

3. Coefficients of uniformly bounded representations

Let G be a locally compact, unimodular group. Denote by µG a fixed left- and
right-invariant Haar measure on G. Recall that convolution on L1(G) is given by

(f ∗ h)(g′) =

∫
G

f(g)h(g−1g′)dµG(g) (g′ ∈ G)

for f, h ∈ L1(G), and that we have a bilinear form

〈f, ϕ〉 =

∫
G

f(g)ϕ(g)dµG(g)

for f ∈ L1(G) and ϕ ∈ L∞(G) or f ∈ Cc(G) and ϕ ∈ C(G).
For α ≥ 1 we let Sα denote the set of functions ϕ : G → C for which there

exists a strongly continuous, uniformly bounded representation (π,H ) of G and
vectors ξ, η ∈ H such that

ϕ(g) = 〈π(g)ξ, η〉 (g ∈ G),

with ‖π‖ ≤ α and ‖ξ‖, ‖η‖ ≤ 1.

Lemma 3.1. For α ≥ 1 and f ∈ L1(G) put

|||f |||α = sup{|〈f, ϕ〉| : ϕ ∈ Sα}.
Then ||| · |||α is a Banach algebra semi-norm on the Banach convolution algebra
L1(G).

Proof. The only non-trivial part is to show

|||f ∗ h|||α ≤ |||f |||α|||h|||α (f, h ∈ L1(G)).

Assume that
ϕ(g) = 〈π(g)ξ, η〉 (g ∈ G)

for some strongly continuous, uniformly bounded representation (π,H ) of G with
‖π‖ ≤ α and vectors ξ, η ∈ H with ‖ξ‖, ‖η‖ ≤ 1, i.e., assume that ϕ ∈ Sα. It
follows that

〈f, ϕ〉 =

∫
G

f(g)ϕ(g)dµG(g) =

∫
G

f(g)〈π(g)ξ, η〉dµG(g) = 〈π(f)ξ, η〉

for f ∈ L1(G). From this and

‖π(f)‖ = sup{|〈π(f)ξ, η〉| : ξ, η ∈ H , ‖ξ‖, ‖η‖ ≤ 1} (f ∈ L1(G))
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it follows that |||f |||α is the supremum of ‖π(f)‖ taken over all strongly continuous,
uniformly bounded representations (π,H ) of G with ‖π‖ ≤ α. The Banach
algebra property now follows readily, since

π(f ∗ h) = π(f)π(h) (f, h ∈ L1(G)). �

Lemma 3.2. For α ≥ 1, Sα is a M0A(G)-norm closed convex subset of M0A(G)
with ‖ϕ‖M0A(G) ≤ α2 for ϕ ∈ Sα.

Proof. That Sα is a subset of M0A(G) with ‖ϕ‖M0A(G) ≤ α2 for ϕ ∈ Sα can be
found in [7, Theorem 2.2] (it also follows from Proposition 0.1). The convex part
is straight forward: Assume we have strongly continuous, uniformly bounded
representations (πi,Hi) of G and vectors ξi, ηi ∈ Hi, such that

ϕi(g) = 〈πi(g)ξi, ηi〉Hi
(g ∈ G),

with ‖πi‖ ≤ α and ‖ξi‖, ‖ηi‖ ≤ 1 for i = 1, 2. For 0 < t < 1 we find

(1− t)ϕ1(g) + tϕ2(g) = 〈π(g)ξ, η〉H (g ∈ G),

where (π,H ) is the strongly continuous, uniformly bounded representation of G
given by π = π1 ⊕ π2 and H = H1 ⊕H2, while

ξ = (1− t)
1
2 ξ1 ⊕ t

1
2 ξ2,

η = (1− t)
1
2η1 ⊕ t

1
2η2.

It is easily verified that ‖π‖ ≤ α and ‖ξ‖, ‖η‖ ≤ 1, which finishes the convex
part.

The closure part is proved using ultraproducts of Hilbert spaces. Let ϕ belong
to the closure of Sα, and choose a sequence (ϕn)n∈N from Sα such that

lim
n→∞

‖ϕn − ϕ‖M0A(G) = 0.

