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Abstract. We discuss an extension of the almost Hadamard matrix formal-
ism, to the case of complex matrices. Quite surprisingly, the situation here
is very different from the one in the real case, and our conjectural conclusion
is that there should be no such matrices, besides the usual Hadamard ones.
We verify this conjecture in a number of situations, and notably for most of
the known examples of real almost Hadamard matrices, and for some of their
complex extensions. We discuss as well some potential applications of our
conjecture, to the general study of complex Hadamard matrices.

Introduction

An Hadamard matrix is a square matrix H ∈MN(±1), whose rows are pairwise
orthogonal. Here is a basic example, which appears as a version of the 4×4 Walsh
matrix, and is also well-known for its use in the Grover algorithm:

K4 =


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1


Assuming that the matrix has N ≥ 3 rows, the orthogonality conditions be-

tween the rows give N ∈ 4N. A similar analysis with four or more rows, or any
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other kind of abstract or concrete consideration doesn’t give any further restric-
tion on N , and we have:

Hadamard Conjecture (HC). Hadamard matrices exist at any N ∈ 4N.

This conjecture is about 100 years old. See [12], [21].
Regarding the structure of the Hadamard matrices, the situation is complicated

as well. As an example, the above matrix K4 is circulant, obtained by cyclically
permuting the entries of v = (−1, 1, 1, 1). So, as a first question, one may wonder
whether one can fully classify the circulant Hadamard matrices. And the answer
here is given by:

Circulant Hadamard Conjecture (CHC). There are no circulant Hadamard
matrices at N > 4.

This conjecture is well-known too, and is about 50 years old. See [19].
Generally speaking, the difficulty in dealing with such questions comes from the

fact that the ±1 entries can be replaced by any two symbols, with the orthogonal-
ity condition stating that, when comparing two rows, the number of matchings
equals the number of mismatchings. We are therefore confronted to objects of
the following type:

♥ ♥ ♥ ♥
♥ ♣ ♥ ♣
♥ ♥ ♣ ♣
♥ ♣ ♣ ♥

Computers can of course help here, but only to some extent. There are as
well connections to abstract algebra. The big challenge, however, remains that
of inventing an efficient way of using classical analysis tools for the study of such
objects.

While the difficulties abound, and no clear strategy is available, there have
been many interesting advances on both the HC and the CHC, including:

(1) Strong numeric evidence for these conjectures. See [16], [18].
(2) The recent theory of cocyclic Hadamard matrices. See [13].
(3) An asymptotic counting result for the partial Hadamard matrices [17].

Quite surprisingly, the landscape drastically changes when allowing the en-
tries of H to be roots of unity of arbitrary order, or even more generally, arbi-
trary complex numbers of modulus 1. These latter matrices are called “complex
Hadamard”. Such matrices exist at any N , the basic example being the Fourier
matrix, FN = (wij)ij with w = e2πi/N :

FN =


1 1 1 . . . 1
1 w w2 . . . wN−1

1 w2 ω4 . . . w2(N−1)

. . . . . . . . . . . . . . .

1 wN−1 w2(N−1) . . . w(N−1)2


Here the terminology comes from the fact that FN/

√
N is the matrix of the

Fourier transform over the cyclic group ZN . More generally, associated to any
finite abelian group G is its Fourier matrix FG ∈ M|G|(C), which is complex
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Hadamard. As an example here, the above clubs and hearts design comes from
the Klein group Z2 × Z2.

There are many other examples, often coming in tricky parametric families.
In fact, the N × N complex Hadamard matrices form a real algebraic manifold
CN ⊂ MN(C), which appears as an intersection of smooth manifolds, CN =

MN(T) ∩
√
N · U(N), and the known results and examples suggest that this

intersection is highly singular.
The passage to the complex case brings as well a whole new range of potential

motivations and applications. Generally speaking, the complex Hadamard matri-
ces can be thought of as being “generalized Fourier matrices”, and this is where
the interest in them comes from. There are several potential applications of this
philosophy, to various fields such as coding theory, operator algebras, quantum
groups, quantum information, noncommutative geometry, linear algebra, abstract
functional analysis. See [23].

Leaving aside these interpretations, what matters the most are of course the
matrices themselves. In the case where the entries of the matrix are roots of unity
of a given order, there has been some structure and classification work, starting
from the 60’s, inspired from the real case [8]. In the pure complex case, however,
the systematic study started only quite recently, notably with two papers by
Haagerup:

(1) The classification up to N = 5 was done in [10]. The cases N = 2, 3, 4 are
elementary, but at N = 5 the study requires a mix of ad-hoc techniques,
of complex analysis and real algebraic geometry flavor, with F5 being the
only solution.

(2) A counting result for the circulant complex Hadamard matrices of prime
order was found in [11]. The proof uses Björck’s cyclic root picture [7],
then basic ideas from algebraic geometry, and some number-theoretical
ingredients.

