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Abstract. For a linear map from Mm to Mn, besides the usual positivity,
there are two stronger notions, complete positivity and super-positivity. Given
a positive linear map ϕ we study a decomposition ϕ = ϕ(1) − ϕ(2) with com-
pletely positive linear maps ϕ(j) (j = 1, 2). Here ϕ(1) + ϕ(2) is of simple
form with norm small as possible. The same problem is discussed with super-
positivity in place of complete positivity.

1. Introduction and problems

Let Mk denote the space of k × k (complex) matrices. Each matrix in Mk is
considered as a linear map from Ck to itself. An element x of Ck is treated as
a column k-vector, correspondingly x∗ is a row k-vector. Then given a, b ∈ Ck,
according to the rule of matrix multiplication, a∗b is the inner product of a and
b, that is, a∗b = 〈a|b〉 while ba∗ is a matrix of rank-one in Mk. Be careful about
that the inner product is linear in b and anti-linear in a.

For selfadjoint X, Y ∈ Mk, the order relation X ≥ Y or equivalently Y ≤ X
is defined as X − Y is positive semi-definite. Therefore X ≥ 0 or 0 ≤ X simply
means that X is positive semi-definite. The norm ‖X‖ denotes the operator norm

‖X‖ := sup
‖a‖=1

‖Xa‖.

Copyright 2016 by the Tusi Mathematical Research Group.
Date: Received: Feb. 25, 2017; Accepted: Mar. 11, 2017.
2010 Mathematics Subject Classification. Primary 47C15; Secondary 47A30, 15A69.
Key words and phrases. Positive map, completely positive map, super-positive map, norm,

tensor product.
53



54 T. ANDO

Throughout this paper, we assume 2 ≤ m ≤ n. There are canonical identifica-
tions:

Mm ⊗Mn ∼Mm(Mn) ∼Mmn.

Here Mm(Mn) denotes the space of m×m block-matrices with entries in Mn and
the first identification is in the following way:

X ⊗ Y ∼ [ξjkY ]j,k for X = [ξjk]j,k ∈Mm, Y ∈Mn.

Here, for simplicity of notations, an m×m (numerical) matrix with (j, k)-entry
ξj,k is written as [ξjk]j,k. In analogy, an m×m block-matrix with (j, k)-block-entry
Sj,k is denoted by [Sjk]j,k.

Therefore a block matrix S = [Sjk]j,k ∈Mm(Mn) is uniquely assigned as

[Sjk]j,k ∼
∑
j,k

Ejk ⊗ Sjk,

where Ejk(j, k = 1, 2, . . . ,m) are matrix-units in Mm, that is, Ejk = eje
∗
k where

ej (j = 1, . . . ,m) is the canonical orthonormal basis of Cm.
In the following, M(m,n) denotes the real subspace of Mm(Mn), consisting of

selfadjoint elements, that is, the subspace of S = [Sjk]j,k with Sjk = S∗kj (j, k =
1, . . . ,m).

The cone of positive semi-definite (block) matrices in M(m,n) will be denoted
by P0. The order relation based on this cone is denoted by ≥ as usual. Therefore
S ≥ 0 means that S is positive semi-definite.

In the tensor product theory a fact of key importance is the following (see [3,
Chapter I-4]):

0 ≤ X ∈Mm, 0 ≤ Y ∈Mn =⇒ 0 ≤ X ⊗ Y.
The cone generated by X ⊗ Y with 0 ≤ X ∈ Mm and 0 ≤ Y ∈ Mn will be

denoted by P+. Because of finite dimensionality of M(m,n) it is known (see [2,
p.8]) that P+ is a (topologically) closed cone, contained in P0. A (block) matrix
in P+ is said to be separable.

The space M(m,n) becomes a real Hilbert space with inner product

〈T|S〉 := Tr(TS),

and we can consider the dual cone P− of the cone P+ defined by

S ∈ P− ⇐⇒ 〈S|T〉 ≥ 0 ∀ T ∈ P+. (1.1)

The cone P− is (topologically) closed by definition. In view of the closedness
of P+, according to a general theory of convexity, P+ is the dual cone of P−.

It is well-known that the cone P0 is selfdual, that is,

S ∈ P0 ⇐⇒ 〈S|T〉 ≥ 0 ∀ T ∈ P0.