This implies that
lim
n→∞

|ϕn(g)− ϕ(g)| = 0 (g ∈ G),

since ‖ · ‖∞ ≤ ‖ · ‖M0A(G). For each n ∈ N choose strongly continuous, uniformly
bounded representations (πn,Hn) of G and vectors ξn, ηn ∈ Hn such that

ϕn(g) = 〈πn(g)ξn, ηn〉Hn (g ∈ G),

with ‖πn‖ ≤ α and ‖ξn‖, ‖ηn‖ ≤ 1. Let U be an ultrafilter on N containing all
sets {n ∈ N : n ≥ n0} for every n0 ∈ N, that is, U is a free ultrafilter. Let
H denote the corresponding ultraproduct of the Hilbert spaces (Hn)n∈N. The
elements of H are represented by bounded families (ζn)n∈N, where ζn ∈ Hn, and
where two families (ζn)n∈N and (ζ ′n)n∈N defines the same element in H if

lim
U
‖ζn − ζ ′n‖ = 0.

The inner product on H is given by

〈(ζn)n∈N, (ζ
′
n)n∈N〉H = lim

U
〈ζn, ζ ′n〉Hn ((ζn)n∈N, (ζ

′
n)n∈N ∈ H ).

Put
ξ = (ξn)n∈N, η = (ηn)n∈N,
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regarded as elements in H , and let (π,H ) be the representation of G defined by

π(g)(ζn)n∈N = (πn(g)ζn)n∈N (g ∈ G, (ζn)n∈N ∈ H ).

Then

ϕ(g) = lim
n→∞

〈πn(g)ξn, ηn〉Hn = lim
U
〈πn(g)ξn, ηn〉Hn = 〈π(g)ξ, η〉H

for g ∈ G. Furthermore, ‖π‖ = supn∈N ‖πn‖ ≤ α and ‖ξ‖, ‖η‖ ≤ 1. Unfortu-
nately, π is not necessarily strongly continuous, which we will now remedy.

Let H ′ be the subspace of H given by

H ′ = span{π(g)ξ : g ∈ G},
or just H ′ = [π(G)ξ] for short. Since H ′ is π(G)-invariant, we can define a new
representation (π′,H ′) of G by letting

π′(g) = π(g)|H ′ (g ∈ G).

Put
ξ′ = ξ and η′ = PH ′η,

where PH ′ is the orthogonal projection of H onto H ′. We find that

ϕ(g) = 〈π(g)ξ, η〉H = 〈π(g)ξ′, η′〉H ′ = 〈π′(g)ξ′, η′〉H ′ (g ∈ G),

since π(g)ξ′ ∈ H ′ for every g ∈ G. Furthermore, ‖π′‖ ≤ ‖π‖ ≤ α, ‖ξ′‖ ≤ 1,
‖η′‖ ≤ 1 and [π′(G)ξ′] = [π(G)ξ] = H ′.

Let H ′′ be the subspace of H ′ given by

H ′′ = [π′(G)∗η′].

Since H ′′ is π′(G)∗-invariant, we can define a new representation (π′′,H ′′) of G
by letting

π′′(g)∗ = π′(g)∗|H ′′ (g ∈ G).

Put
ξ′′ = PH ′′ξ′ and η′′ = η′,

where PH ′′ is the orthogonal projection of H ′ onto H ′′. We find that

ϕ(g) = 〈π′(g)ξ′, η′〉H ′ = 〈ξ′, π′(g)∗η′〉H ′

= 〈ξ′′, π′(g)∗η′′〉H ′′ = 〈ξ′′, π′′(g)∗η′′〉H ′′ = 〈π′′(g)ξ′′, η′′〉H ′′

for g ∈ G, since π′(g)∗η′′ ∈ H ′′. Furthermore, ‖π′′‖ ≤ ‖π′‖ ≤ α, ‖ξ′′‖ ≤ 1,
‖η′′‖ ≤ 1 and [π′′(G)∗η′′] = [π′(G)∗η′] = H ′′. Finally,

π′′(g)PH ′′ = PH ′′π′(g) (g ∈ G),

considered as bounded operators from H ′ to H ′′, since

π′′(g)PH ′′ = (π′′(g)∗)∗PH ′′ = (π′(g)∗|H ′′)∗PH ′′ (g ∈ G),

and for arbitrary ζ ′ ∈ H ′ and ζ ′′ ∈ H ′′,

〈(π′(g)∗|H ′′)∗PH ′′ζ ′, ζ ′′〉H ′′ = 〈PH ′′ζ ′, π′(g)∗ζ ′′〉H ′′

= 〈ζ ′, π′(g)∗ζ ′′〉H ′′

= 〈π′(g)ζ ′, ζ ′′〉H ′′

= 〈PH ′′π′(g)ζ ′, ζ ′′〉H ′′ ,
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where we used that π′(g)∗ζ ′′ ∈ H ′′. It now follows that

[π′′(G)ξ′′] = PH ′′ [π′(G)ξ′] = PH ′′H ′ = H ′′.

