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Abstract. If X is a compact Hausdorff space and σ is a homeomorphism of
X, then an involutive Banach algebra `1(Σ) of crossed product type is naturally
associated with the topological dynamical system Σ = (X, σ). We initiate
the study of the relation between two-sided ideals of `1(Σ) and C∗(Σ), the
enveloping C∗-algebra C(X) oσ Z of `1(Σ). Among others, we prove that the
closure of a proper two-sided ideal of `1(Σ) in C∗(Σ) is again a proper two-sided
ideal of C∗(Σ).

1. Introduction and overview

If X is a compact Hausdorff space and σ : X → X is a homeomorphism of X,
then an involutive Banach algebra `1(Σ) of crossed product type can be associated
with this dynamical system Σ = (X, σ); we shall recall the definition in Section 2.
Its C∗-enveloping algebra, denoted by C∗(Σ), is the crossed product C∗-algebra
C(X) oσ Z. Whereas C∗(Σ) is well-studied, the investigation of `1(Σ) itself is of
a more recent nature; this has been taken up in [2], [3], [4], and [5]. The algebra
`1(Σ) is more complicated than C∗(Σ). For example, it can occur that `1(Σ) has
a non-selfadjoint closed two-sided ideal (see [2, Theorem 4.4]), whereas this is, of
course, never the case for C∗(Σ).
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The study of `1(Σ) so far has proceeded without using what is known about
C∗(Σ). Still, it has turned out that some analogous properties of `1(Σ) and
C∗(Σ) are equivalent. For example, these algebras are either both simple (i.e.
have only trivial closed two-sided ideals), or both non-simple. The proof of this
fact proceeds via the properties of Σ: for each of these algebras, this simplicity
can be shown to X being an infinite set and Σ being minimal, i.e. to X being
an infinite set that has only trivial invariant closed subsets. Hence the simplicity
of one algebra also implies the simplicity of the other. It is desirable to have
some basic results, formulated directly in terms of the algebras and not using the
properties of the dynamical system, that can help transfer a property of the ideal
structure of one algebra to an analogous property of the ideal structure of the
other algebra. As the example of non-selfadjoint closed two-sided ideals makes
clear, one cannot expect to be able to do this in all cases, but one would hope
that something in this vein is still possible.

The present paper contains the first steps in this direction. We show that the
closure in C∗(Σ) of a proper not necessarily closed two-sided ideal of `1(Σ) is still
a proper two-sided ideal of C∗(Σ); see Theorem 3.7. We also investigate what the
necessary and sufficient condition is so that all closed two-sided ideals of `1(Σ)
can be reconstructed from their closure in C∗(Σ) by taking the intersection with
`1(Σ) again. The latter is possible if and only if the Z-action on X is free, i.e. if
and only if there are no periodic points of σ in X; see Theorem 3.12.

As a (now immediate) example of how such a relation between two-sided ideals
of `1(Σ) and C∗(Σ) can be exploited, we re-establish the fact that the minimality
of Σ implies the simplicity of `1(Σ), based on the knowledge that this is true for
C∗(Σ); see Corollary 3.9 for a more elaborate statement.

This paper is organized as follows.
In Section 2, we introduce `1(Σ) and its enveloping C∗-algebra C∗(Σ).
In Section 3, we establish our main results. The key idea in this section is

that there are some proper two-sided ideals of `1(Σ) for which it is immediately
obvious that their closure in C∗(Σ) is still a proper two-sided ideal of C∗(Σ), and
that they can be retrieved as the intersection of their closure in C∗(Σ) with `1(Σ).
As is the case for all unital involutive Banach algebras that are a subalgebra of
their enveloping C∗-algebra, all kernels of non-zero involutive representations of
`1(Σ) on Hilbert spaces have these two properties. The main technical result in
this section is then to show that all primitive ideals (in the purely algebraic sense
to be recalled in Section 3) of `1(Σ) are such kernels.

