Adv. Oper. Theory 3 (2018), no. 1, 53-60
http://doi.org/10.22034/aot.1702-1129
ISSN: 2538-225X (electronic)
http://aot-math.org

POSITIVE MAP AS DIFFERENCE OF TWO COMPLETELY POSITIVE OR SUPER-POSITIVE MAPS

TSUYOSHI ANDO
This paper is dedicated to the memory of the late Professor Uffe Haagerup

Communicated by M. Tomforde

Abstract

For a linear map from \mathbb{M}_{m} to \mathbb{M}_{n}, besides the usual positivity, there are two stronger notions, complete positivity and super-positivity. Given a positive linear map φ we study a decomposition $\varphi=\varphi^{(1)}-\varphi^{(2)}$ with completely positive linear maps $\varphi^{(j)}(j=1,2)$. Here $\varphi^{(1)}+\varphi^{(2)}$ is of simple form with norm small as possible. The same problem is discussed with superpositivity in place of complete positivity.

1. Introduction and problems

Let \mathbb{M}_{k} denote the space of $k \times k$ (complex) matrices. Each matrix in \mathbb{M}_{k} is considered as a linear map from \mathbb{C}^{k} to itself. An element x of \mathbb{C}^{k} is treated as a column k-vector, correspondingly x^{*} is a row k-vector. Then given $a, b \in \mathbb{C}^{k}$, according to the rule of matrix multiplication, $a^{*} b$ is the inner product of a and b, that is, $a^{*} b=\langle a \mid b\rangle$ while $b a^{*}$ is a matrix of rank-one in \mathbb{M}_{k}. Be careful about that the inner product is linear in b and anti-linear in a.

For selfadjoint $X, Y \in \mathbb{M}_{k}$, the order relation $X \geq Y$ or equivalently $Y \leq X$ is defined as $X-Y$ is positive semi-definite. Therefore $X \geq 0$ or $0 \leq X$ simply means that X is positive semi-definite. The norm $\|X\|$ denotes the operator norm

$$
\|X\|:=\sup _{\|a\|=1}\|X a\|
$$

[^0]Throughout this paper, we assume $2 \leq m \leq n$. There are canonical identifications:

$$
\mathbb{M}_{m} \otimes \mathbb{M}_{n} \sim \mathbb{M}_{m}\left(\mathbb{M}_{n}\right) \sim \mathbb{M}_{m n}
$$

Here $\mathbb{M}_{m}\left(\mathbb{M}_{n}\right)$ denotes the space of $m \times m$ block-matrices with entries in \mathbb{M}_{n} and the first identification is in the following way:

$$
X \otimes Y \sim\left[\xi_{j k} Y\right]_{j, k} \quad \text { for } X=\left[\xi_{j k}\right]_{j, k} \in \mathbb{M}_{m}, Y \in \mathbb{M}_{n}
$$

Here, for simplicity of notations, an $m \times m$ (numerical) matrix with (j, k)-entry $\xi_{j, k}$ is written as $\left[\xi_{j k}\right]_{j, k}$. In analogy, an $m \times m$ block-matrix with (j, k)-block-entry $S_{j, k}$ is denoted by $\left[S_{j k}\right]_{j, k}$.

Therefore a block matrix $\mathbf{S}=\left[S_{j k}\right]_{j, k} \in \mathbb{M}_{m}\left(\mathbb{M}_{n}\right)$ is uniquely assigned as

$$
\left[S_{j k}\right]_{j, k} \sim \sum_{j, k} E_{j k} \otimes S_{j k}
$$

where $E_{j k}(j, k=1,2, \ldots, m)$ are matrix-units in \mathbb{M}_{m}, that is, $E_{j k}=e_{j} e_{k}^{*}$ where $e_{j}(j=1, \ldots, m)$ is the canonical orthonormal basis of \mathbb{C}^{m}.

In the following, $\mathbb{M}_{(m, n)}$ denotes the real subspace of $\mathbb{M}_{m}\left(\mathbb{M}_{n}\right)$, consisting of selfadjoint elements, that is, the subspace of $\mathbf{S}=\left[S_{j k}\right]_{j, k}$ with $S_{j k}=S_{k j}^{*}(j, k=$ $1, \ldots, m)$.

