

Adv. Oper. Theory 3 (2018), no. 1, 53–60 http://doi.org/10.22034/aot.1702-1129 ISSN: 2538-225X (electronic) http://aot-math.org

POSITIVE MAP AS DIFFERENCE OF TWO COMPLETELY POSITIVE OR SUPER-POSITIVE MAPS

TSUYOSHI ANDO

This paper is dedicated to the memory of the late Professor Uffe Haagerup

Communicated by M. Tomforde

ABSTRACT. For a linear map from \mathbb{M}_m to \mathbb{M}_n , besides the usual positivity, there are two stronger notions, complete positivity and super-positivity. Given a positive linear map φ we study a decomposition $\varphi = \varphi^{(1)} - \varphi^{(2)}$ with completely positive linear maps $\varphi^{(j)}$ (j = 1, 2). Here $\varphi^{(1)} + \varphi^{(2)}$ is of simple form with norm small as possible. The same problem is discussed with superpositivity in place of complete positivity.

1. INTRODUCTION AND PROBLEMS

Let \mathbb{M}_k denote the space of $k \times k$ (complex) matrices. Each matrix in \mathbb{M}_k is considered as a linear map from \mathbb{C}^k to itself. An element x of \mathbb{C}^k is treated as a *column* k-vector, correspondingly x^* is a *row* k-vector. Then given $a, b \in \mathbb{C}^k$, according to the rule of matrix multiplication, a^*b is the inner product of a and b, that is, $a^*b = \langle a|b \rangle$ while ba^* is a matrix of rank-one in \mathbb{M}_k . Be careful about that the inner product is linear in b and anti-linear in a.

For selfadjoint $X, Y \in \mathbb{M}_k$, the order relation $X \ge Y$ or equivalently $Y \le X$ is defined as X - Y is positive semi-definite. Therefore $X \ge 0$ or $0 \le X$ simply means that X is positive semi-definite. The norm ||X|| denotes the operator norm

$$||X|| := \sup_{||a||=1} ||Xa||.$$

Copyright 2016 by the Tusi Mathematical Research Group.

Date: Received: Feb. 25, 2017; Accepted: Mar. 11, 2017.

²⁰¹⁰ Mathematics Subject Classification. Primary 47C15; Secondary 47A30, 15A69.

Key words and phrases. Positive map, completely positive map, super-positive map, norm, tensor product.

Throughout this paper, we assume $2 \le m \le n$. There are canonical identifications:

$$\mathbb{M}_m \otimes \mathbb{M}_n \sim \mathbb{M}_m(\mathbb{M}_n) \sim \mathbb{M}_{mn}$$

Here $\mathbb{M}_m(\mathbb{M}_n)$ denotes the space of $m \times m$ block-matrices with entries in \mathbb{M}_n and the first identification is in the following way:

$$X \otimes Y \sim [\xi_{jk}Y]_{j,k}$$
 for $X = [\xi_{jk}]_{j,k} \in \mathbb{M}_m, Y \in \mathbb{M}_n$.

Here, for simplicity of notations, an $m \times m$ (numerical) matrix with (j, k)-entry $\xi_{j,k}$ is written as $[\xi_{jk}]_{j,k}$. In analogy, an $m \times m$ block-matrix with (j, k)-block-entry $S_{j,k}$ is denoted by $[S_{jk}]_{j,k}$.

Therefore a block matrix $\mathbf{S} = [S_{jk}]_{j,k} \in \mathbb{M}_m(\mathbb{M}_n)$ is uniquely assigned as

$$[S_{jk}]_{j,k} \sim \sum_{j,k} E_{jk} \otimes S_{jk},$$

where $E_{jk}(j, k = 1, 2, ..., m)$ are *matrix-units* in \mathbb{M}_m , that is, $E_{jk} = e_j e_k^*$ where e_j (j = 1, ..., m) is the canonical orthonormal basis of \mathbb{C}^m .

In the following, $\mathbb{M}_{(m,n)}$ denotes the real subspace of $\mathbb{M}_m(\mathbb{M}_n)$, consisting of selfadjoint elements, that is, the subspace of $\mathbf{S} = [S_{jk}]_{j,k}$ with $S_{jk} = S_{kj}^*$ $(j, k = 1, \ldots, m)$.

The cone of positive semi-definite (block) matrices in $\mathbb{M}_{(m,n)}$ will be denoted by \mathfrak{P}_0 . The order relation based on this cone is denoted by \geq as usual. Therefore $\mathbf{S} \geq 0$ means that \mathbf{S} is positive semi-definite.