Since ϕ ∈M0A(G) is continuous, the function

g 7→ ϕ(g1gg2) = 〈π′′(g)π′′(g2)ξ
′′, π′′(g1)

∗η′′〉H ′′ (g ∈ G)

is also continuous for all g1, g2 ∈ G. Using this together with ‖π′′‖ ≤ α,
[π′′(G)∗η′′] = H ′′ and [π′′(G)ξ′′] = H ′′ we find that π′′ is weakly continuous,
i.e., continuous with respect to the weak operator topology on B(H ′′). Since π′′

is also uniformly bounded, strong continuity follows automatically by the follow-
ing argument:

Since (π′′,H ′′) is a weakly continuous uniformly bounded representation of G,
we can extend it to a representation of the involutive Banach convolution algebra
L1(G) (this representation will also be called (π′′,H ′′), letting the context clarify
which one we mean) by setting

π′′(f) =

∫
G

f(g)π′′(g)dµG(g) (f ∈ L1(G)),

where the integral converges in the weak operator topology. It is readily checked
that

‖π′′(f)‖ ≤ α‖f‖1 (f ∈ L1(G)),

and
π′′(g)π′′(f) = π′′(λ(g)f) (g ∈ G, f ∈ L1(G)),

where λ : G→ B(L1(G)) is the left regular representation given by

(λ(g)f)(g′) = f(g−1g′) (g, g′ ∈ G, f ∈ L1(G)).

For f ∈ L1(G), ζ ∈ H ′′ and g0, g ∈ G we have that

‖π′′(g)π′′(f)ζ − π′′(g0)π
′′(f)ζ‖ ≤ α‖λ(g)f − λ(g0)f‖1‖ζ‖,

which converges to zero as g converges to g0 by strong continuity of the left regular
representation. We put

H ′′
0 = span{π′′(f)ζ : f ∈ L1(G), ζ ∈ H ′′},

and conclude that the mapping

g 7→ π′′(g)ζ0 (ζ0 ∈ H ′′
0 )

is continuous on G. We will now show that H ′′
0 is norm dense in H ′′. Let (fj)j∈J

be an approximate unit in L1(G) (considered as a Banach convolution algebra),
that is, (fj)j∈J is a net of non-negative norm 1 functions in L1(G), such that for
every neighborhood V of e, there exists jV ∈ J with supp(fj) ⊆ V for all j ≥ jV .
Using weak continuity of the representation (π′′,H ′′) of G it is easily seen that
(π′′(fj))j∈J converges to the identity operator I ∈ B(H ′′) in the weak operator
topology. Using that

{π′′(f) : f ∈ L1(G)}
is a convex subset of B(H ′′), and therefore has identical closure in the weak- and
strong operator topologies, we find a net (fj)j∈J ′ in L1(G), such that (π′′(fj))j∈J ′
converges to I in the strong operator topology. From this we conclude that H ′′

0
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is norm dense in H ′′. Strong continuity of the representation (π′′,H ′′) of G now
follows from its uniform boundedness. �

The following realization of the predual of M0A(G) is found in [7, Proposi-
tion 1.10 a)]. If X0(G) denotes the completion of L1(G) with respect to the
X0(G)-norm given by

‖f‖X0(G) = sup{|〈f, ϕ〉| : ϕ ∈M0A(G), ‖ϕ‖M0A(G) ≤ 1} (f ∈ L1(G)),

then the dual space of X0(G) is M0A(G), and the M0A(G)-norm is the corre-
sponding dual norm. Note that ‖ϕ‖∞ ≤ ‖ϕ‖M0A(G) for ϕ ∈M0A(G) so it follows
that ‖f‖X0(G) ≤ ‖f‖1 for f ∈ L1(G).

Proposition 3.3. If all completely bounded Fourier multipliers of G are coeffi-
cients of strongly continuous, uniformly bounded representations, then the X0(G)-
norm is equivalent to the Banach algebra semi-norm ||| · |||α for some α ≥ 1. In
particular, there exists a constant c > 0 such that

‖f ∗ h‖X0(G) ≤ c‖f‖X0(G)‖h‖X0(G) (f, h ∈ L1(G)).