There have been several further developments of the subject, mainly via varia-
tions of these methods. See [5], [6], [15], [22], [24]. The structure of the complex
Hadamard manifold remains, however, very unclear, and this even at N = 6. Un-
clear as well is the relation between the local or global geometry of this manifold,
and the above-mentioned collection of mathematical and physical “generalized
Fourier” questions.

The present paper is a continuation of our previous work [1], [2], [3], [4]. The
starting point there was the fact that for U ∈ O(N) we have, according to Cauchy-
Schwarz:

||U ||1 =
∑
ij

|Uij| ≤ N

(∑
ij

|Uij|2
)1/2

= N
√
N

The equality case appears when the numbers |Uij| are all equal, so when H =√
NU is Hadamard. Motivated by this fact, we called almost Hadamard matrix

(AHM) a matrix H ∈ MN(R) having the property that U = H/
√
N is a local

maximizer of the 1-norm on O(N). Such matrices exist at any N ∈ N, the
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simplest example being:

KN =
1√
N


2−N 2 . . . 2

2 2−N . . . 2
. . . . . . . . . . . .
2 2 . . . 2−N


The AHM have a quite interesting structure, and as explained in [4], their

construction requires some subtle combinatorial ingredients, such as the following
object:

Figure 1. The Paley biplane.

Summarizing, the AHM theory appears as a natural relaxation of the Hadamard
matrix theory, bringing a lot more freedom at the level of examples, and bringing
into the picture some classical analysis as well. At the level of the potential ap-
plications, we first did some work in connection with the HC and CHC, with the
conclusion (no surprise) that these questions are far too difficult. Then in [3] we
found a first true application of our theory, stating that under suitable assump-
tions, the submatrices of Hadamard matrices are AHM. The consequences of this
phenomenon are of course still to be explored.

In this paper we discuss an extension of the AHM formalism, to the case of
complex matrices. We have not done this before, simply because the world of
complex Hadamard matrices (CHM) looks quite rich already, and does not seem
to “need” such an extension. However, as we will see, the complex AHM picture
is in fact quite interesting.

As in the real case, the starting point is the Cauchy-Schwarz inequality ||U ||1 ≤
N
√
N , but this time over the unitary group U(N). The equality case happens

when H =
√
NU is CHM. Based on this observation, let us call complex AHM

a matrix H ∈MN(C) having the property that U = H/
√
N is a local maximizer

of the 1-norm on U(N).
Quite surprisingly, it is not clear at all on how to construct non-trivial examples,

with KN and other basic AHM failing to be complex AHM. We have in fact the
following statement, which emerges from our present work here:
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Almost Hadamard Conjecture (AHC). The only complex almost Hadamard
matrices are the complex Hadamard matrices.

In other words, our conjecture is that a local maximizer of the 1-norm on U(N)
must be in fact a global maximizer. We will present here a number of verifications
of this conjecture, with results regarding the following types of matrices:

(1) The AHM coming from block designs.
(2) The AHM which are circulant and symmetric.
(3) The straightforward complex generalizations of such matrices.

Regarding the potential applications, the situation is of course very different
from the one in the real case. Assuming that the AHC holds indeed, we would
have here a new approach to the CHM, which is by construction analytic and
local. This would be quite powerful, with many potential applications. As an
example here, numerical methods, such as the gradient descent one, could be used
for finding new classes of CHM.

The main problem, however, remains that of proving the AHC, or at least
finding a strategy for proving it. We will advance here on this question, with the
conclusion that a potential proof might come via a clever mix of geometric and
probabilistic techniques.

The paper is organized as follows: 1-2 are preliminary sections, in 3-4 we intro-
duce the complex almost Hadamard matrices, in 5-6 we study in detail the unitary
matrices coming from block designs, and in 7-8 we present a number of further
verifications of our conjecture, and we discuss some potential consequences.

1. The Jensen inequality

We are interested in this paper in the complex Hadamard matrices. The defi-
nition of these matrices is very simple, as follows:

Definition 1.1. A complex Hadamard matrix is a square matrix H ∈ MN(C)
whose entries are on the unit circle, |Hij| = 1, and whose rows are pairwise
orthogonal.

The basic example is the Fourier matrix, FN = (wij)ij with w = e2πi/N . This
appears as matrix of the Fourier transform over the cyclic group ZN . Here are
the first few such matrices, with the convention i, j ∈ {0, 1, . . . , N − 1}, and with
w = e2πi/3:

F2 =

(
1 1
1 −1

)
, F3 =

1 1 1
1 w w2

1 w2 1

 , F4 =


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i


In fact, associated to any finite abelian group G is its Fourier matrix FG ∈

M|G|(C). In terms of a decomposition G = ZN1 × . . . × ZNk
we have FG =

FN1⊗ . . .⊗FNK
, and in particular we see that FG is a complex Hadamard matrix.

In general, a complex Hadamard matrix can be thought of as being a “general-
ized Fourier matrix”, and this is where the interest in these matrices comes from.
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For a list of potential applications, for the most in connection with quantum
physics, see [23].