In the tensor product theory a fact of key importance is the following (see [3, Chapter I-4]):

$$0 \le X \in \mathbb{M}_m, \ 0 \le Y \in \mathbb{M}_n \quad \Longrightarrow \quad 0 \le X \otimes Y.$$

The cone generated by $X \otimes Y$ with $0 \leq X \in \mathbb{M}_m$ and $0 \leq Y \in \mathbb{M}_n$ will be denoted by \mathfrak{P}_+ . Because of finite dimensionality of $\mathbb{M}_{(m,n)}$ it is known (see [2, p.8]) that \mathfrak{P}_+ is a (topologically) closed cone, contained in \mathfrak{P}_0 . A (block) matrix in \mathfrak{P}_+ is said to be *separable*.

The space $\mathbb{M}_{(m,n)}$ becomes a real Hilbert space with inner product

$$\langle \mathbf{T} | \mathbf{S} \rangle := \operatorname{Tr}(\mathbf{TS}),$$

and we can consider the dual cone \mathfrak{P}_{-} of the cone \mathfrak{P}_{+} defined by

$$\mathbf{S} \in \mathfrak{P}_{-} \quad \Longleftrightarrow \quad \langle \mathbf{S} | \mathbf{T} \rangle \ge 0 \quad \forall \ \mathbf{T} \in \mathfrak{P}_{+}.$$
(1.1)

The cone \mathfrak{P}_{-} is (topologically) closed by definition. In view of the closedness of \mathfrak{P}_{+} , according to a general theory of convexity, \mathfrak{P}_{+} is the dual cone of \mathfrak{P}_{-} .

It is well-known that the cone \mathfrak{P}_0 is selfdual, that is,

$$\mathbf{S} \in \mathfrak{P}_0 \quad \Longleftrightarrow \quad \langle \mathbf{S} | \mathbf{T} \rangle \ge 0 \quad \forall \ \mathbf{T} \in \mathfrak{P}_0.$$

As a consequence we have the inclusion relations:

$$\mathfrak{P}_+ \subset \mathfrak{P}_0 \subset \mathfrak{P}_-$$

Notice the algebraic relations:

$$\mathfrak{P}_0 - \mathfrak{P}_0 = \mathfrak{P}_+ - \mathfrak{P}_+ = \mathbb{M}_{(m,n)}. \tag{1.2}$$

Given a linear map $\varphi : \mathbb{M}_m \to \mathbb{M}_n$, its Choi matrix \mathbf{C}_{φ} [7, p.49] is defined by

$$\mathbf{C}_{\varphi} := [\varphi(E_{jk})]_{j,k} \in \mathbb{M}_m(\mathbb{M}_n).$$

On the basis of the relation

$$\varphi(X) = \sum_{j,k} \xi_{jk} \varphi(E_{jk}) \quad \forall \ X = [\xi_{jk}]_{j,k} \in \mathbb{M}_m,$$

the original map φ is uniquely recaptured from its Choi matrix.

Further $\varphi \longleftrightarrow \mathbf{C}_{\varphi}$ is a linear bijection between the space of selfadjoint linear maps φ , that is,

$$\varphi(X^*) = \varphi(X)^* \quad \forall \ X \in \mathbb{M}_m,$$

and the space $\mathbb{M}_{(m,n)}$. This bijection is usually called the Jamiolkowski isomorphism (see [7, p.49]).

A linear map $\varphi : \mathbb{M}_m \to \mathbb{M}_n$ is said to be *positive* if $\varphi(X) \ge 0$ whenever $X \ge 0$. Our starting point is the following relation, deduced from (1.1) and the definition of \mathfrak{P}_+ (see [2, Theorem 2.1]):

$$\varphi \text{ positive } \iff \mathbf{C}_{\varphi} \in \mathfrak{P}_{-}$$

$$\iff \left[\langle x | S_{jk} x \rangle \right]_{j,k} \ge 0 \quad \text{in } \mathbb{M}_{m} \quad \forall \ x \in \mathbb{C}^{n}.$$

$$(1.3)$$

There is a welll-known notion, stronger than positivity. A linear map $\varphi : \mathbb{M}_m \to \mathbb{M}_n$ is said to be *completely positive* if the linear map $id_N \otimes \varphi : \mathbb{M}_N \otimes \mathbb{M}_m \equiv \mathbb{M}_N(\mathbb{M}_m) \to \mathbb{M}_N(\mathbb{M}_n)$ defined by

$$(id_N \otimes \varphi)([T_{jk}]_{j,k}) := [\varphi(T_{jk})]_{j,k} \quad \forall \ T_{jk} \in \mathbb{M}_N$$

is positive for all $N = 1, 2, \ldots$

Usefulness of use of the Choi matrix is seen in the following theorem of Choi [4] (see [2, Theorem 2.2])

$$\varphi$$
 completely positive $\iff \mathbf{C}_{\varphi} \in \mathfrak{P}_0.$ (1.4)