Proof. The assumption can be reformulated as

M0A(G) =
⋃

n,m∈N

mSn.

But, by Lemma 3.2, Sα is a M0A(G)-norm closed subset of M0A(G) for α ≥ 1.
Hence, by the Baire theorem one of the setsmSn (and hence Sn) for some n,m ∈ N
must contain an inner point. But according to Lemma 3.2 Sn is convex, and since
also Sn = −Sn it follows that 0 is an inner point of Sn and therefore that there
exists a δ > 0 such that

{ϕ ∈M0A(G) : ‖ϕ‖M0A(G) ≤ δ} ⊆ Sn.

According to Lemma 3.2

Sn ⊆ {ϕ ∈M0A(G) : ‖ϕ‖M0A(G) ≤ n2},

so it follows that

δ‖f‖X0(G) ≤ |||f |||n ≤ n2‖f‖X0(G) (f ∈ L1(G)),

and therefore that the two norms are equivalent. The remaining conclusion follows
easily with c = n4

δ
, since

|||f ∗ h|||n ≤ |||f |||n|||h|||n (f, h ∈ L1(G))

according to Lemma 3.1. �

We wish to arrive at a way to disprove the existence of such a c > 0 through
knowledge of spherical functions, so from now on we assume that G is part of a
Gelfand pair (G,K). Let µK denote the left and right invariant Haar measure
on K, normalized such that µK(K) = 1. For f ∈ L1(G) and k1, k2 ∈ K let k1fk2
denote the translate of f in the sense that

k1fk2(g) = f(k−1
1 gk2) (g ∈ G).
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Note that k1fk2 ∈ L1(G) with ‖k1fk2‖1 = ‖f‖1 and that the map

(k1, k2) 7→ k1fk2 (k1, k2 ∈ K)

is norm continuous. Since L1(G) is a Banach space and L1(G)∗ separate the points
(even C0(G) separate the points) one can use standard vector-valued integration
techniques to define

L1(G) 3 f \ =

∫
K×K

k1fk2d(µK ⊗ µK)((k1, k2))

for f ∈ L1(G), and find that

‖f \‖1 ≤
∫
K×K

‖k1fk2‖1d(µK ⊗ µK)((k1, k2)) = ‖f‖1. (3.1)

We will refer to f \ as the radialization of f . Similarly, one wishes to define a
radialization ϕ\ of ϕ ∈ M0A(G) (cf. [6, Proposition 1.6 (a)]). A collection of
“tricks”, including this “bi-invariance trick”, can be found in Appendix B of [22],
but we include the proof here since this material was not available to us at
the time of writing. To this end, we need to know that k1ϕk2 ∈ M0A(G) with
‖k1ϕk2‖M0A(G) = ‖ϕ‖M0A(G) for k1, k2 ∈ K, where k1ϕk2 is the translate of ϕ. But
this follows easily using Proposition 0.1. Note that

|〈f, k1ϕk2〉 − 〈f, k′1ϕk′2〉| ≤ ‖k−1
1
fk−1

2
− k′−1

1
fk′−1

2
‖1‖ϕ‖M0A(G)

for f ∈ L1(G) and k1, k2, k
′
1, k

′
2 ∈ K. Since X0(G)∗ = M0A(G) and L1(G) is a

dense subset of X0(G) one now finds that the map

(k1, k2) 7→ k1ϕk2 (k1, k2 ∈ K)

is w∗ continuous. Since ‖k1ϕk2‖M0A(G) = ‖ϕ‖M0A(G) for k1, k2 ∈ K it follows that
{k1ϕk2 : k1, k2 ∈ K} is a norm bounded subset of M0A(G), and therefore that
cow

∗{k1ϕk2 : k1, k2 ∈ K} (the w∗ closed convex hull) is a w∗ closed, norm bounded
subset of M0A(G). From Alaoglu’s theorem it finally follows that cow

∗{k1ϕk2 :
k1, k2 ∈ K} is w∗ compact. Using this together with the fact that M0A(G),
equipped with the w∗ topology, is a topological vector space whose dual separates
the points (the dual with respect to the w∗ topology is X0(G)) one can use [25,
Theorem 3.27] to define