As a consequence we have the inclusion relations:

P+ ⊂ P0 ⊂ P−.

Notice the algebraic relations:

P0 −P0 = P+ −P+ = M(m,n). (1.2)
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Given a linear map ϕ : Mm →Mn, its Choi matrix Cϕ [7, p.49] is defined by

Cϕ := [ϕ(Ejk)]j,k ∈Mm(Mn).

On the basis of the relation

ϕ(X) =
∑
j,k

ξjkϕ(Ejk) ∀ X = [ξjk]j,k ∈Mm,

the original map ϕ is uniquely recaptured from its Choi matrix.
Further ϕ ←→ Cϕ is a linear bijection between the space of selfadjoint linear

maps ϕ, that is,

ϕ(X∗) = ϕ(X)∗ ∀ X ∈Mm,

and the space M(m,n). This bijection is usually called the Jamiolkowski isomor-
phism (see [7, p.49]).

A linear map ϕ : Mm →Mn is said to be positive if ϕ(X) ≥ 0 whenever X ≥ 0.
Our starting point is the following relation, deduced from (1.1) and the definition
of P+ (see [2, Theorem 2.1]):

ϕ positive ⇐⇒ Cϕ ∈ P− (1.3)

⇐⇒
[
〈x|Sjkx〉

]
j,k
≥ 0 in Mm ∀ x ∈ Cn.

There is a welll-known notion, stronger than positivity. A linear map ϕ : Mm →
Mn is said to be completely positive if the linear map idN ⊗ ϕ : MN ⊗Mm ≡
MN(Mm)→MN(Mn) defined by

(idN ⊗ ϕ)([Tjk]j,k) := [ϕ(Tjk)]j,k ∀ Tjk ∈MN

is positive for all N = 1, 2, . . . .
Usefulness of use of the Choi matrix is seen in the following theorem of Choi

[4] (see [2, Theorem 2.2])

ϕ completely positive ⇐⇒ Cϕ ∈ P0. (1.4)

In accordance with (1.3) and (1.4), a positive linear map ϕ : Mm → Mn will
be said to be super-positive [2, p.11] when

Cϕ ∈ P+. (1.5)

Therefore a positive linear map ϕ is completely positive if and only if all eigen-
values of its Choi matrix are non-negative. On the contrary, there is no simple
test to check super-positivity of ϕ. An obvious condition, which guarantees its
super-positivity, is block-diagonality of the Choi matrix Cϕ = [Sjk]j,k, that is,

Sjk = 0 for j 6= k.

In this case Sjj ≥ 0 (j = 1, . . . ,m) is guaranteed by the positivity of ϕ.
Though not used in the subsequent discussion, we notice that the following

intrinsic characterization of super-positivity of ϕ was established by Horodecki’s
[5, Theorem 2]

ϕ super− positive ⇐⇒
ψ ◦ ϕ completely positive ∀ positive ψ : Mn →MN .
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As usual, the (mapping) norm of a linear map ϕ : Mm →Mn is defined by

‖ϕ‖ = sup{‖ϕ(X)‖; ‖X‖ ≤ 1, X ∈Mm}.

Here advantage of positivity of ϕ is seen in the following fact, a consequence of a
theorem of Russo-Dye [6] (see [7, Theorem 1.3.3]):

ϕ positive =⇒ ‖ϕ‖ = ‖ϕ(Im)‖. (1.6)

In view of (1.2), it is seen from (1.4) and (1.5) that every selfadjoint linear
map ϕ : Mm → Mn is written as difference of two completely positive (or even
super-positive) linear maps ϕ(j) (j = 1, 2);

ϕ = ϕ(1) − ϕ(2). (1.7)

Of course, such decomposition is never unique.
In this paper, which is a continuation of [2], we study the problem how to

construct a decomposition (1.7) of positive ϕ, for which the Choi matrix of ϕ(1) +
ϕ(2) is block-diagonal and its norm is small as possible.

2. Case of complete positivity

For notational convenience, let us define the partial trace χ(S) of S = [Sjk]j,k ∈
M(m,n) by

χ(S) :=
∑

j

Sjj ∈Mn.