In accordance with (1.3) and (1.4), a positive linear map $\varphi : \mathbb{M}_m \to \mathbb{M}_n$ will be said to be *super-positive* [2, p.11] when

$$\mathbf{C}_{\varphi} \in \mathfrak{P}_+.$$
 (1.5)

Therefore a positive linear map φ is completely positive if and only if all eigenvalues of its Choi matrix are non-negative. On the contrary, there is no simple test to check super-positivity of φ . An obvious condition, which guarantees its super-positivity, is *block-diagonality* of the Choi matrix $\mathbf{C}_{\varphi} = [S_{ik}]_{i,k}$, that is,

$$S_{jk} = 0 \quad \text{for } j \neq k.$$

In this case $S_{jj} \ge 0$ (j = 1, ..., m) is guaranteed by the positivity of φ .

Though not used in the subsequent discussion, we notice that the following intrinsic characterization of super-positivity of φ was established by Horodecki's [5, Theorem 2]

$$\begin{array}{ll} \varphi & \text{super} - \text{positive} & \Longleftrightarrow \\ & \psi \circ \varphi & \text{completely positive} & \forall \text{ positive } \psi : \mathbb{M}_n \to \mathbb{M}_N. \end{array}$$

As usual, the (mapping) norm of a linear map $\varphi : \mathbb{M}_m \to \mathbb{M}_n$ is defined by

$$\|\varphi\| = \sup\{\|\varphi(X)\|; \|X\| \le 1, X \in \mathbb{M}_m\}.$$

Here advantage of positivity of φ is seen in the following fact, a consequence of a theorem of Russo-Dye [6] (see [7, Theorem 1.3.3]):

$$\varphi \quad \text{positive} \quad \Longrightarrow \quad \|\varphi\| = \|\varphi(I_m)\|. \tag{1.6}$$

In view of (1.2), it is seen from (1.4) and (1.5) that every selfadjoint linear map $\varphi : \mathbb{M}_m \to \mathbb{M}_n$ is written as difference of two completely positive (or even super-positive) linear maps $\varphi^{(j)}$ (j = 1, 2);

$$\varphi = \varphi^{(1)} - \varphi^{(2)}. \tag{1.7}$$

Of course, such decomposition is never unique.

In this paper, which is a continuation of [2], we study the problem how to construct a decomposition (1.7) of positive φ , for which the Choi matrix of $\varphi^{(1)} + \varphi^{(2)}$ is block-diagonal and its norm is small as possible.

2. Case of complete positivity

For notational convenience, let us define the partial trace $\chi(\mathbf{S})$ of $\mathbf{S} = [S_{jk}]_{j,k} \in \mathbb{M}_{(m,n)}$ by

$$\chi(\mathbf{S}) := \sum_{j} S_{jj} \in \mathbb{M}_n$$

Then (1.6) says that

$$\varphi \text{ positive } \implies \|\varphi\| = \|\chi(\mathbf{C}_{\varphi})\|.$$
 (2.1)

For selfadjoint \mathbf{S} , its modulus $|\mathbf{S}| \in \mathfrak{P}_0$ is defined as the positive (semi-definite) square root of \mathbf{S}^2 . Further its positive part \mathbf{S}^+ and the negative part \mathbf{S}^- are defined as

$$\mathbf{S}^+ := \frac{1}{2} \cdot \{ |\mathbf{S}| + \mathbf{S} \}$$
 and $\mathbf{S}^- := \frac{1}{2} \cdot \{ |\mathbf{S}| - \mathbf{S} \}$

All $|\mathbf{S}|$, \mathbf{S}^+ and \mathbf{S}^- belong to the cone \mathfrak{P}_0 and the decomposition

$$\mathbf{S} = \mathbf{S}^+ - \mathbf{S}$$

is called the Jordan decomposition of S. (See [3, p. 99].)