The cone of positive semi-definite (block) matrices in $\mathbb{M}_{(m, n)}$ will be denoted by \mathfrak{P}_{0}. The order relation based on this cone is denoted by \geq as usual. Therefore $\mathrm{S} \geq 0$ means that S is positive semi-definite.

In the tensor product theory a fact of key importance is the following (see [3, Chapter I-4]):

$$
0 \leq X \in \mathbb{M}_{m}, 0 \leq Y \in \mathbb{M}_{n} \quad \Longrightarrow \quad 0 \leq X \otimes Y
$$

The cone generated by $X \otimes Y$ with $0 \leq X \in \mathbb{M}_{m}$ and $0 \leq Y \in \mathbb{M}_{n}$ will be denoted by \mathfrak{P}_{+}. Because of finite dimensionality of $\mathbb{M}_{(m, n)}$ it is known (see [2, p.8]) that \mathfrak{P}_{+}is a (topologically) closed cone, contained in \mathfrak{P}_{0}. A (block) matrix in \mathfrak{P}_{+}is said to be separable.

The space $\mathbb{M}_{(m, n)}$ becomes a real Hilbert space with inner product

$$
\langle\mathbf{T} \mid \mathbf{S}\rangle:=\operatorname{Tr}(\mathbf{T S}),
$$

and we can consider the dual cone \mathfrak{P}_{-}of the cone \mathfrak{P}_{+}defined by

$$
\begin{equation*}
\mathbf{S} \in \mathfrak{P}_{-} \quad \Longleftrightarrow \quad\langle\mathbf{S} \mid \mathbf{T}\rangle \geq 0 \quad \forall \mathbf{T} \in \mathfrak{P}_{+} . \tag{1.1}
\end{equation*}
$$

The cone \mathfrak{P}_{-}is (topologically) closed by definition. In view of the closedness of \mathfrak{P}_{+}, according to a general theory of convexity, \mathfrak{P}_{+}is the dual cone of \mathfrak{P}_{-}.

It is well-known that the cone \mathfrak{P}_{0} is selfdual, that is,

$$
\mathbf{S} \in \mathfrak{P}_{0} \quad \Longleftrightarrow \quad\langle\mathbf{S} \mid \mathbf{T}\rangle \geq 0 \quad \forall \mathbf{T} \in \mathfrak{P}_{0}
$$

As a consequence we have the inclusion relations:

$$
\mathfrak{P}_{+} \subset \mathfrak{P}_{0} \subset \mathfrak{P}_{-} .
$$

Notice the algebraic relations:

$$
\begin{equation*}
\mathfrak{P}_{0}-\mathfrak{P}_{0}=\mathfrak{P}_{+}-\mathfrak{P}_{+}=\mathbb{M}_{(m, n)} \tag{1.2}
\end{equation*}
$$

Given a linear map $\varphi: \mathbb{M}_{m} \rightarrow \mathbb{M}_{n}$, its Choi matrix $\mathbf{C}_{\varphi}[7$, p.49] is defined by

$$
\mathbf{C}_{\varphi}:=\left[\varphi\left(E_{j k}\right)\right]_{j, k} \in \mathbb{M}_{m}\left(\mathbb{M}_{n}\right)
$$

On the basis of the relation

$$
\varphi(X)=\sum_{j, k} \xi_{j k} \varphi\left(E_{j k}\right) \quad \forall X=\left[\xi_{j k}\right]_{j, k} \in \mathbb{M}_{m}
$$

the original map φ is uniquely recaptured from its Choi matrix.
Further $\varphi \longleftrightarrow \mathbf{C}_{\varphi}$ is a linear bijection between the space of selfadjoint linear maps φ, that is,

$$
\varphi\left(X^{*}\right)=\varphi(X)^{*} \quad \forall X \in \mathbb{M}_{m}
$$

and the space $\mathbb{M}_{(m, n)}$. This bijection is usually called the Jamiolkowski isomorphism (see [7, p.49]).