Now back to Definition 1.1, observe that the orthogonality condition between
the rows of H tells us that the rescaled matrix U = H/

√
N must belong to the

unitary group U(N). Following some previous observations, which go back to [1],
in the real case, we have the following analytic characterization of such matrices:

Proposition 1.2. If ψ : [0,∞) → R is strictly concave/convex, the quantity

F (U) =
∑
ij

ψ(|Uij|2)

over U(N) is maximized/minimized precisely by the rescaled Hadamard matrices.

Proof. We recall that Jensen’s inequality states that for ψ convex we have:

ψ

(
x1 + . . .+ xn

n

)
≤ ψ(x1) + . . .+ ψ(xn)

n

For ψ concave the reverse inequality holds. Also, the equality case holds either
when ψ is linear, or when the numbers x1, . . . , xn are all equal.

In our case, with n = N2 and with {x1, . . . , xn} = {|Uij|2|i, j = 1, . . . , N}, we
obtain that for any convex function ψ, the following holds:

ψ

(
1

N

)
≤ F (U)

N2

Thus we have F (U) ≥ N2ψ(1/N), and by assuming as in the statement that ψ
is strictly convex, the equality case holds precisely when the numbers |Uij|2 are

all equal, so when H =
√
NU is Hadamard. The proof for concave functions is

similar. �

The above result suggests the following definition:

Definition 1.3. Given a concave/convex function ψ : [0,∞) → R, we say that a

matrix H ∈MN(C) is ψ-almost Hadamard if U = H/
√
N belongs to U(N), and

U locally maximizes/minimizes over U(N) the following quantity:

F (U) =
∑
ij

ψ(|Uij|2)

Also, we call H absolute almost Hadamard if it is ψ-almost Hadamard, for any
ψ.

According to Proposition 1.2, any complex Hadamard matrix is an absolute
almost Hadamard matrix. Our purpose here will be to study the converse of this
fact.

Of particular interest for our considerations will be the power functions ψ(x) =
xp/2, which are concave at p ∈ [1, 2), and convex at p ∈ (2,∞). Observe that for
such a function we have F (U) = ||U ||pp, where the p-norm is defined by the usual
formula, namely:

||U ||p =

(∑
ij

|Uij|p
)1/p
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In particular, we can see that any absolute almost Hadamard matrix H ∈
MN(C) must be such that U = H/

√
N locally maximizes the p-norm on U(N)

at any p ∈ [1, 2), and locally minimizes the p-norm on U(N) at any p ∈ (2,∞).
In order to formulate now some classification results, we will need:

Definition 1.4. Two matrices H,K ∈MN(C) are called Hadamard equivalent if
one can pass from one to the other via a composition of the following operations:

(1) Permuting the rows, or permuting the columns.
(2) Multiplying a row, or a column, by a number of modulus 1.

At the level of classification results, it is known that, up to equivalence, the com-
plex Hadamard matrices at N = 2, 3, 4, 5 are precisely the matrices F2, F3, F

q
4 , F5,

where F q
4 is a certain one-parameter deformation of the Fourier matrix F4. See

[10].
With this notion in hand, let us go back to the almost Hadamard matrices,

and first study the case N = 2. The situation here is very simple, as follows:

Proposition 1.5. At N = 2 the various almost Hadamard notions coincide, and
as example, we have only the Fourier matrix F2, and its Hadamard conjugates.

Proof. We use the well-known fact that the unitary group U(2) is given by:

U(2) =

{
d

(
a b
−b̄ ā

) ∣∣∣|d| = 1, |a|2 + |b|2 = 1

}
Let us pick U ∈ U(2), written as above. For any ψ : [0,∞) → R we have then:∑

ij

ψ(|Uij|2) = 2
[
ψ(|a|) + ψ(|b|)

]
It follows that when ψ is strictly concave/convex, our matrix U locally maxi-

mizes or minimizes this quantity precisely when |a| = |b|. We conclude that any
type of “almost Hadamard” condition on H =

√
2U requires U to be as follows:

U =
d√
2

(
α β
−β̄ ᾱ

)
, |d| = |α| = |β| = 1

Now observe that this matrix is rescaled complex Hadamard. Thus by [10] the
matrix H =

√
2U must be Hadamard equivalent to the Fourier matrix F2, and

we are done. �

The following key fact, which in the real case goes back to [1], is crucial in the
study of almost Hadamard matrices:

Theorem 1.6. If U ∈ U(N) locally maximizes over U(N) the quantity

||U ||1 =
∑
ij

|Uij|

then all its entries are nonzero, Uij 6= 0 for any i, j.
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Proof. We use the same method as in the real case [1], namely a “rotation trick”.
Let us denote by U1, . . . , UN the rows of U , and let us perform a rotation of U1, U2:[

U t
1

U t
2

]
=

[
cos t · U1 − sin t · U2

sin t · U1 + cos t · U2

]
In order to compute the 1-norm, let us permute the columns of U , in such a way

that the first two rows look as follows, with X, Y,A,B having nonzero entries:[
U1