M0A(G) 3 ϕ\ =

∫
K×K

k1ϕk2d(µK ⊗ µK)((k1, k2))

for ϕ ∈M0A(G), from which it follows by standard arguments that

‖ϕ\‖M0A(G) ≤
∫
K×K

‖k1ϕk2‖M0A(G)d(µK ⊗ µK)((k1, k2)) = ‖ϕ‖M0A(G). (3.2)

Actually, it follows from [25, Theorem 3.27] that ϕ\ ∈ cow∗
{k1ϕk2 : k1, k2 ∈ K} from which

the desired result also follows, since we have already shown that this set is bounded in norm
by ‖ϕ‖M0A(G).
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One can easily show that 〈f \, ϕ〉 = 〈f, ϕ\〉 for f ∈ L1(G) and ϕ ∈ L∞(G) (recall
that G is unimodular). Since obviously (ϕ\)\ = ϕ\ one gets the following relations
between the two types of radialization:

〈f \, ϕ〉 = 〈f \, ϕ\〉 = 〈f, ϕ\〉. (3.3)

Lemma 3.4. If f ∈ L1(G), then ‖f \‖X0(G) ≤ ‖f‖X0(G).

Proof. The lemma follows from (3.3) and (4) since M0A(G) is the dual of X0(G).
�

Proposition 3.5. If there is a constant c > 0 such that

‖f ∗ h‖X0(G) ≤ c‖f‖X0(G)‖h‖X0(G) (f, h ∈ Cc(G)\), (3.4)

then any spherical function ϕ in M0A(G) will satisfy ‖ϕ‖M0A(G) ≤ c.

Proof. Assume the existence of a c > 0 satisfying (3.4). Consider the algebra
Cc(G)\ of finitely supported radial functions on G with multiplication given by
convolution. This is a commutative algebra and it follows from the assumption
that the completion of Cc(G)\ under the X0(G)-norm is a commutative Banach
algebra with respect to the norm c‖ · ‖X0(G). Let ϕ be a spherical function which
is also a completely bounded Fourier multiplier of G. On the one hand, since ϕ
is a spherical function we have that

f 7→ 〈f, ϕ〉 (f ∈ Cc(G)\) (3.5)

is a character (cf. [13, Lemma 1.5]). On the other hand, since ϕ ∈ M0A(G), we
have by duality that

|〈f, ϕ〉| ≤ ‖ϕ‖M0A(G)‖f‖X0(G) (f ∈ Cc(G)\),

so we can extend (3.5) to a character on Cc(G)\
‖·‖X0(G)

. But since every character
on an (abelian) Banach algebra has norm less than or equal to 1, we have that

|〈f, ϕ〉| ≤ c‖f‖X0(G) (f ∈ Cc(G)\).

Notice that Cc(G) is dense in L1(G) with respect to the L1(G)-norm and therefore
with respect to the X0(G)-norm and therefore also dense in X0(G). Using this
together with duality, Lemma 3.4 and (3.3) (recall that ϕ\ = ϕ) we find that

‖ϕ‖M0A(G) = sup{|〈f, ϕ〉| : f ∈ Cc(G), ‖f‖X0(G) ≤ 1}
= sup{|〈f \, ϕ〉| : f ∈ Cc(G), ‖f‖X0(G) ≤ 1}
≤ sup{|〈h, ϕ〉| : h ∈ Cc(G)\, ‖h‖X0(G) ≤ 1}
≤ c.

�

Theorem 3.6. Let G be a group of the form SO0(1, n), SU(1, n), Sp(1, n) (with
n ≥ 2), F4(−20) or PGL2(Qq) (with q a prime number). There is a completely
bounded Fourier multiplier of G which is not the coefficient of a strongly contin-
uous, uniformly bounded representation of G.
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Proof. When G is SO0(1, n), SU(1, n), Sp(1, n) (with n ≥ 2) or F4(−20) the the-
orem follows from Theorem 2.5 and Proposition 3.3 and 3.5. The case G =
PGL2(Qq) follows by replacing Theorem 2.5 with [20, Theorem 5.8], which states
that there is no uniform bound on the M0A(G)-norm among the spherical func-
tions on PGL2(Qq) which are completely bounded Fourier multipliers of PGL2(Qq)
(the norms are explicitly calculated). �

Remark 3.7. Actually, using the techniques of the proof of Lemma 3.2, one can
verify that strong continuity can be omitted in Theorem 3.6.