Lemma 2.1. If φ is a selfadjoint linear map : $\mathbb{M}_m \to \mathbb{M}_n$ with Choi matrix \mathbf{C}_{φ} ,

$$\|\chi(|\mathbf{C}_{\varphi}|)\| \leq m \cdot \|\varphi\|.$$

A proof is found in [2, Theorem 6.2].

Theorem 2.2. Let φ be a selfadjoint linear map : $\mathbb{M}_m \to \mathbb{M}_n$ with Choi matrix \mathbf{C}_{φ} . Define completely positive linear maps $\varphi^{(1)}$ and $\varphi^{(2)}$ by

$$\mathbf{C}_{\varphi^{(1)}} := \mathbf{C}_{\varphi}^+ \quad and \quad \mathbf{C}_{\varphi^{(2)}} := \mathbf{C}_{\varphi}^-.$$

Then $\varphi = \varphi^{(1)} - \varphi^{(2)}$ and $\|\varphi^{(1)} + \varphi^{(2)}\| \le m \cdot \|\varphi\|$.

Proof. By (2.1) and Lemma 2.1

$$\|\varphi^{(1)} + \varphi^{(2)}\| = \|\chi(|\mathbf{C}_{\varphi}|)\| \le m \cdot \|\varphi\|.$$

When φ is positive, a decomposition (1.7) with completely positive $\varphi^{(1)}$ and $\varphi^{(2)}$, for which $\mathbf{C}_{\varphi^{(1)}} + \mathbf{C}_{\varphi^{(2)}}$ is block-diagonal and

$$\varphi^{(1)}(I_m) + \varphi^{(2)}(I_m) = m \cdot \varphi(I_m),$$

can be constructed rather easily.

We need a result in $\mathbb{M}_{(2,n)}$ for its proof.

Lemma 2.3.

$$\begin{bmatrix} A & B \\ B^* & C \end{bmatrix} \in \mathfrak{P}_{-} \implies \begin{bmatrix} X & \pm B \\ \pm B^* & Y \end{bmatrix} \in \mathfrak{P}_{0} \quad \exists \ X, Y \ge 0, X + Y = A + C.$$
Proof. By (1.3),
$$\begin{bmatrix} A & B \\ B^* & C \end{bmatrix} \in \mathfrak{P}_{-} \text{ means that } A, C \ge 0 \text{ and}$$

$$\langle x | Ax \rangle \cdot \langle x | Cx \rangle \ge |\langle x | Bx \rangle|^{2} \quad \forall \ x \in \mathbb{C}^{n},$$

which implies that

$$\langle x|\frac{1}{2}(A+C)x\rangle \geq |\langle x|Bx\rangle| \quad \forall x \in \mathbb{C}^n.$$
 (2.2)

We may assume here that A + C is invertible. Then, with $D := \{\frac{1}{2}(A + C)\}^{\frac{1}{2}}$, (2.2) means that the *numerical radius* of $D^{-1}BD^{-1}$ is ≤ 1 , that is,

$$||x||^2 \ge |\langle x|(D^{-1}BD^{-1})x\rangle| \quad \forall \ x \in \mathbb{C}^n.$$

Then by [1, Theorem 1] there are $R, T \ge 0$ such that $R + T = 2I_n$ and

$$\begin{bmatrix} R & \pm D^{-1}BD^{-1} \\ \pm D^{-1}B^*D^{-1} & T \end{bmatrix} \ge 0.$$

Let X:=DRD and Y:=DTD . Then

$$X + Y = A + C$$
 and $\begin{bmatrix} X & \pm B \\ \pm B^* & Y \end{bmatrix} \ge 0.$

To apply some results of $\mathbb{M}_{(2,n)}$ to the case of $\mathbb{M}_{(m,n)}$ the following trivial facts will be used without any mention.

(1)
$$A_j \ge 0 \quad (j = 1, 2, \dots, m) \implies \operatorname{diag}(A_1, \dots, A_m) \in \mathfrak{P}_+ \subset \mathfrak{P}_0.$$

 $\begin{bmatrix} S & S \end{bmatrix}$

(2)
$$\mathbf{S} = [S_{jk}]_{j,k} \in \mathfrak{P}_{-} \implies \begin{bmatrix} S_{pp} & S_{pq} \\ S_{qp} & S_{qq} \end{bmatrix} \in \mathfrak{P}_{-} (\text{in } \mathbb{M}_{(2,n)}) \quad \forall \ p < q.$$

(3) If
$$\begin{bmatrix} A & B \\ B^* & C \end{bmatrix} \in \mathfrak{P}_0$$
 (resp. $\in \mathfrak{P}_+$) in $\mathbb{M}_{(2,n)}$ then, for any $1 \le j < k \le m$,
the (block) matrix $\mathbf{S} \in \mathfrak{P}_0$ (resp. $\in \mathfrak{P}_+$) where
 $S_{jj} = A, S_{jk} = B, S_{kj} = B^*, S_{kk} = C$, and $S_{pq} = 0$ if $p \ne j$ or $q \ne k$.