U2

]
=

[
0 0 Y A
0 X 0 B

]
The rotated matrix will look then as follows:[

U t
1

U t
2

]
=

[
0 − sin t ·X cos t · Y cos t · A− sin t ·B
0 cos t ·X sin t · y sin t · A+ cos t ·B

]
Our claim is that X, Y must be empty. Indeed, if A and B are not empty, let

us fix a column index k for both A,B, and set α = Ak, β = Bk. We have then:

|(U t
1)k|+ |(U t

2)k| = | cos t · α− sin t · β|+ | sin t · α+ cos t · β|

=
√

cos2 t · |α|2 + sin2 t · |β|2 − sin t cos t(αβ̄ + βᾱ)

+
√

sin2 t · |α|2 + cos2 t · |β|2 + sin t cos t(αβ̄ + βᾱ)

Since α, β 6= 0, the above function is derivable at t = 0, and we obtain:

∂ (|(U t
1)k|+ |(U t

2)k|)
∂t

=
sin 2t(|β|2 − |α|2)− cos 2t(αβ̄ + βᾱ)

2
√

cos2 t · |α|2 + sin2 t · |β|2 − sin t cos t(αβ̄ + βᾱ)

+
sin 2t(|α|2 − |β|2) + cos 2t(αβ̄ + βᾱ)

2
√

sin2 t · |α|2 + cos2 t · |β|2 + sin t cos t(αβ̄ + βᾱ)

Thus at t = 0, we obtain the following formula:

∂ (|(U t
1)k|+ |(U t

2)k|)
∂t

(0) =
αβ̄ + βᾱ

2

(
1

|β|
− 1

|α|

)
Now since U locally maximizes the 1-norm, both directional derivatives of

||U t||1 must be negative in the limit t → 0. On the other hand, if we denote by
C the contribution coming from the right (which might be zero in the case where
A and B are empty), i.e. the sum over k of the above quantities, we have:

∂||U t||1
∂t

∣∣t=0+
=

∂

∂t
∣∣t=0+

(| cos t|+ | sin t|)(||X||1 + ||Y ||1) + C

= (− sin t+ cos t)∣∣t=0
(||X||1 + ||Y ||1) + C

= ||X||1 + ||Y ||1 + C
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As for the derivative at left, this is given by the following formula:

∂||U t||1
∂t

∣∣t=0−
=

∂

∂t
∣∣t=0−

(| cos t|+ | sin t|)(||X||1 + ||Y ||1) + C

= (− sin t− cos t)∣∣t=0
(||X||1 + ||Y ||1) + C

= −||X||1 − ||Y ||1 + C

We therefore obtain the following inequalities, where C is as above:

||X||1 + ||Y ||1 + C ≤ 0

−||X||1 − ||Y ||1 + C ≤ 0

Consider now the matrix obtained from U by interchanging U1, U2. Since this
matrix must be as well a local maximizer of the 1-norm, and since the above
formula shows that C changes its sign when interchanging U1, U2, we obtain:

||X||1 + ||Y ||1 − C ≤ 0

−||X||1 − ||Y ||1 − C ≤ 0

The four inequalities that we have give altogether ||X||1 + ||Y ||1 = C = 0, and
from ||X||1 + ||Y ||1 = 0 we obtain that both X, Y must be empty, as claimed.

As a conclusion, up to a permutation of the columns, the first two rows must
be of the following form, with A,B having only nonzero entries:[

U1

U2

]
=

[
0 A
0 B

]
By permuting the rows of U , the same must hold for any two rows Ui, Uj. Now

since U cannot have a zero column, we conclude that U cannot have zero entries,
as claimed. �

As explained in [2], a p-norm analogue of the above result holds in the real
case, with p < 2. The extension of this result to the complex case, as well as
the generalization to exponents p > 2, or to arbitrary convex/concave functions,
remains an open problem.

Yet another interesting question regards the local minimizers of the 1-norm. It
is elementary to see that the global minimizers of the 1-norm are the generalized
permutation matrices (i.e. the matrices U ∈ U(N) having a maximal number of
0 entries), but at the level of local minimizers of the 1-norm, we have no results,
so far.

2. Critical points

We denote by U(N)∗ the set of matrices U ∈ U(N) having nonzero entries. In
view of Theorem 1.6 above, in order to investigate the one-norm almost Hadamard
matrices, or the absolute ones, we can restrict the attention to the matrices
U ∈ U(N)∗.

Our first task will be that of investigating the critical points over U(N)∗ of the
various functions of type F (U) =

∑
ij ψ(|Uij|2). We focus here on the first order,
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not taking into account the convexity/concavity properties of ψ, and it is techni-
cally convenient to use the function ϕ(x) = ψ(x2), with no extra assumptions on
it.

Following some previous work from [1], [2], we first have:

Proposition 2.1. Let ϕ : [0,∞) → R be a differentiable function. A matrix
U ∈ U(N)∗ is a critical point of the quantity

F (U) =
∑
ij

ϕ(|Uij|)

precisely when WU∗ is self-adjoint, where Wij = sgn(Uij)ϕ
′(|Uij|).