2. Two algebras

In this section, we introduce the two algebras playing a role in this paper, and
we recall a few standard facts about their relation. We also introduce notation
for the two closure operations figuring in this context, and state our convention
concerning ideals of an algebra.

Throughout this paper, X is a non-empty compact Hausdorff space and σ :
X → X is a homeomorphism. Hence Z acts on X, and we write Σ for short for
the topological dynamical system (X, σ). We let Aper(σ) and Per(σ) denote the
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aperiodic and the periodic points of σ, respectively. A subset S of X is invariant
if it is invariant under the Z-action, i.e. if σ(S) = S. The involutive algebra of
continuous (complex-valued) functions on X is denoted by C(X), and we write α
for the involutive automorphism of C(X) induced by σ, defined by α(f) = f ◦σ−1

for f ∈ C(X). Via n 7→ αn, Z acts on C(X).
With ‖ · ‖ denoting the supremum norm on C(X), we let

`1(Σ) = `1(Z, C(X)) =

{
a : Z → C(X) : ‖a‖ :=

∑
n∈Z

‖a(n)‖ < ∞

}
.

We supply the Banach space `1(Σ) with the usual twisted convolution as multi-
plication, defined by

(aa′)(n) =
∑
k∈Z

a(k) · αk(a′(n− k))

for n ∈ Z and a, a′ ∈ `1(Σ), and define an involution on `1(Σ) by

a∗(n) = αn(a(−n))

for n ∈ Z and a ∈ `1(Σ). Thus `1(Σ) becomes a unital Banach ∗-algebra with
isometric involution. If X consists of one point, then `1(Σ) is the group algebra
`1(Z) of the integers.

There is a convenient way to work with `1(Σ), which we shall now explain. For
n,m ∈ Z, let

χ{n}(m) =

{
1 if m = n;

0 if m 6= n,

where the constants denote the corresponding constant functions on X. Then
χ{0} is the identity element of `1(Σ). Let δ = χ{1}; then one sees easily that
χ{−1} = δ−1 = δ∗. If we put δ0 = χ{0}, then one computes that δn = χ{n} for
all n ∈ Z. We may view C(X) as a closed abelian ∗-subalgebra of `1(Σ), namely
as {a0δ

0 : a0 ∈ C(X)}. If a ∈ `1(Σ), and if we write fn for a(n) as a more
intuitive notation, then a =

∑
n∈Z fnδ

n and ‖a‖ =
∑

n∈Z ‖fn‖ < ∞. In the rest
of this paper, we shall constantly use this series representation a =

∑
n∈Z fnδ

n

of an arbitrary element a ∈ `1(Σ), with uniquely determined fn ∈ C(X) for
n ∈ Z. Thus, all in all, `1(Σ) is generated, as a unital Banach algebra, by an
isometrically isomorphic copy of C(X) and the elements δ and δ−1, subject to
the relation δfδ−1 = α(f) = f ◦ σ−1 for f ∈ C(X). The isometric involution is
determined by f ∗ = f for f ∈ C(X) and by δ∗ = δ−1.

Since `1(Σ) is a unital Banach algebra with an isometric involution, it has
an enveloping C∗-algebra as constructed in [6, Section 2.7]. We denote this en-
veloping C∗-algebra of `1(Σ) by C∗(Σ). As in the general construction of crossed
products of C∗-algebras (see [9]), the enveloping C∗-seminorm on `1(Σ) is actually
a norm; in this particular case, a somewhat shorter argument can also be used
to see this (see [3, p. 51]). Hence `1(Σ) can be viewed as a dense subalgebra of
C∗(Σ), and the inclusion of `1(Σ) into C∗(Σ) is continuous (even contractive).
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We infer from [6, Proposition 1.3.7] that a not necessarily unital involutive
representation of `1(Σ) or C∗(Σ) as bounded operators on a Hilbert space is al-
ways continuous (even contractive). As another standard fact, let us note that
[6, Proposition 2.7.4] shows that every not necessarily unital involutive represen-
tation of `1(Σ) extends uniquely to an involutive representation of C∗(Σ), and
that a bijection between the collections of involutive representations of the two
algebras is thus obtained.