A linear map $\varphi: \mathbb{M}_{m} \rightarrow \mathbb{M}_{n}$ is said to be positive if $\varphi(X) \geq 0$ whenever $X \geq 0$. Our starting point is the following relation, deduced from (1.1) and the definition of \mathfrak{P}_{+}(see [2, Theorem 2.1]):

$$
\begin{align*}
& \varphi \text { positive } \Longleftrightarrow \quad \mathbf{C}_{\varphi} \in \mathfrak{P}_{-} \tag{1.3}\\
& \Longleftrightarrow \quad {\left[\left\langle x \mid S_{j k} x\right\rangle\right]_{j, k} \geq 0 \quad \text { in } \mathbb{M}_{m} \quad \forall x \in \mathbb{C}^{n} . }
\end{align*}
$$

There is a welll-known notion, stronger than positivity. A linear map $\varphi: \mathbb{M}_{m} \rightarrow$ \mathbb{M}_{n} is said to be completely positive if the linear map $i d_{N} \otimes \varphi: \mathbb{M}_{N} \otimes \mathbb{M}_{m} \equiv$ $\mathbb{M}_{N}\left(\mathbb{M}_{m}\right) \rightarrow \mathbb{M}_{N}\left(\mathbb{M}_{n}\right)$ defined by

$$
\left(i d_{N} \otimes \varphi\right)\left(\left[T_{j k}\right]_{j, k}\right):=\left[\varphi\left(T_{j k}\right)\right]_{j, k} \quad \forall T_{j k} \in \mathbb{M}_{N}
$$

is positive for all $N=1,2, \ldots$.
Usefulness of use of the Choi matrix is seen in the following theorem of Choi [4] (see [2, Theorem 2.2])

$$
\begin{equation*}
\varphi \text { completely positive } \Longleftrightarrow \mathbf{C}_{\varphi} \in \mathfrak{P}_{0} \tag{1.4}
\end{equation*}
$$

In accordance with (1.3) and (1.4), a positive linear map $\varphi: \mathbb{M}_{m} \rightarrow \mathbb{M}_{n}$ will be said to be super-positive [2, p.11] when

$$
\begin{equation*}
\mathbf{C}_{\varphi} \in \mathfrak{P}_{+} \tag{1.5}
\end{equation*}
$$

Therefore a positive linear map φ is completely positive if and only if all eigenvalues of its Choi matrix are non-negative. On the contrary, there is no simple test to check super-positivity of φ. An obvious condition, which guarantees its super-positivity, is block-diagonality of the Choi matrix $\mathbf{C}_{\varphi}=\left[S_{j k}\right]_{j, k}$, that is,

$$
S_{j k}=0 \quad \text { for } j \neq k
$$

In this case $S_{j j} \geq 0(j=1, \ldots, m)$ is guaranteed by the positivity of φ.
Though not used in the subsequent discussion, we notice that the following intrinsic characterization of super-positivity of φ was established by Horodecki's [5, Theorem 2]

$$
\begin{aligned}
& \varphi \text { super - positive } \Longleftrightarrow \\
& \psi \circ \varphi \text { completely positive } \forall \text { positive } \psi: \mathbb{M}_{n} \rightarrow \mathbb{M}_{N} .
\end{aligned}
$$

As usual, the (mapping) norm of a linear map $\varphi: \mathbb{M}_{m} \rightarrow \mathbb{M}_{n}$ is defined by

$$
\|\varphi\|=\sup \left\{\|\varphi(X)\| ;\|X\| \leq 1, X \in \mathbb{M}_{m}\right\}
$$

Here advantage of positivity of φ is seen in the following fact, a consequence of a theorem of Russo-Dye [6] (see [7, Theorem 1.3.3]):

$$
\begin{equation*}
\varphi \text { positive } \quad \Longrightarrow \quad\|\varphi\|=\left\|\varphi\left(I_{m}\right)\right\| \text {. } \tag{1.6}
\end{equation*}
$$

In view of (1.2), it is seen from (1.4) and (1.5) that every selfadjoint linear $\operatorname{map} \varphi: \mathbb{M}_{m} \rightarrow \mathbb{M}_{n}$ is written as difference of two completely positive (or even super-positive) linear maps $\varphi^{(j)}(j=1,2)$;

$$
\begin{equation*}
\varphi=\varphi^{(1)}-\varphi^{(2)} . \tag{1.7}
\end{equation*}
$$

Of course, such decomposition is never unique.
In this paper, which is a continuation of [2], we study the problem how to construct a decomposition (1.7) of positive φ, for which the Choi matrix of $\varphi^{(1)}+$ $\varphi^{(2)}$ is block-diagonal and its norm is small as possible.