Proof. We regard U(N) as a real algebraic manifold, with coordinates Uij, Ūij.
This manifold consists by definition of the zeroes of the following polynomials:

Aij =
∑

k

UikŪjk − δij

Since U(N) is smooth, and so is a differential manifold in the usual sense,
it follows from the general theory of Lagrange multipliers that a given matrix
U ∈ U(N) is a critical point of F precisely when the condition dF ∈ span(dAij)
is satisfied.

Regarding the space span(dAij), this consists of the following quantities:∑
ij

MijdAij =
∑
ijk

Mij(UikdŪjk + ŪjkdUik)

=
∑
jk

(M tU)jkdŪjk +
∑
ik

(MŪ)ikdUik

=
∑
ij

(M tU)ijdŪij +
∑
ij

(MŪ)ijdUij

In order to compute dF , observe first that, with Sij = sgn(Uij), we have:

d|Uij| = d
√
UijŪij =

UijdŪij + ŪijdUij

2|Uij|
=

1

2
(SijdŪij + S̄ijdUij)

We therefore obtain, with Wij = sgn(Uij)ϕ
′(|Uij|) as in the statement:

dF =
∑
ij

d (ϕ(|Uij|)) =
∑
ij

ϕ′(|Uij|)d|Uij| =
1

2

∑
ij

WijdŪij + W̄ijdUij

We conclude that U ∈ U(N) is a critical point of F if and only if there exists
a matrix M ∈MN(C) such that the following two conditions are satisfied:

W = 2M tU , W̄ = 2MŪ

Now observe that these two equations can be written as follows:

M t =
1

2
WU∗ , M t =

1

2
UW ∗

Summing up, the critical point condition on U ∈ U(N) simply reads WU∗ =
UW ∗, which means that the matrix WU∗ must be self-adjoint, as claimed. �
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In order to process the above result, use the following notion, from [2]:

Definition 2.2. The color decomposition of a matrix U ∈ MN(C) is U =∑
r>0 rUr, where Ur ∈MN(T ∪ {0}) are the matrices given by

(Ur)ij =

{
sgn(Uij) if |Uij| = r

0 otherwise

which describe where the various modulus r entries stand.

The terminology comes from the fact that for certain applications, as those
that we will need here, the values of the various numbers r > 0 which appear
inside U are most of the time irrelevant, so we can think of these entries rather
as being “colors”.

We can now introduce the following notions:

Definition 2.3. A unitary matrix U ∈ U(N), with color decomposition U =∑
r>0 rUr, is called:

(1) Semi-balanced, if the matrices UrU
∗ and U∗Ur, with r > 0, are all self-

adjoint.
(2) Balanced, if the matrices UrU

∗
s and U∗

rUs, with r, s > 0, are all self-adjoint.

These conditions are quite natural, because for a unitary matrix U ∈ U(N),
the relations UU∗ = U∗U = 1 translate as follows, in terms of the color decom-
position: ∑

r>0

rUrU
∗ =

∑
r>0

rU∗Ur = 1∑
r,s>0

rsUrU
∗
s =

∑
r,s>0

rsU∗
rUs = 1

Thus, our balancing conditions express the fact that the various components
of the above sums all self-adjoint. Now back to our critical point questions, we
have:

Theorem 2.4. The joint critical points U ∈ U(N)∗ of the functions

F (U) =
∑
ij

ϕ(|Uij|)

with ϕ : (0,∞) → R, are precisely the semi-balanced matrices.

Proof. We use Proposition 2.1 above. The matrix constructed there is given by:

(WU∗)ij =
∑

k

sgn(Uik)ϕ
′(|Uik|)Ūjk

=
∑
r>0

ϕ′(r)
∑

k,|Uik|=r

sgn(Uik)Ūjk

=
∑
r>0

ϕ′(r)
∑

k

(Ur)ikŪjk

=
∑
r>0

ϕ′(r)(UrU
∗)ij
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Thus we have WU∗ =
∑

r>0 ϕ
′(r)UrU

∗, and when ϕ : (0,∞) → R varies, the
individual components of this sum must be all self-adjoint, as claimed. �

As a conclusion, algebrically speaking, we are led to the study of the semi-
balanced matrices. The point, however, is that most of the known examples of
semi-balanced matrices are actually balanced. So, while the analytic meaning of
the balancing condition remains quite unclear, we would like now to present a
few results on this class of matrices, which seems to be a quite interesting one,
from a combinatorial point of view.

As a first result, we have the following collection of simple facts:

Proposition 2.5. The class of unitary balanced matrices is as follows:

(1) It contains the matrices U = H/
√
N , with H ∈MN(C) Hadamard.

(2) It is stable under transposition, complex conjugation, and taking adjoints.
(3) It is stable under taking tensor products.
(4) It is stable under the Hadamard equivalence relation.
(5) It contains the matrix UN = 1

N
(2JN−N1N), where JN is the all-1 matrix.