If S ⊂ `1(Σ), then S`1 denotes its closure in `1(Σ). If S ⊂ C∗(Σ), then SC∗

denotes its closure in C∗(Σ).
Although we have written ‘two-sided ideal’ in the abstract and in Section 1

to avoid any possible misunderstanding, in the sequel of this paper, an ideal of
an algebra is always a two-sided ideal, unless otherwise stated. It need not (if
applicable) be closed.

3. Results

In this section, we take up the study of the relation between the ideals of `1(Σ)
and C∗(Σ). We shall show that the closure IC∗

of a proper ideal of `1(Σ) is still a
proper ideal of C∗(Σ); see Theorem 3.7. Furthermore, we shall investigate when
closed ideals of `1(Σ) can be recovered from their closure in C∗(Σ) in the most
obvious fashion; see Corollary 3.11 and Theorem 3.12. The key technical result
of this section is the fact that every primitive ideal of `1(Σ) is the kernel of a
non-zero involutive representation of `1(Σ); see Theorem 3.6.

The proof of Theorem 3.7 can be reduced to a particular case by the following
purely algebraic argument.

We recall that, if A is an algebra, an algebraically irreducible representation of
A is a non-zero homomorphism into the linear operators on a vector space E over
the pertinent field such that E has only trivial invariant subspaces. A primitive
ideal of A is the kernel of an algebraically irreducible representation of A. It was
already noted by Jacobson (see [7]) that a maximal ideal M of a unital algebra A
is a primitive ideal. Since it is this fact that allows us to make a reduction that is
instrumental for the proof of Theorem 3.7, we recall the short argument, which
is as follows. Since A is unital, the proper left ideal M is contained in a maximal
left ideal I. The representation of A on A/I is then algebraically irreducible,
so that Ker(π) is a primitive ideal. Since M is also a right ideal of A, one has
M ⊂ Ker(π). By the maximality of M , we conclude that M = Ker(π). Hence
M is a primitive ideal, as desired. Since in a unital algebra every proper ideal is
contained in a maximal ideal, we see that in a unital algebra every proper ideal
is contained in a primitive ideal.

As a consequence of these well-known results, if we want to prove that IC∗
is a

proper subset of C∗(Σ) for every proper ideal I of `1(Σ), then it is sufficient to do
this when I is a primitive ideal of `1(Σ). In order to fully exploit this reduction, it
is clearly important to have more information about the primitive ideals of `1(Σ),
and we shall now set out to collect the relevant facts from previous work. Before
doing so, however, let us note that, in the literature on involutive Banach algebras,
a primitive ideal is often defined as the kernel of a topologically irreducible (i.e.
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having only trivial closed invariant subspaces) non-zero involutive representation
of the pertinent algebra on a Hilbert space. This was also the notion employed
by the authors in [4], but in [5] the purely algebraic notion as in the present
paper was used. For C∗-algebras, there is no difference (this follows from the
combination of [6, Corollary 2.8.4] and [6, Corollary 2.9.6.(i)]), but otherwise
a little care is in order when using results (including those of the authors) for
primitive ideals of involutive Banach algebras as found in the literature.

We start by describing a family of finite dimensional algebraically irreducible
representations (hence also of primitive ideals) that are associated with periodic
points of σ. When combined with the standard relation between the involu-
tive representations of `1(Σ) and C∗(Σ) on Hilbert spaces, the existence of these
representations also follows from general considerations for crossed products of
C∗-algebras (see [9]), but the direct definition below suffices for our needs. More
can be said about these representations of `1(Σ) than we shall include here, and
we refer to [5, Section 3.2] for further information.