Theorem 2.4. Let φ be a positive linear map : $\mathbb{M}_m \to \mathbb{M}_n$. Then there are completely positive linear maps $\varphi^{(j)}$ (j = 1, 2) : $\mathbb{M}_m \to \mathbb{M}_n$ such that $\varphi = \varphi^{(1)} - \varphi^{(2)}$, the Choi matrix of $\varphi^{(1)} + \varphi^{(2)}$ is block-diagonal and

$$\varphi^{(1)}(I_m) + \varphi^{(2)}(I_m) = m \cdot \varphi(I_m)$$

Proof. Let $\mathbf{C}_{\varphi} = [S_{jk}]_{j,k}$ be the Choi matrix of φ . Since

$$\begin{bmatrix} S_{jj} & S_{jk} \\ S_{kj} & S_{kk} \end{bmatrix} \in \mathfrak{P}_{-} \quad \text{in } \mathbb{M}_{(2,n)} \quad \forall \ j < k$$

by Lemma 2.3 there are $0 \leq X_{j,k}, X_{k,j} \in \mathbb{M}_n$ such that

$$X_{j,k} + X_{k,j} = S_{jj} + S_{kk}$$
 and $\begin{bmatrix} X_{j,k} & \pm S_{jk} \\ \pm S_{kj} & X_{k,j} \end{bmatrix} \ge 0.$ (2.3)

Let $\varphi^{(j)}$ (j = 1, 2) be the selfadjoint linear maps: $\mathbb{M}_m \to \mathbb{M}_n$ with respective Choi matrix $\mathbf{C}_{\varphi^{(j)}}$ (j = 1, 2) given by

$$\mathbf{C}_{\varphi^{(1)}} := \frac{1}{2} \Big\{ \operatorname{Diag}(\mathbf{C}_{\varphi}) + \operatorname{diag}(A_1, \dots, A_m) + \mathbf{C}_{\varphi} \Big\}$$

and

$$\mathbf{C}_{\varphi^{(2)}} := \frac{1}{2} \Big\{ \operatorname{Diag}(\mathbf{C}_{\varphi}) + \operatorname{diag}(A_1, \dots, A_m) - \mathbf{C}_{\varphi} \Big\},\$$

where

$$\operatorname{Diag}(\mathbf{C}_{\varphi}) := \operatorname{diag}(S_{11}, \ldots, S_{mm})$$

and

$$A_j := \sum_{1 \le k < j} X_{k,j} + \sum_{j < k \le m} X_{j,k} \quad (j = 1, 2, \dots, m).$$

Then it is clear that $\varphi = \varphi^{(1)} - \varphi^{(2)}$, and by (2.3)

$$\chi\left(\mathbf{C}_{\varphi^{(1)}} + \mathbf{C}_{\varphi^{(2)}}\right) = m \cdot \chi(\mathbf{C}_{\varphi}),$$

and that the Choi matrix of $\varphi^{(1)} + \varphi^{(2)}$ is block-diagonal. That $\mathbf{C}_{\varphi^{(j)}} \in \mathfrak{P}_0$ (j = 1, 2) comes also from (2.3). Therefore both $\varphi^{(j)}$ (j = 1, 2) are completely positive by (1.4).

Optimality of the constant m in Theorem 2.4 is pointed out in [2, p.28]. In fact, when m = n, for the positive linear map $\varphi_0(X) := X^T$ (transpose map) any decomposition $\varphi_0 = \varphi^{(1)} - \varphi^{(2)}$ with completely positive $\varphi^{(j)}$ (j = 1, 2) satisfies necessarily

$$\|\varphi^{(1)} + \varphi^{(2)}\| \ge m \cdot \|\varphi_0\|.$$

58

POSITIVE MAP AS DIFFERENCE OF TWO MAPS

3. Case of super-positivity

In the case of decomposition with super-positive linear maps, there is no canonical decomposition as Jordan decomposition in Section 2. However, the same idea as in the proof of Theorem 2.4 can be used to find a suitable decomposition.