Let Γ be a group of the form

Γ = (∗Mm=1Z/2Z) ∗ (∗Nn=1Z), (3.6)

where M,N ∈ N0 with M + 2N ≥ 3. In particular, this includes the groups

∗Mm=1Z/2Z (3 ≤M <∞)

and the (non-abelian) free groups

FN = ∗Nn=1Z (2 ≤ N <∞).

Let e denote the identity element in Γ and put q = M + 2N − 1. By [12, p. 16–
18] the Cayley graph of Γ is a homogeneous tree of degree q + 1. We now work
toward obtaining the following result, stating that the conclusion of Theorem 3.6
also holds for Γ. The proof follows the methods from an unpublished manuscript
of U. Haagerup for the case Γ = FN . A different proof for the case Γ = FN was
later found by Pisier (cf. [24]).

Theorem 3.8. Consider a group Γ of the form (3.6). There is a completely
bounded Fourier multiplier of Γ which is not the coefficient of a uniformly bounded
representation of Γ.

The proof of Theorem 3.6 (in the case when G is SO0(1, n), SU(1, n), Sp(1, n)
(with n ≥ 2) or F4(−20)) followed from Theorem 2.5 and Proposition 3.3 and 3.5.
We will show that these three results are still true, when one replaces G with Γ.
Obtaining these three results for Γ was the approach taken by U. Haagerup in
his unpublished manuscript. We will now go through the argumentation needed
to verify these three results for Γ. Proposition 3.3 was proved for locally com-
pact groups, so this still holds true for Γ (the proof of Lemma 3.2 for Γ is in
fact considerably easier, since the part about strong continuity can be omitted).
The analogue of Theorem 2.5 for Γ follows from [20, Theorem 4.4] in which the
actual M0A(Γ)-norm of the spherical functions on Γ are calculated (the spherical
functions on Γ are not given in terms of Gelfand pairs, but this will be taken up
shortly). What remains in order to prove Theorem 3.8, is to prove Proposition 3.5
for Γ. To do this, we recall the definition of the spherical functions on Γ.

Let d : Γ× Γ → N0 be the graph distance on the Cayley graph of Γ (note that
d is invariant under left multiplication). A function f : Γ → C is called radial if

there exists a function ḟ : N0 → C such that

f(x) = ḟ(d(x, e)) (x ∈ Γ).
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Since d(x, e) is the reduced word length of a x ∈ Γ, we will often write |x| instead
of d(x, e). Let Cc(Γ)\ denote the finitely supported functions on Γ which are
radial (we let the superscripts \ on a set of functions on Γ denote the subset
consisting of the radial functions). It is well known that Cc(Γ)\ is commutative
with respect to convolution (cf. [13, Ch. 3 Lemma 1.1]). Analogously to the case
of Gelfand pairs, a function ϕ ∈ C(Γ)\ is called a spherical function on Γ if

f 7→ 〈f, ϕ〉 =
∑
x∈Γ

f(x)ϕ(x) (f ∈ Cc(Γ)\)

is a non-zero character (cf. [13, Ch. 3 Lemma 1.5]). The bounded spherical
functions are exactly those which extend to characters of `1(Γ)\. By going through
the proof of Proposition 3.5 (and Lemma 3.4) it is seen that everything works
out in the case of Γ if we can establish a radialization f 7→ f \ of functions on Γ
satisfying the following formulas corresponding to (3.1), (4) and (3.3):

‖f \‖1 ≤ ‖f‖1 (f ∈ `1(Γ)), (3.7)

‖ϕ\‖M0A(Γ) ≤ ‖ϕ‖M0A(Γ) (ϕ ∈M0A(Γ)) (3.8)

and
〈f \, ϕ〉 = 〈f \, ϕ\〉 = 〈f, ϕ\〉 (f ∈ `1(Γ), ϕ ∈ `∞(Γ)). (3.9)

Put
En = {x ∈ Γ : |x| = n} (n ∈ N0) (3.10)

and
Ex = E|x| = {y ∈ Γ : |y| = |x|} (x ∈ Γ). (3.11)

For h : Γ → C define h\ : Γ → C by

h\(x) =
1

|Ex|
∑
y∈Ex

h(y) (x ∈ Γ), (3.12)

where |E| denotes the number of elements in a set E. It is obvious that h\ is radial
and the reader may verify (3.9) using the same technique as for verifying (3.3).
Let f ∈ `1(Γ) and note that

‖f \‖1 =
∑
n∈N0

|
∑
y∈En

f(y)| ≤
∑
n∈N0

∑
y∈En

|f(y)| = ‖f‖1,

which verifies (3.7). Establishing (3.8) requires more effort and is postponed until
Proposition 3.12.