2. Case of complete positivity

For notational convenience, let us define the partial trace $\chi(\mathbf{S})$ of $\mathbf{S}=\left[S_{j k}\right]_{j, k} \in$ $\mathbb{M}_{(m, n)}$ by

$$
\chi(\mathbf{S}):=\sum_{j} S_{j j} \in \mathbb{M}_{n}
$$

Then (1.6) says that

$$
\begin{equation*}
\varphi \text { positive } \quad \Longrightarrow \quad\|\varphi\|=\left\|\chi\left(\mathbf{C}_{\varphi}\right)\right\| \tag{2.1}
\end{equation*}
$$

For selfadjoint \mathbf{S}, its modulus $|\mathbf{S}| \in \mathfrak{P}_{0}$ is defined as the positive (semi-definite) square root of \mathbf{S}^{2}. Further its positive part \mathbf{S}^{+}and the negative part \mathbf{S}^{-}are defined as

$$
\mathbf{S}^{+}:=\frac{1}{2} \cdot\{|\mathbf{S}|+\mathbf{S}\} \quad \text { and } \quad \mathbf{S}^{-}:=\frac{1}{2} \cdot\{|\mathbf{S}|-\mathbf{S}\} .
$$

All $|\mathbf{S}|, \mathbf{S}^{+}$and \mathbf{S}^{-}belong to the cone \mathfrak{P}_{0} and the decomposition

$$
\mathbf{S}=\mathbf{S}^{+}-\mathbf{S}^{-}
$$

is called the Jordan decomposition of \mathbf{S}. (See [3, p. 99].)
Lemma 2.1. If φ is a selfadjoint linear map $: \mathbb{M}_{m} \rightarrow \mathbb{M}_{n}$ with Choi matrix \mathbf{C}_{φ},

$$
\left\|\chi\left(\left|\mathbf{C}_{\varphi}\right|\right)\right\| \leq m \cdot\|\varphi\| .
$$

A proof is found in [2, Theorem 6.2].
Theorem 2.2. Let φ be a selfadjoint linear map : $\mathbb{M}_{m} \rightarrow \mathbb{M}_{n}$ with Choi matrix \mathbf{C}_{φ}. Define completely positive linear maps $\varphi^{(1)}$ and $\varphi^{(2)}$ by

$$
\mathbf{C}_{\varphi^{(1)}}:=\mathbf{C}_{\varphi}^{+} \quad \text { and } \quad \mathbf{C}_{\varphi^{(2)}}:=\mathbf{C}_{\varphi}^{-}
$$

Then $\varphi=\varphi^{(1)}-\varphi^{(2)}$ and $\left\|\varphi^{(1)}+\varphi^{(2)}\right\| \leq m \cdot\|\varphi\|$.

Proof. By (2.1) and Lemma 2.1

$$
\left\|\varphi^{(1)}+\varphi^{(2)}\right\|=\left\|\chi\left(\left|\mathbf{C}_{\varphi}\right|\right)\right\| \leq m \cdot\|\varphi\| .
$$

When φ is positive, a decomposition (1.7) with completely positive $\varphi^{(1)}$ and $\varphi^{(2)}$, for which $\mathbf{C}_{\varphi^{(1)}}+\mathbf{C}_{\varphi^{(2)}}$ is block-diagonal and

$$
\varphi^{(1)}\left(I_{m}\right)+\varphi^{(2)}\left(I_{m}\right)=m \cdot \varphi\left(I_{m}\right),
$$

can be constructed rather easily.
We need a result in $\mathbb{M}_{(2, n)}$ for its proof.