For x ∈ Per(σ) and λ ∈ T, we define a representation πx,λ of `1(Σ) as follows.
Let p be the period of X. Let Hx,λ be a Hilbert space with orthonormal basis
{e0, . . . , ep−1} and bounded operators B(Hx,λ). We let Tλ ∈ B(Hx,λ) be the
bounded linear operator on Hx,λ that is represented with respect to this basis by
the matrix 

0 0 . . . 0 λ
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

 .

For f ∈ C(X), we let ρx(f) be the bounded linear operator on Hx,λ that is
represented with respect to this basis by the matrix

f(x) 0 . . . 0
0 f(σx) . . . 0
...

...
. . .

...
0 0 . . . f(σp−1x)

 .

It is easily checked (we refer to [5, Lemma 3.1.2] for details), that there exists a
unique involutive representation πx,λ : `1(Σ) → B(Hx,λ) such that πx,λ �C(X)= ρx

and π(δ) = Tλ.
In [5, Theorem 3.5], the finite dimensional algebraically irreducible representa-

tions of `1(Σ) are classified. Amongst others, this classifications shows, somewhat
surprisingly, that the Hilbert space context is automatic for finite dimensional
algebraically irreducible representations of `1(Σ). This is the first part of the
following result. The description of the intersection of primitive ideals in (3.1)
follows from an explicit description of Ker(πx,λ) and the injectivity of the Fourier
transform on `1(Z); see [4, Proposition 2.10].

Proposition 3.1. If π is a finite dimensional algebraically irreducible represen-
tation of `1(Σ), then there exist x ∈ Per(σ) and λ ∈ T such that π and πx,λ are
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algebraically equivalent. In particular, Ker(π) = Ker(πx,λ). Hence every primi-
tive ideal of `1(Σ) that arises as the kernel of a finite dimensional algebraically
irreducible representation of `1(Σ) is also the kernel of a topologically irreducible
non-zero involutive representation of `1(Σ) on a Hilbert space, and it is a selfad-
joint ideal.

Furthermore,⋂
λ∈T

Ker(πx,λ) =

{∑
n∈Z

fnδ
n ∈ `1(Σ) : fn(σkx) = 0 for all n, k ∈ Z

}
. (3.1)

Remark 3.2. Given the algebraic irreducibility, the topological irreducibility of
the finite dimensional representations in Proposition 3.1 is, of course, immediate.
We have nevertheless included it, since an analogous statement is also true when
this is less obvious (see part (4) of Proposition 3.4). Although it is not relevant
for the proofs of Theorem 3.7, Corollary 3.11, or Theorem 3.12, the presence of
this topological irreducibility seems too remarkable not to include it; see also part
(3) of Theorem 3.6.

Now that all primitive ideals corresponding to finite dimensional algebraically
irreducible representations have been described, and have been related to invo-
lutive representations, we turn to the infinite dimensional case. In [5] it was
repeatedly used that the representation space of an algebraically irreducible rep-
resentation of `1(Σ) can always be normed in such a way that the algebra acts as
continuous operators and that the representation is a bounded map. This is an
immediate consequence (see e.g. [1, proof of Lemma 25.2]) of the fact that a max-
imal left ideal in a unital Banach algebra is closed. Combining this normability
(which also shows that primitive ideals of `1(Σ) are closed) with [5, Propositions
2.6, 4.2, and 4.17] yields the following.

Proposition 3.3. If π is an infinite dimensional algebraically irreducible repre-
sentation of `1(Σ), then there exists an infinite invariant subset S of X such that

Ker(π) =

{∑
n∈Z

fnδ
n ∈ `1(Σ) : fn �S= 0 for all n ∈ Z

}
. (3.2)

Hence Ker(π) is a self-adjoint ideal.
If X is metrizable, then there exists x ∈ Aper(σ) such that the description of

I in (3.2) holds with S = {σnx : n ∈ Z}.