Proof. All these results are elementary, the proof being as follows:
(1) Here U ∈ U(N) follows from the Hadamard condition, and since there is

only one color component, namely U1/
√

N = H, the balancing condition is satisfied
as well.

(2) Assuming that U =
∑

r>0 rUr is a color decomposition of a given matrix
U ∈ U(N), the following are color decompositions too:

U t =
∑
r>0

rU t
r , Ū =

∑
r>0

rŪr , U∗ =
∑
r>0

rU∗
r

But this observation gives all the assertions.
(3) Assuming that U =

∑
r>0 rUr and V =

∑
s>0 sVs are the color decomposi-

tions of two given unitary matrices U, V , we have:

U ⊗ V =
∑
r,s>0

rs · Ur ⊗ Vs =
∑
p>0

p
∑
p=rs

Ur ⊗ Vs

Thus the color components of W = U⊗V are the matrices Wp =
∑

p=rs Ur⊗Vs,
and it follows that if U, V are both balanced, then so is W = U ⊗ V .

(4) We recall that the Hadamard equivalence consists in permuting rows and
columns, and switching signs on rows and columns. Since all these operations
correspond to certain conjugations at the level of the matrices UrU

∗
s , U

∗
rUs, we

obtain the result.
(5) The matrix in the statement, which goes back to [4], is as follows:

UN =
1

N


2−N 2 . . . 2

2 2−N . . . 2
. . . . . . . . . . . .
2 2 . . . 2−N


Observe that this matrix is indeed unitary, its rows being of norm one, and

pairwise orthogonal. The color components of this matrix being U2/N−1 = 1N and
U2/N = JN − 1N , it follows that this matrix is balanced as well, as claimed. �
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Let us look now more in detail at UN , and at the matrices having similar
properties. We recall from [4] that an (a, b, c) pattern is a matrix M ∈MN(0, 1),
with N = a+2b+ c, such that any two rows look as follows, up to a permutation
of the columns:

0 . . . 0 0 . . . 0 1 . . . 1 1 . . . 1
0 . . . 0︸ ︷︷ ︸

a

1 . . . 1︸ ︷︷ ︸
b

0 . . . 0︸ ︷︷ ︸
b

1 . . . 1︸ ︷︷ ︸
c

As explained in [4], there are many interesting examples of (a, b, c) patterns,
coming from the balanced incomplete block designs (BIBD), and all these exam-
ples can produce two-entry unitary matrices, by replacing the 0, 1 entries with
suitable numbers x, y.

Now back to the matrix UN from Proposition 2.5 (5), observe that this matrix
comes from a (0, 1, N − 2) pattern. And also, independently of this, this matrix
has the remarkable property of being at the same time circulant and self-adjoint.

We have in fact the following result, generalizing Proposition 2.5 (4):

Proposition 2.6. The following matrices are balanced:

(1) The orthogonal matrices coming from (a, b, c) patterns.
(2) The unitary matrices which are circulant and self-adjoint.

Proof. These observations basically go back to [4], and then to [2], in the real
case. In the general case, the proofs are as follows:

(1) If we denote by P,Q ∈ MN(0, 1) the matrices describing the positions of
the 0, 1 entries inside the pattern, then we have the following formulae:

PP t = P tP = aJN + b1N

QQt = QtQ = cJN + b1N

PQt = P tQ = QP t = QtP = bJN − b1N

Since all these matrices are symmetric, U is balanced, as claimed.
(2) Assume that U ∈ U(N) is circulant, Uij = γj−i, and in addition self-adjoint,

which means γ̄i = γ−i. Consider the following sets, which must satisfy Dr = −Dr:

Dr = {k : |γr| = k}

In terms of these sets, we have the following formula:

(UrU
∗
s )ij =

∑
k

(Ur)ik(Ūs)jk

=
∑

k

δ|γk−i|,r sgn(γk−i) · δ|γk−j |,s sgn(γ̄k−j)

=
∑

k∈(Dr+i)∩(Ds+j)

sgn(γk−i)sgn(γ̄k−j)
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With k = i+ j −m we obtain, by using Dr = −Dr, and then γ̄i = γ−i:

(UrU
∗
s )ij =

∑
m∈(−Dr+j)∩(−Ds+i)

sgn(γj−m)sgn(γ̄i−m)

=
∑

m∈(Dr+i)∩(Dr+j)

sgn(γj−m)sgn(γ̄i−m)

=
∑

m∈(Dr+i)∩(Dr+j)

sgn(γ̄m−j)sgn(γm−i)

Now by interchanging i↔ j, and with m→ k, this formula becomes:

(UrU
∗
s )ji =

∑
k∈(Dr+i)∩(Dr+j)

sgn(γ̄k−i)sgn(γk−j)

We recognize here the complex conjugate of (UrU
∗
s )ij, as previously computed

above, and we therefore deduce that UrU
∗
s is self-adjoint. The proof for U∗

rUs is
similar. �

There are several interesting questions regarding the balanced unitary matrices.
A first question is that of understanding the precise analytic meaning of these
matrices, say as critical points of some cleverly chosen functions on U(N). A
second question is that of understanding the precise combinatorial meaning of
these matrices, in the general context of design theory [9], [20]. Finally, a third
question regards the general structure and classification of such matrices, for
instance at small values of N .