Lemma 2.3.

$$
\left[\begin{array}{cc}
A & B \\
B^{*} & C
\end{array}\right] \in \mathfrak{P}_{-} \Longrightarrow \quad\left[\begin{array}{cc}
X & \pm B \\
\pm B^{*} & Y
\end{array}\right] \in \mathfrak{P}_{0} \quad \exists X, Y \geq 0, X+Y=A+C
$$

Proof. By (1.3), $\left[\begin{array}{cc}A & B \\ B^{*} & C\end{array}\right] \in \mathfrak{P}_{-}$means that $A, C \geq 0$ and

$$
\langle x \mid A x\rangle \cdot\langle x \mid C x\rangle \geq|\langle x \mid B x\rangle|^{2} \quad \forall x \in \mathbb{C}^{n},
$$

which implies that

$$
\begin{equation*}
\left\langle x \left\lvert\, \frac{1}{2}(A+C) x\right.\right\rangle \geq|\langle x \mid B x\rangle| \quad \forall x \in \mathbb{C}^{n} . \tag{2.2}
\end{equation*}
$$

We may assume here that $A+C$ is invertible. Then, with $D:=\left\{\frac{1}{2}(A+C)\right\}^{\frac{1}{2}}$, (2.2) means that the numerical radius of $D^{-1} B D^{-1}$ is ≤ 1, that is,

$$
\|x\|^{2} \geq\left|\left\langle x \mid\left(D^{-1} B D^{-1}\right) x\right\rangle\right| \quad \forall x \in \mathbb{C}^{n} .
$$

Then by [1, Theorem 1] there are $R, T \geq 0$ such that $R+T=2 I_{n}$ and

$$
\left[\begin{array}{cc}
R & \pm D^{-1} B D^{-1} \\
\pm D^{-1} B^{*} D^{-1} & T
\end{array}\right] \geq 0
$$

Let $X:=D R D$ and $Y:=D T D$. Then

$$
X+Y=A+C \quad \text { and } \quad\left[\begin{array}{cc}
X & \pm B \\
\pm B^{*} & Y
\end{array}\right] \geq 0
$$

To apply some results of $\mathbb{M}_{(2, n)}$ to the case of $\mathbb{M}_{(m, n)}$ the following trivial facts will be used without any mention.

$$
\begin{align*}
& A_{j} \geq 0 \quad(j=1,2, \ldots, m) \quad \Longrightarrow \quad \operatorname{diag}\left(A_{1}, \ldots, A_{m}\right) \in \mathfrak{P}_{+} \subset \mathfrak{P}_{0} . \tag{1}\\
& \mathbf{S}=\left[S_{j k}\right]_{j, k} \in \mathfrak{P}_{-} \quad \Longrightarrow \quad\left[\begin{array}{ll}
S_{p p} & S_{p q} \\
S_{q p} & S_{q q}
\end{array}\right] \in \mathfrak{P}_{-}\left(\text {in } \mathbb{M}_{(2, n)}\right) \quad \forall p<q . \tag{2}
\end{align*}
$$

(3) If $\left[\begin{array}{cc}A & B \\ B^{*} & C\end{array}\right] \in \mathfrak{P}_{0}$ (resp. $\in \mathfrak{P}_{+}$) in $\mathbb{M}_{(2, n)}$ then, for any $1 \leq j<k \leq m$, the (block) matrix $\mathbf{S} \in \mathfrak{P}_{0}$ (resp. $\in \mathfrak{P}_{+}$) where
$S_{j j}=A, S_{j k}=B, S_{k j}=B^{*}, S_{k k}=C$, and $S_{p q}=0$ if $p \neq j$ or $q \neq k$.
Theorem 2.4. Let φ be a positive linear map: $\mathbb{M}_{m} \rightarrow \mathbb{M}_{n}$. Then there are completely positive linear maps $\varphi^{(j)}(j=1,2): \mathbb{M}_{m} \rightarrow \mathbb{M}_{n}$ such that $\varphi=\varphi^{(1)}$ $\varphi^{(2)}$, the Choi matrix of $\varphi^{(1)}+\varphi^{(2)}$ is block-diagonal and

$$
\varphi^{(1)}\left(I_{m}\right)+\varphi^{(2)}\left(I_{m}\right)=m \cdot \varphi\left(I_{m}\right) .
$$