In order to relate Ker(π) for an infinite dimensional algebraically irreducible
representation π to an involutive representation, we shall use (3.2), the represen-
tations πx,λ as described before for periodic points x and λ ∈ T, and a family of
infinite dimensional representations of `1(Σ) that are associated with aperiodic
points and that we shall now introduce. Here, again, more can be said than we
shall include in the present paper, and we refer to [5, Section 3.3] for further
information.

Fix x ∈ Aper(σ), and let 1 ≤ p < ∞. We let B(`p(Z)) denote the bounded
linear operators on `p(Z), and, for k ∈ Z, we let ek denote the element of `p(Z)
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with 1 in the kth coordinate and zero elsewhere. Let S ∈ B(`p(Z)) be the right
shift, determined by Sek = ek+1 for k ∈ Z. For f ∈ C(X), let πp

x(f) ∈ B(`p(Z))
be determined by πp

x(f)ek = f(σkx)ek for k ∈ Z. It is then easily seen (see [5,
Lemma 3.1] for details) that there exists a unique unital continuous representation
πp

x : `1(Σ) → B(`p(Z)) such that

πp
x

(∑
n∈Z

fnδ
n

)
=
∑
n∈Z

πp
x(f)Sn (3.3)

for all
∑

n∈Z fnδ
n ∈ `1(Σ). Furthermore, if p = 2, then π2

x is an involutive
representation of `1(Σ) on the Hilbert space l2(Z).

We collect a few relevant facts about these infinite dimensional representations,
the first three of which are taken from [5, Theorem 3.16 and Lemma 4.9]. Part
(2) is not too hard to establish, and part (3) is rather obvious, but part (1) is
considerably more intricate. Part (4) is immediate from the parts (1), (2), and
(3).

Proposition 3.4. Let x ∈ Aper(σ) and let 1 ≤ p < ∞. Then:

(1) The representation π1
x of `1(Σ) on `1(Z) is algebraically irreducible;

(2) For 1 < p < ∞, the representation πp
x of `1(Σ) on `p(Z) is topologically

irreducible, but not algebraically irreducible;
(3) The kernel of πp

x is a selfadjoint ideal of `1(Σ) that does not depend on p.
In fact,

Ker(πp
x) =

{∑
n∈Z

fnδ
n ∈ `1(Σ) : fn(σkx) = 0 for all n, k ∈ Z

}
; (3.4)

(4) The primitive ideal Ker(π1
x) of `1(Σ) is also the kernel of the topologically

irreducible involutive representation π2
x of `1(Σ) on the Hilbert space `2(Z).

Remark 3.5. Before proceeding, let us note that, if X is metrizable, the com-
bination of Propositions 3.1, 3.3 and 3.4 shows that we can describe the set
of primitive ideals of `1(Σ), even though we do not know all infinite dimen-
sional algebraically irreducible representations. This set is {Ker(πx,λ) : x ∈
Per(σ), λ ∈ T} ∪ {Ker(π1

x) : x ∈ Aper(σ)}. As a word of warning, let us
note that there are multiple occurrences in this enumeration. If x1, x2 ∈ Per(σ)
and λ1, λ2 ∈ T, then Ker(πx1,λ1) = Ker(πx2,λ2) if and only if the orbits of x1

and x2 coincide and λ1 = λ2. If x1, x2 ∈ Aper(σ), then Ker(π1
x1

) = Ker(π1
x2

)
if and only if the closures of the orbits of x1 and x2 coincide. Furthermore,
{Ker(πx,λ) : x ∈ Per(σ), λ ∈ T} ∩ {Ker(π1

x) : x ∈ Aper(σ)} = ∅. We refer to [5,
Lemma 4.14] for more details.

We collect the material on arbitrary primitive ideals in the next result. The
crucial link with involutive representations is established in the parts (2) and (3).

Theorem 3.6. Let I be a primitive ideal of `1(Σ).

(1) (a) If I is the kernel of a finite dimensional algebraically irreducible rep-
resentation of `1(Σ), then I = Ker(πx,λ) for some x ∈ Per(σ) and
λ ∈ T.
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Furthermore, πx,λ is a topologically irreducible involutive representa-
tion of `1(Σ) on a finite dimensional Hilbert space.