Let K be the group of isometries of the Cayley graph of Γ leaving invariant
the identity element e ∈ Γ. Then K is a subgroup of the infinite product

∞∏
n=0

S(En)

of the permutation groups S(En) of En. Each S(En) is finite and hence compact
in the discrete topology. By the Tychonoff theorem,

∏∞
n=0 S(En) is compact in

the product topology. Since the product topology on
∏∞

n=0 S(En) coincide with
the topology of pointwise convergence, one easily gets that K is a closed (and
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hence compact) subgroup. Let µK denote the normalized left and right invariant
Haar measure on K.

Remark 3.9. We mention that K is part of a Gelfand pair (G,K), for which Γ is
isomorphic (as a set) to G/K and the spherical functions on Γ are in one-to-one
correspondence with the spherical functions on (G,K). In fact, G is given by the
isometries of the Cayley graph of Γ, cf. [13, Ch. 3 § V] and [8].

Note that K acts transitively on the sets En for n ∈ N0. Hence, for x, y ∈ En
the measure under µK of

{k ∈ K : k(x) = y}
is independent of y (for fixed x) and therefore

µK({k ∈ K : k(x) = y}) =
1

|En|
(x, y ∈ En).

From this, it follows that

h\(x) =

∫
K

h(k(x))dµK(k) (x ∈ Γ).

Lemma 3.10. If s ∈ Ex and t ∈ Ey satisfy t−1s ∈ Ey−1x for x, y ∈ Γ, then there
exists k ∈ K such that k(x) = s and k(y) = t.

Proof. Put m = |x|, n = |y| and l = 1
2
(m + n − d(x, y)). Then l ∈ N0 and the

reduced word of y−1x is obtained by canceling the last l letters in y−1 and the
first l letters in x. Therefore,

x = ux′ and y = uy′,

where |u| = l, |x′| = m− l and |y′| = n− l, and where y′−1x′ is reduced. Similarly,

s = vs′ and t = vt′,

where |v| = l, |s′| = m− l and |t′| = n− l, and where t′−1s′ is reduced. See Figure
1 for an illustration of the shortest routes between points (e, x, y) and (e, s, t).

Figure 1: Shortest route between the points (e, x, y) and (e, s, t).
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Particularly, the three shortest routes from u to e, x and y starts on three different

edges from u, and the same holds for the three routes from v to e, s and t. Since
the Cayley graph of Γ is a homogeneous tree, there exists k ∈ K such that

k(u) = v, k(x) = s and k(y) = t,

which proves the lemma. In the above argument it was implicitly assumed that
l ≥ 1, m − l ≥ 1 and n − l ≥ 1, but it is easy to see that a modified argument
can be used if this is not the case. �

Lemma 3.11. For every function h : Γ → C

h\(y−1x) =

∫
K

h(k(y)−1k(x))dµK(k) (x, y ∈ Γ).

Proof. Consider two fixed elements x, y ∈ Γ. Notice that

d(k(x), k(y)) = d(x, y) (k ∈ K)

and therefore

|k(y)−1k(x)| = |y−1x| (k ∈ K),

which by (3.11) can be expressed as

k(y)−1k(x) ∈ Ey−1x (k ∈ K).

Put

Az = {k ∈ K : k(y)−1k(x) = z} (z ∈ Ey−1x).

Then K is equal to the disjoint union

K =
⊔

z∈Ey−1x

Az. (3.13)

Hence, ∫
K

h(k(y)−1k(x))dµK(k) =
∑

z∈Ey−1x

h(z)µK(Az). (3.14)

Thus, in order to prove Lemma 3.11 we must show that

µK(Az) =
1

|Ey−1x|
(z ∈ Ey−1x).

Put now

B = {(s, t) ∈ Γ× Γ : |s| = |x|, |t| = |y|, |t−1s| = |y−1x|}.

Then B is a finite subset of Γ × Γ, which is invariant under the action of K on
Γ× Γ given by

(s, t) 7→ (k(s), k(t)) (k ∈ K, s, t ∈ Γ).