Proof. Let $\mathbf{C}_{\varphi}=\left[S_{j k}\right]_{j, k}$ be the Choi matrix of φ. Since

$$
\left[\begin{array}{cc}
S_{j j} & S_{j k} \\
S_{k j} & S_{k k}
\end{array}\right] \in \mathfrak{P}_{-} \quad \text { in } \mathbb{M}_{(2, n)} \quad \forall j<k
$$

by Lemma 2.3 there are $0 \leq X_{j, k}, \quad X_{k, j} \in \mathbb{M}_{n}$ such that

$$
X_{j, k}+X_{k, j}=S_{j j}+S_{k k} \quad \text { and } \quad\left[\begin{array}{cc}
X_{j, k} & \pm S_{j k} \tag{2.3}\\
\pm S_{k j} & X_{k, j}
\end{array}\right] \geq 0
$$

Let $\varphi^{(j)}(j=1,2)$ be the selfadjoint linear maps: $\mathbb{M}_{m} \rightarrow \mathbb{M}_{n}$ with respective Choi $\operatorname{matrix} \mathbf{C}_{\varphi^{(j)}}(j=1,2)$ given by

$$
\mathbf{C}_{\varphi^{(1)}}:=\frac{1}{2}\left\{\operatorname{Diag}\left(\mathbf{C}_{\varphi}\right)+\operatorname{diag}\left(A_{1}, \ldots, A_{m}\right)+\mathbf{C}_{\varphi}\right\}
$$

and

$$
\mathbf{C}_{\varphi^{(2)}}:=\frac{1}{2}\left\{\operatorname{Diag}\left(\mathbf{C}_{\varphi}\right)+\operatorname{diag}\left(A_{1}, \ldots, A_{m}\right)-\mathbf{C}_{\varphi}\right\}
$$

where

$$
\operatorname{Diag}\left(\mathbf{C}_{\varphi}\right):=\operatorname{diag}\left(S_{11}, \ldots, S_{m m}\right)
$$

and

$$
A_{j}:=\sum_{1 \leq k<j} X_{k, j}+\sum_{j<k \leq m} X_{j, k} \quad(j=1,2, \ldots, m) .
$$

Then it is clear that $\varphi=\varphi^{(1)}-\varphi^{(2)}$, and by (2.3)

$$
\chi\left(\mathbf{C}_{\varphi^{(1)}}+\mathbf{C}_{\varphi^{(2)}}\right)=m \cdot \chi\left(\mathbf{C}_{\varphi}\right)
$$

and that the Choi matrix of $\varphi^{(1)}+\varphi^{(2)}$ is block-diagonal. That $\mathbf{C}_{\varphi^{(j)}} \in \mathfrak{P}_{0}(j=$ $1,2)$ comes also from (2.3). Therefore both $\varphi^{(j)}(j=1,2)$ are completely positive by (1.4).

Optimality of the constant m in Theorem 2.4 is pointed out in [2, p.28]. In fact, when $m=n$, for the positive linear map $\varphi_{0}(X):=X^{T}$ (transpose map) any decomposition $\varphi_{0}=\varphi^{(1)}-\varphi^{(2)}$ with completely positive $\varphi^{(j)}(j=1,2)$ satisfies necessarily

$$
\left\|\varphi^{(1)}+\varphi^{(2)}\right\| \geq m \cdot\left\|\varphi_{0}\right\| .
$$

3. Case of super-positivity

In the case of decomposition with super-positive linear maps, there is no canonical decomposition as Jordan decomposition in Section 2. However, the same idea as in the proof of Theorem 2.4 can be used to find a suitable decomposition.

This approach was used already in [2, Theorem 7.4]. Let me present the same result again to show how the difference of scalars, m and $2 m-1$, appears.

Lemma 3.1.

$$
\left[\begin{array}{cc}
A & B \\
B^{*} & C
\end{array}\right] \in \mathfrak{P}_{-} \quad \Longrightarrow \quad\left[\begin{array}{cc}
A+C & \pm B \\
\pm B^{*} & A+C
\end{array}\right] \in \mathfrak{P}_{+}
$$