3. Hessian computations

Let us go back now to the Jensen inequality from Proposition 1.2 above, and
to the quantities F (U) =

∑
ij ψ(|Uij|2) appearing there. In order to study the

local extrema of these quantitites, consider the following function, depending on
t > 0 small:

f(t) = F (UetA) =
∑
ij

ψ(|(UetA)ij|2)

Here U ∈ U(N) is an arbitrary unitary, and A ∈MN(C) is assumed to be anti-
hermitian, A∗ = −A, with this latter assumption needed for having eA ∈ U(N).

Let us first compute the derivative of f . We have:

Proposition 3.1. We have the following formula,

f ′(t) = 2
∑
ij

ψ′(|(UetA)ij|2)Re
[
(UAetA)ij(UetA)ij

]
valid for any U ∈ U(N), and any A ∈MN(C) anti-hermitian.
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Proof. The matrices U, etA being both unitary, we have:

|(UetA)ij|2 = (UetA)ij(UetA)ij

= (UetA)ij((Ue
tA)∗)ji

= (UetA)ij(e
tA∗
U∗)ji

= (UetA)ij(e
−tAU∗)ji

We can now differentiate our function f , and by using once again the unitarity
of the matrices U, etA, along with the formula A∗ = −A, we obtain:

f ′(t) =
∑
ij

ψ′(|(UetA)ij|2)
[
(UAetA)ij(e

−tAU∗)ji − (UetA)ij(e
−tAAU∗)ji

]
=

∑
ij

ψ′(|(UetA)ij|2)
[
(UAetA)ij((e−tAU∗)∗)ij − (UetA)ij((e−tAAU∗)∗)ij

]
=

∑
ij

ψ′(|(UetA)ij|2)
[
(UAetA)ij(UetA)ij + (UetA)ij(UAetA)ij

]
But this gives the formula in the statement, and we are done. �

Before computing the second derivative, let us evaluate f ′(0). In terms of the
color decomposition U =

∑
r>0 rUr of our matrix, the result is as follows:

Proposition 3.2. We have the following formula,

f ′(0) = 2
∑
r>0

rψ′(r2)Re [Tr(U∗
rUA)]

where Ur ∈MN(T ∪ {0}) are the color components of U .

Proof. We use the formula in Proposition 3.1 above. At t = 0, we obtain:

f ′(0) = 2
∑
ij

ψ′(|Uij|2)Re
[
(UA)ijU ij

]
Consider now the color decomposition of U . We have the following formulae:

Uij =
∑
r>0

r(Ur)ij =⇒ |Uij|2 =
∑
r>0

r2|(Ur)ij|

=⇒ ψ′(|Uij|2) =
∑
r>0

ψ′(r2)|(Ur)ij|

Now by getting back to the above formula of f ′(0), we obtain:

f ′(0) = 2
∑
r>0

ψ′(r2)
∑
ij

Re
[
(UA)ijU ij|(Ur)ij|

]
Our claim now is that we have U ij|(Ur)ij| = r(Ur)ij. Indeed, in the case

|Uij| 6= r this formula reads U ij · 0 = r · 0, which is true, and in the case |Uij| = r
this formula reads rS̄ij ·1 = r ·S̄ij, which is once again true. We therefore conclude
that we have:

f ′(0) = 2
∑
r>0

rψ′(r2)
∑
ij

Re
[
(UA)ij(Ur)ij

]
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But this gives the formula in the statement, and we are done. �

As an illustration, for the function ψ(x) =
√
x, we obtain:

f ′(0) =
∑
r>0

Re [Tr(U∗
rUA)] = Re [Tr(S∗UA)] =

1

2
Tr [(S∗U − U∗S)A]

We conclude that the critical point condition, namely f ′(0) = 0 for any A anti-
hermitian, is equivalent to S∗U = U∗S, and so to the fact that S∗U is self-adjoint.

In general, we recover of course the algebraic results from section 2 above.
Let us compute now the second derivative. The result here is as follows:

Proposition 3.3. We have the following formula,

f ′′(0) = 4
∑
ij

ψ′′(|Uij|2)Re
[
(UA)ijU ij

]2
+2
∑
ij

ψ′(|Uij|2)Re
[
(UA2)ijU ij

]
+2
∑
ij

ψ′(|Uij|2)|(UA)ij|2

valid for any U ∈ U(N), and any A ∈MN(C) anti-hermitian.