(b) If I is the kernel of an infinite dimensional algebraically irreducible
representation of `1(Σ), then there exists an infinite invariant subset
S of X such that

I =
⋂

x∈Per(σ)∩S
λ∈T

Ker(πx,λ) ∩
⋂

x∈Aper(σ)∩S

Ker(π2
x).

If X is metrizable, then there exists x ∈ Aper(σ) such that I =
Ker(π2

x).
Furthermore, all πx,λ that occur are topologically irreducible involutive
representations of `1(Σ) on finite dimensional Hilbert spaces, and all
π2

x that occur are topologically irreducible involutive representations
of `1(Σ) on the Hilbert space `2(Z).

(2) There exists a unital involutive representation π of `1(Σ) on a Hilbert
space such that I = Ker(π).

(3) If X is metrizable, then there exists a topologically irreducible involutive
representation π of `1(Σ) on a Hilbert space such that I = Ker(π).

Proof. Part (1a) is contained in Proposition 3.1.
The first statement in part (1b) follows by combining equations (3.2), (3.3), and

(3.4) for p = 2. The second statement in part (1b) follows from the metrizable
case in Proposition 3.3 and (3.4) for p = 2.

Since part (1) shows that, in both cases, I is the simultaneous kernel of a
suitable collection of involutive representations of `1(Σ), it is also the kernel of
the Hilbert direct sum of the representations in this collection; note that this
sum can be defined, since the pertinent representations are all contractive. This
establishes part (2).

Part (3) is immediate from part (1).
�

With part (2) of Theorem 3.6 available, we can now use the observation that
was already mentioned in the introduction: kernels of involutive representations
of `1(Σ) are well-behaved when their relation with C∗(Σ) is concerned.

Theorem 3.7. Let I be a not necessarily closed proper ideal of `1(Σ). Then the
closure IC∗

of I in C∗(Σ) is a proper closed ideal of C∗(Σ).

Proof. It is elementary that IC∗
is an ideal of C∗(Σ); it remains to be shown that

it is a proper subset of C∗(Σ). As explained earlier, we may assume that I is
a primitive ideal of `1(Σ). In that case, Theorem 3.6 shows that I = Ker(π)
for some non-zero involutive representation of `1(Σ) on a Hilbert space. If we
let πe denote the extension of π to a non-zero involutive representation of C∗(Σ)
on that Hilbert space, then Ker(πe) is a proper closed subset of C∗(Σ). Since

IC∗
= Ker(π)C∗

⊂ Ker(πe)C∗
= Ker(πe), we see that IC∗

is also a proper subset of
C∗(Σ). �
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Remark 3.8.

(1) An inspection of the structure of the proof of Theorem 3.7 shows that [5,
Proposition 2.6] is used, which, in turn, is based on the so-called intersec-
tion property of the commutant of C(X) in `1(Σ); see [2, Theorem 3.7].
The latter result is the rather non-trivial key result in [2]. Thus, in spite
of the simplicity of its formulation, Theorem 3.7 seems to be a reasonably
deep fact about the relation between `1(Σ) and C∗(Σ).

(2) For a not necessarily closed proper ideal I of `1(Σ), a necessary and suffi-
cient condition for IC∗

to be a proper ideal of C∗(Σ) is given in [4, Proposi-
tion 4.12]. In effect, we have shown that this condition is always satisfied,
with a proof that is in the spirit of the proof of [4, Proposition 4.12].

As an illustration how Theorem 3.7 can be used to deduce results about `1(Σ)
from results about C∗(Σ) without resorting to the properties of the dynamical sys-
tem, we re-establish the following result. It can already be found as [2, Theorem
4.2].

Corollary 3.9. The following are equivalent:

(1) The only closed ideals of `1(Σ) are {0} and `1(Σ);
(2) The only closed selfadjoint ideals of `1(Σ) are {0} and `1(Σ);
(3) X has an infinite number of points, and the only closed invariant subsets

of X are ∅ and X.