A proof is found in [2, Theorem 4.10]. This lemma corresponds to Lemma 2.3.
Theorem 3.2. Let φ be a positive linear map: $\mathbb{M}_{m} \rightarrow \mathbb{M}_{n}$. Then there are super-positive linear maps $\varphi^{(j)}(j=1,2): \mathbb{M}_{m} \rightarrow \mathbb{M}_{n}$ such that $\varphi=\varphi^{(1)}-\varphi^{(2)}$, the Choi matrix of $\varphi^{(1)}+\varphi^{(2)}$ is block-diagonal and

$$
\varphi^{(1)}\left(I_{m}\right)+\varphi^{(2)}\left(I_{m}\right)=(2 m-1) \cdot \varphi\left(I_{m}\right) .
$$

Proof. Let $\mathbf{C}_{\varphi}=\left[S_{j k}\right]_{j, k}$ be the Choi matrix of φ, and let $\varphi^{(j)}(j=1,2)$ be the linear maps with respective Choi matrix $\mathbf{C}_{\varphi^{(j)}}(j=1,2)$ given by

$$
\mathbf{C}_{\varphi^{(1)}}:=\frac{1}{2}\left\{(m-1) \cdot \operatorname{Diag}\left(\mathbf{C}_{\varphi}\right)+I_{m} \otimes \chi\left(\mathbf{C}_{\varphi}\right)+\mathbf{C}_{\varphi}\right\}
$$

and

$$
\mathbf{C}_{\varphi(2)}:=\frac{1}{2}\left\{(m-1) \cdot \operatorname{Diag}\left(\mathbf{C}_{\varphi}\right)+I_{m} \otimes \chi\left(\mathbf{C}_{\varphi}\right)-\mathbf{C}_{\varphi}\right\}
$$

It is clear that

$$
\chi\left(\mathbf{C}_{\varphi^{(1)}}+\mathbf{C}_{\varphi^{(2)}}\right)=(2 m-1) \cdot \chi\left(\mathbf{C}_{\varphi}\right)
$$

and that the Choi matrix of $\varphi^{(1)}+\varphi^{(2)}$ is block-diagonal.
It remains to show that $\mathbf{C}_{\varphi^{(j)}} \in \mathfrak{P}_{+}(j=1,2)$. As in the proof of Theorem 2.4, this follows principally from Lemma 3.1:

$$
\left[\begin{array}{cc}
S_{j j}+S_{k k} & \pm S_{j k} \\
\pm S_{k j} & S_{j j}+S_{k k}
\end{array}\right] \in \mathfrak{P}_{+} \quad \forall j<k
$$

Optimality of the constant $2 m-1$ in Theorem 3.2 is pointed out in [2, Theorem 7.6]. In fact, when $m=n$, for the (completely) positive map $\varphi_{0}(X)=X$ (identity map), any decomposition $\varphi_{0}=\varphi^{(1)}-\varphi^{(2)}$ with super-positive $\varphi^{(j)}(j=1,2)$ satisfies necessarily

$$
\left\|\varphi^{(1)}+\varphi^{(2)}\right\| \geq(2 m-1) \cdot\left\|\varphi_{0}\right\| .
$$

References

1. T. Ando, Structure of operators with numerical radius one, Acta Sci. Math. (Szeged), 34 (1972), 169-178.
2. T. Ando, Cones and norms in the tensor product of matrix spaces, Linear Algebra Appl., 379 (2004), 3-41.
3. R. Bhatia, Matrix Analysis, Springer, New York, 1997.
4. M.-D. Choi, Completely positive linear map on complex matrices, Linear Algebra Appl. 10 (1975), 285-290.
5. M. Horodecki, P. Horodecki, and R. Horodecki, Separability of mixed states: necessary and sufficient conditions, Phys. Lett. A 233 (1996), no. 1-2, 1-8.
6. B. Russo and H. A. Dye, A note on unitary operators in C^{*}-algebra, Duke Math. J. 33 (1966), 413-416.
7. E. Størmer, Positive Linear Maps of Operator Algebras, Springer, New York, 2013.

Hokkaido University (Emeritus), Japan.
E-mail address: ando@es.hokudai.ac.jp

[^0]: Copyright 2016 by the Tusi Mathematical Research Group.
 Date: Received: Feb. 25, 2017; Accepted: Mar. 11, 2017.
 2010 Mathematics Subject Classification. Primary 47C15; Secondary 47A30, 15A69.
 Key words and phrases. Positive map, completely positive map, super-positive map, norm, tensor product.