Then (1.6) says that

ϕ positive =⇒ ‖ϕ‖ = ‖χ(Cϕ)‖. (2.1)

For selfadjoint S, its modulus |S| ∈ P0 is defined as the positive (semi-definite)
square root of S2. Further its positive part S+ and the negative part S− are defined
as

S+ := 1
2
· {|S|+ S} and S− := 1

2
· {|S| − S}.

All |S|, S+ and S− belong to the cone P0 and the decomposition

S = S+ − S−

is called the Jordan decomposition of S. (See [3, p. 99].)

Lemma 2.1. If ϕ is a selfadjoint linear map : Mm →Mn with Choi matrix Cϕ,

‖χ(|Cϕ|)‖ ≤ m · ‖ϕ‖.

A proof is found in [2, Theorem 6.2].

Theorem 2.2. Let ϕ be a selfadjoint linear map : Mm → Mn with Choi matrix
Cϕ. Define completely positive linear maps ϕ(1) and ϕ(2) by

Cϕ(1) := C+
ϕ and Cϕ(2) := C−

ϕ .

Then ϕ = ϕ(1) − ϕ(2) and ‖ϕ(1) + ϕ(2)‖ ≤ m · ‖ϕ‖.
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Proof. By (2.1) and Lemma 2.1

‖ϕ(1) + ϕ(2)‖ = ‖χ(|Cϕ|)‖ ≤ m · ‖ϕ‖.

�

When ϕ is positive, a decomposition (1.7) with completely positive ϕ(1) and
ϕ(2), for which Cϕ(1) + Cϕ(2) is block-diagonal and

ϕ(1)(Im) + ϕ(2)(Im) = m · ϕ(Im),

can be constructed rather easily.

We need a result in M(2,n) for its proof.

Lemma 2.3.[
A B
B∗ C

]
∈ P− =⇒

[
X ±B
±B∗ Y

]
∈ P0 ∃ X, Y ≥ 0, X + Y = A+ C.

Proof. By (1.3),

[
A B
B∗ C

]
∈ P− means that A,C ≥ 0 and

〈x|Ax〉 · 〈x|Cx〉 ≥ |〈x|Bx〉|2 ∀ x ∈ Cn,

which implies that

〈x|1
2
(A+ C)x〉 ≥ |〈x|Bx〉| ∀ x ∈ Cn. (2.2)

We may assume here that A + C is invertible. Then, with D := {1
2
(A + C)} 1

2 ,
(2.2) means that the numerical radius of D−1BD−1 is ≤ 1, that is,

‖x‖2 ≥ |〈x|(D−1BD−1)x〉| ∀ x ∈ Cn.

Then by [1, Theorem 1] there are R, T ≥ 0 such that R + T = 2In and[
R ±D−1BD−1

±D−1B∗D−1 T

]
≥ 0.

Let X := DRD and Y := DTD . Then

X + Y = A+ C and

[
X ±B
±B∗ Y

]
≥ 0.

�

To apply some results of M(2,n) to the case of M(m,n) the following trivial facts
will be used without any mention.

(1) Aj ≥ 0 (j = 1, 2, . . . ,m) =⇒ diag(A1, . . . , Am) ∈ P+ ⊂ P0.

(2) S = [Sjk]j,k ∈ P− =⇒
[
Spp Spq

Sqp Sqq

]
∈ P− (in M(2,n)) ∀ p < q.
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(3) If

[
A B
B∗ C

]
∈ P0 (resp. ∈ P+) in M(2,n) then, for any 1 ≤ j < k ≤ m,

the (block) matrix S ∈ P0 (resp. ∈ P+) where

Sjj = A, Sjk = B, Skj = B∗, Skk = C, and Spq = 0 if p 6= j or q 6= k.

Theorem 2.4. Let ϕ be a positive linear map : Mm → Mn. Then there are
completely positive linear maps ϕ(j) (j = 1, 2) : Mm → Mn such that ϕ = ϕ(1) −
ϕ(2), the Choi matrix of ϕ(1) + ϕ(2) is block-diagonal and

ϕ(1)(Im) + ϕ(2)(Im) = m · ϕ(Im).