Moreover, by Lemma 3.10 this action is transitive on B. Therefore, each of the
sets

As,t = {k ∈ K : k(x) = s, k(y) = t} ((s, t) ∈ B)
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has the same Haar measure in K, and since K is the disjoint union of all the sets
As,t,

µK(As,t) =
1

|B|
((s, t) ∈ B). (3.15)

Put

Bz = {(s, t) ∈ B : t−1s = z} (z ∈ Ey−1x).

Then

Az =
⊔

(s,t)∈Bz

As,t (z ∈ Ey−1x),

so by (3.15)

µK(Az) =
|Bz|
|B|

(z ∈ Ey−1x).

Let 1Ex and 1Ey denote the characteristic functions of Ex and Ey, respectively.
Then for z ∈ Ey−1x,

|Bz| = |{(s, t) ∈ Ex × Ey : t−1s = z}|
= |{t ∈ Γ : t ∈ Ey, tz ∈ Ex}|
=

∑
t∈Γ

1Ey(t)1Ex(tz)

= (1Ey ∗ 1Ex)(z),

where we have used that E−1
y = Ey. Since the set Cc(Γ)\ of radial functions with

finite support on Γ form an abelian algebra with respect to convolution, 1Ey ∗1Ex

is radial, and hence |Bz| is independent of z ∈ Ey−1x. Thus, by (3.13) we have

µK(Az) =
1

|Ey−1x|
(z ∈ Ey−1x),

which together with (3.14) proofs Lemma 3.11. �

Proposition 3.12. If ϕ ∈M0A(Γ), then ϕ\ ∈M0A(Γ) and

‖ϕ\‖M0A(Γ) ≤ ‖ϕ‖M0A(Γ).

Proof. Assume that ϕ ∈M0A(Γ) and use Proposition 0.1 to find a Hilbert space
H and bounded maps P,Q : Γ → H such that

ϕ(y−1x) = 〈P (x), Q(y)〉H (x, y ∈ Γ)

and

‖P‖∞‖Q‖∞ = ‖ϕ‖M0A(Γ).

Put H̃ = L2(K,H , µK) and define P̃ , Q̃ : Γ → H̃ by

(P̃ (x))(k) = P (k(x)) (x ∈ Γ, k ∈ K)

and

(Q̃(y))(k) = Q(k(y)) (y ∈ Γ, k ∈ K).
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For fixed x, y ∈ Γ the maps P̃ (x) and Q̃(y) are continuous and therefore measur-

able. Moreover, the norms of P̃ (x) and Q̃(y) satisfy

‖P̃ (x)‖2 =

∫
K

‖P (k(x))‖2
H dµK(k) ≤ ‖P‖2

∞ (x ∈ Γ)

and

‖Q̃(y)‖2 =

∫
K

‖Q(k(y))‖2
H dµK(k) ≤ ‖Q‖2

∞ (y ∈ Γ).

According to Lemma 3.11,

ϕ\(y−1x) =

∫
K

〈P (k(x)), Q(k(y))〉H dµK(k) = 〈P̃ (x), Q̃(y)〉 fH (x, y ∈ Γ),

from which we conclude, using Proposition 0.1, that ϕ\ ∈M0A(Γ) with

‖ϕ\‖M0A(Γ) ≤ ‖P̃‖∞‖Q̃‖∞ ≤ ‖P‖∞‖Q‖∞ = ‖ϕ‖M0A(Γ).

�

We have now established (3.7)–(3.9) and therefore finished the proof of Theo-
rem 3.8.

Corollary 3.13. Consider a countable discrete group Γ′ which has a subgroup Γ
of the form (3.6). There is a completely bounded Fourier multiplier of Γ′ which
is not the coefficient of a uniformly bounded representation of Γ′.

Proof. Let ϕ be a completely bounded Fourier multiplier of Γ which is not the
coefficients of any uniformly bounded representation of Γ. Let ϕ′ be the extension
of ϕ to Γ′ by zero outside Γ. According to Bożejko and Fendler (cf. [3, Lemma 1.2])
ϕ′ is a completely bounded Fourier multiplier of Γ′. If ϕ′ was the coefficient of
a uniformly bounded representation (π′,H ′) of Γ′, then the restriction of this
representation to Γ would give a contradiction with the choice of ϕ. �

Remark 3.14. From Corollary 3.13 it follows in particular that there is a com-
pletely bounded Fourier multiplier of F∞ which is not the coefficient of a uni-
formly bounded representation of F∞, where F∞ is the free group on infinitely
many generators.
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