This approach was used already in [2, Theorem 7.4]. Let me present the same result again to show how the difference of scalars, m and 2m - 1, appears.

Lemma 3.1.

$$\begin{bmatrix} A & B \\ B^* & C \end{bmatrix} \in \mathfrak{P}_{-} \implies \begin{bmatrix} A+C & \pm B \\ \pm B^* & A+C \end{bmatrix} \in \mathfrak{P}_{+}.$$

A proof is found in [2, Theorem 4.10]. This lemma corresponds to Lemma 2.3.

Theorem 3.2. Let φ be a positive linear map : $\mathbb{M}_m \to \mathbb{M}_n$. Then there are super-positive linear maps $\varphi^{(j)}$ (j = 1, 2) : $\mathbb{M}_m \to \mathbb{M}_n$ such that $\varphi = \varphi^{(1)} - \varphi^{(2)}$, the Choi matrix of $\varphi^{(1)} + \varphi^{(2)}$ is block-diagonal and

$$\varphi^{(1)}(I_m) + \varphi^{(2)}(I_m) = (2m-1) \cdot \varphi(I_m)$$

Proof. Let $\mathbf{C}_{\varphi} = [S_{jk}]_{j,k}$ be the Choi matrix of φ , and let $\varphi^{(j)}$ (j = 1, 2) be the linear maps with respective Choi matrix $\mathbf{C}_{\varphi^{(j)}}$ (j = 1, 2) given by

$$\mathbf{C}_{\varphi^{(1)}} := \frac{1}{2} \Big\{ (m-1) \cdot \operatorname{Diag}(\mathbf{C}_{\varphi}) + I_m \otimes \chi(\mathbf{C}_{\varphi}) + \mathbf{C}_{\varphi} \Big\}$$

and

$$\mathbf{C}_{\varphi^{(2)}} := \frac{1}{2} \Big\{ (m-1) \cdot \operatorname{Diag}(\mathbf{C}_{\varphi}) + I_m \otimes \chi(\mathbf{C}_{\varphi}) - \mathbf{C}_{\varphi} \Big\}.$$

It is clear that

$$\chi\left(\mathbf{C}_{\varphi^{(1)}} + \mathbf{C}_{\varphi^{(2)}}\right) = (2m-1) \cdot \chi(\mathbf{C}_{\varphi}),$$

and that the Choi matrix of $\varphi^{(1)} + \varphi^{(2)}$ is block-diagonal.

It remains to show that $\mathbf{C}_{\varphi^{(j)}} \in \mathfrak{P}_+$ (j = 1, 2). As in the proof of Theorem 2.4, this follows principally from Lemma 3.1:

$$\begin{bmatrix} S_{jj} + S_{kk} & \pm S_{jk} \\ \pm S_{kj} & S_{jj} + S_{kk} \end{bmatrix} \in \mathfrak{P}_+ \quad \forall \ j < k.$$

Optimality of the constant 2m-1 in Theorem 3.2 is pointed out in [2, Theorem 7.6]. In fact, when m = n, for the (completely) positive map $\varphi_0(X) = X$ (*identity map*), any decomposition $\varphi_0 = \varphi^{(1)} - \varphi^{(2)}$ with super-positive $\varphi^{(j)}$ (j = 1, 2) satisfies necessarily

$$\|\varphi^{(1)} + \varphi^{(2)}\| \ge (2m-1) \cdot \|\varphi_0\|.$$

References

- T. Ando, Structure of operators with numerical radius one, Acta Sci. Math. (Szeged), 34 (1972), 169–178.
- T. Ando, Cones and norms in the tensor product of matrix spaces, Linear Algebra Appl., 379 (2004), 3–41.
- 3. R. Bhatia, Matrix Analysis, Springer, New York, 1997.
- M.-D. Choi, Completely positive linear map on complex matrices, Linear Algebra Appl. 10 (1975), 285–290.
- M. Horodecki, P. Horodecki, and R. Horodecki, Separability of mixed states: necessary and sufficient conditions, Phys. Lett. A 233 (1996), no. 1-2, 1–8.
- B. Russo and H. A. Dye, A note on unitary operators in C^{*}-algebra, Duke Math. J. 33 (1966), 413–416.
- 7. E. Størmer, Positive Linear Maps of Operator Algebras, Springer, New York, 2013.

HOKKAIDO UNIVERSITY (EMERITUS), JAPAN. *E-mail address*: ando@es.hokudai.ac.jp