Proof. Let Cϕ = [Sjk]j,k be the Choi matrix of ϕ. Since[
Sjj Sjk

Skj Skk

]
∈ P− in M(2,n) ∀ j < k

by Lemma 2.3 there are 0 ≤ Xj,k, Xk,j ∈Mn such that

Xj,k + Xk,j = Sjj + Skk and

[
Xj,k ±Sjk

±Skj Xk,j

]
≥ 0. (2.3)

Let ϕ(j) (j = 1, 2) be the selfadjoint linear maps: Mm →Mn with respective Choi
matrix Cϕ(j) (j = 1, 2) given by

Cϕ(1) := 1
2

{
Diag(Cϕ) + diag(A1, . . . , Am) + Cϕ

}
and

Cϕ(2) := 1
2

{
Diag(Cϕ) + diag(A1, . . . , Am)−Cϕ

}
,

where

Diag(Cϕ) := diag(S11, . . . , Smm)

and

Aj :=
∑

1≤k<j

Xk,j +
∑

j<k≤m

Xj,k (j = 1, 2, . . . ,m).

Then it is clear that ϕ = ϕ(1) − ϕ(2), and by (2.3)

χ
(
Cϕ(1) + Cϕ(2)

)
= m · χ(Cϕ),

and that the Choi matrix of ϕ(1) + ϕ(2) is block-diagonal. That Cϕ(j) ∈ P0 (j =

1, 2) comes also from (2.3). Therefore both ϕ(j) (j = 1, 2) are completely positive
by (1.4). �

Optimality of the constant m in Theorem 2.4 is pointed out in [2, p.28]. In
fact, when m = n, for the positive linear map ϕ0(X) := XT (transpose map) any
decomposition ϕ0 = ϕ(1) − ϕ(2) with completely positive ϕ(j) (j = 1, 2) satisfies
necessarily

‖ϕ(1) + ϕ(2)‖ ≥ m · ‖ϕ0‖.
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3. Case of super-positivity

In the case of decomposition with super-positive linear maps, there is no canon-
ical decomposition as Jordan decomposition in Section 2. However, the same idea
as in the proof of Theorem 2.4 can be used to find a suitable decomposition.

This approach was used already in [2, Theorem 7.4]. Let me present the same
result again to show how the difference of scalars, m and 2m− 1, appears.

Lemma 3.1. [
A B
B∗ C

]
∈ P− =⇒

[
A+ C ±B
±B∗ A+ C

]
∈ P+.

A proof is found in [2, Theorem 4.10]. This lemma corresponds to Lemma 2.3.

Theorem 3.2. Let ϕ be a positive linear map : Mm → Mn. Then there are
super-positive linear maps ϕ(j) (j = 1, 2) : Mm → Mn such that ϕ = ϕ(1) − ϕ(2),
the Choi matrix of ϕ(1) + ϕ(2) is block-diagonal and

ϕ(1)(Im) + ϕ(2)(Im) = (2m− 1) · ϕ(Im).

Proof. Let Cϕ = [Sjk]j,k be the Choi matrix of ϕ, and let ϕ(j) (j = 1, 2) be the
linear maps with respective Choi matrix Cϕ(j) (j = 1, 2) given by

Cϕ(1) := 1
2

{
(m− 1) ·Diag(Cϕ) + Im ⊗ χ(Cϕ) + Cϕ

}
and

Cϕ(2) := 1
2

{
(m− 1) ·Diag(Cϕ) + Im ⊗ χ(Cϕ)−Cϕ

}
.

It is clear that

χ
(
Cϕ(1) + Cϕ(2)

)
= (2m− 1) · χ(Cϕ),

and that the Choi matrix of ϕ(1) + ϕ(2) is block-diagonal.
It remains to show that Cϕ(j) ∈ P+ (j = 1, 2). As in the proof of Theorem 2.4,

this follows principally from Lemma 3.1:[
Sjj + Skk ±Sjk

±Skj Sjj + Skk

]
∈ P+ ∀ j < k.

�

Optimality of the constant 2m−1 in Theorem 3.2 is pointed out in [2, Theorem
7.6]. In fact, when m = n, for the (completely) positive map ϕ0(X) = X (identity
map), any decomposition ϕ0 = ϕ(1) − ϕ(2) with super-positive ϕ(j) (j = 1, 2)
satisfies necessarily

‖ϕ(1) + ϕ(2)‖ ≥ (2m− 1) · ‖ϕ0‖.
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