Proof. It is clear that (1) implies (2). If (3) does not hold, then it is not too
difficult to construct a non-trivial closed selfadjoint ideal of `1(Σ); we refer to [2,
proof of Theorem 4.2] for details. Thus (2) implies (3). The hard part is to show
that (3) implies (1), and it is here that Theorem 3.7 can be put to good use to be
able to apply a result about C∗(Σ). Indeed, [8, Theorem 5.4] shows that, if (3)
holds, then the algebra C∗(Σ) has only trivial closed ideals. Theorem 3.7 shows
that the same is then true for `1(Σ), which is (1). �

We shall now consider the relation between the closure operation in `1(Σ) and
in C∗(Σ). We start with the following observation, the first part of which was
already alluded to in Section 1.

Proposition 3.10.

(1) If I is the kernel of an involutive representation of `1(Σ) on a Hilbert
space, then I = IC∗∩ `1(Σ).

(2) If {Iα : α ∈ A} is a collection of closed ideals of `1(Σ) such that Iα =
Iα

C∗∩ `1(Σ) for all α ∈ A, then⋂
α∈A

Iα =
⋂
α∈A

Iα

C∗

∩ `1(Σ).

Proof. Suppose that I = Ker(π) for an involutive representation π of `1(Σ). As
in the proof of Theorem 3.7, we let πe denote the extension of π to an involutive
representation of C∗(Σ). Then, again as in that proof, we have IC∗

= Ker(π)C∗
⊂

Ker(πe)C∗
= Ker(πe). Hence IC∗∩ `1(Σ) ⊂ Ker(πe) ∩ `1(Σ) = Ker(π) = I. Since

obviously I ⊂ IC∗∩ `1(Σ), part (1) has been established.
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We turn to part (2). Using the properties of the Iα in the final step, we see
that ⋂

α∈A

Iα

C∗

∩ `1(Σ) ⊂

(⋂
α∈A

Iα
C∗

)
∩ `1(Σ) =

⋂
α∈A

(
Iα

C∗∩ `1(Σ)
)

=
⋂
α

Iα.

Since the reverse inclusion is obvious, the proof is complete. �

Combining Proposition 3.10 and part (2) of Theorem 3.6, we have the following.

Corollary 3.11. If I is an intersection of primitive ideals of `1(Σ), then I =
IC∗∩ `1(Σ).

We can now determine when all closed ideals of `1(Σ) can be retrieved from
their closure in C∗(Σ) as above.

Theorem 3.12. The following are equivalent:

(1) I`1= IC∗∩ `1(Σ) for every not necessarily closed ideal of `1(Σ);
(2) I = IC∗∩ `1(Σ) for every closed ideal of `1(Σ);
(3) Every closed ideal of `1(Σ) is an intersection of primitive ideals of `1(Σ);
(4) Every closed ideal of `1(Σ) is a selfadjoint ideal of `1(Σ);
(5) Every closed ideal of `1(Σ) is the kernel of an involutive representation of

`1(Σ) on a Hilbert space;
(6) There are no periodic points of σ in X.

Proof. It is clear that (1) implies (2).
Using the continuity of the inclusion of `1(Σ) in C∗(Σ), an application of (2)

to I
`1

shows that (2) implies (1).
Certainly (2) implies (4), because all closed ideals of C∗(Σ) are selfadjoint.
The equivalence of (3), (4), and (6) is the content of [5, Theorem 4.4].
We know from part (2) of Theorem 3.6 that every primitive ideal of `1(Σ) is

the kernel of an involutive representation of `1(Σ) on a Hilbert space. Therefore,
assuming (3), we see that (5) holds by taking a Hilbert direct sum.

It is evident that (5) implies (4).
The proof will be complete once we show that (3) implies (2), and this is

immediate from Corollary 3.11. �
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