Proof. We use the formula in Proposition 3.1 above, namely:

f ′(t) = 2
∑
ij

ψ′(|(UetA)ij|2)Re
[
(UAetA)ij(UetA)ij

]
Since the real part on the right, or rather its double, appears as the derivative

of the quantity |(UetA)ij|2, when differentiating a second time, we obtain:

f ′′(t) = 4
∑
ij

ψ′′(|(UetA)ij|2)Re
[
(UAetA)ij(UetA)ij

]2
+2
∑
ij

ψ′(|(UetA)ij|2)Re
[
(UAetA)ij(UetA)ij

]′
In order to compute now the missing derivative, observe that we have:[

(UAetA)ij(UetA)ij

]′
= (UA2etA)ij(UetA)ij + (UAetA)ij(UAetA)ij

= (UA2etA)ij(UetA)ij + |(UAetA)ij|2

Summing up, we have obtained the following formula:

f ′′(t) = 4
∑
ij

ψ′′(|(UetA)ij|2)Re
[
(UAetA)ij(UetA)ij

]2
+2
∑
ij

ψ′(|(UetA)ij|2)Re
[
(UA2etA)ij(UetA)ij

]
+2
∑
ij

ψ′(|(UetA)ij|2)|(UAetA)ij|2

But at t = 0 this gives the formula in the statement, and we are done. �
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For the function ψ(x) =
√
x, corresponding to the functional F (U) = ||U ||1,

there are some simplifications, that we will work out now in detail. First, we
have:

Proposition 3.4. Let U ∈ U(N)∗. For the function F (U) = ||U ||1 we have the
formula

f ′′(0) = Re
[
Tr(S∗UA2)

]
+
∑
ij

Im
[
(UA)ijSij

]2
|Uij|

valid for any anti-hermitian matrix A, where Uij = Sij|Uij|.

Proof. We use the formula in Proposition 3.3 above, with ψ(x) =
√
x. The

derivatives are here ψ′(x) = 1
2
√

x
and ψ′′(x) = − 1

4x
√

x
, and we obtain:

f ′′(0) = −
∑
ij

Re
[
(UA)ijU ij

]2
|Uij|3

+
∑
ij

Re
[
(UA2)ijU ij

]
|Uij|

+
∑
ij

|(UA)ij|2

|Uij|

= −
∑
ij

Re
[
(UA)ijSij

]2
|Uij|

+
∑
ij

Re
[
(UA2)ijSij

]
+
∑
ij

|(UA)ij|2

|Uij|

= Re
[
Tr(S∗UA2)

]
+
∑
ij

|(UA)ij|2 −Re
[
(UA)ijSij

]2
|Uij|

But this gives the formula in the statement, and we are done. �

We are therefore led to the following result, regarding the 1-norm:

Theorem 3.5. A matrix U ∈ U(N)∗ locally maximizes the one-norm on U(N)
precisely when S∗U is self-adjoint, where Sij = sgn(Uij), and when

Tr(S∗UA2) +
∑
ij

Im
[
(UA)ijSij

]2
|Uij|

≤ 0

holds, for any anti-hermitian matrix A ∈MN(C).

Proof. According to Proposition 2.1 and Proposition 3.4, the local maximizer
condition requires X = S∗U to be self-adjoint, and the following inequality to be
satisfied:

Re
[
Tr(S∗UA2)

]
+
∑
ij

Im
[
(UA)ijSij

]2
|Uij|

≤ 0

Now observe that since both X and A2 are self-adjoint, we have:

Re
[
Tr(XA2)

]
=

1

2

[
Tr(XA2) + Tr(A2X)

]
= Tr(XA2)

Thus we can remove the real part, and we obtain the inequality in the state-
ment. �
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As a general comment, all the above computations can be of course interpreted
by using more advanced geometric language. The unitary group U(N) is a Lie
group, and its tangent space at U ∈ U(N) is isomorphic to the corresponding Lie
algebra, which consists of the anti-hermitian matrices A ∈ MN(C). With this
picture in hand, our formulae for f ′(0) translate into the fact that the gradient
of the 1-norm is given by:

∇||U ||1 =
1

2
(S − US∗U)

Regarding now the second derivative, f ′′(0), our computations here provide us
with a formula for the Hessian of the 1-norm. Indeed, with the change of variables
A = iB on the tangent space, the Hessian is given by 〈B,H(B)〉 = −Φ(U,B),
where Φ(U, iA) is the quantity appearing in Theorem 3.5. In order to explicitely
compute now H, it is enough to apply to our formula the usual polarization
identity, namely:

〈A,H(B)〉 =
1

2
[〈A+B,H(A+B)〉 − 〈A,H(A)〉 − 〈B,H(B)〉]

We obtain that H is given by the following formula, with A,B ∈M sa
N (C):

〈A,H(B)〉 = −1

2
Tr[S∗U(AB +BA)] +

∑
ij

Re
[
(UA)ijSij

]
Re
[
(UB)ijSij

]
|Uij|

We will be back to more advanced geometric considerations in section 8 below.

4. Almost Hadamard matrices

Starting from this section, we restrict attention to the one-norm. We will be
interested in what follows in the following type of matrices:

Definition 4.1. A matrix H ∈ MN(C) is called complex almost Hadamard if

U = H/
√
N is unitary, and locally maximizes the 1-norm on U(N).

We already know that any complex Hadamard matrix H ∈ MN(C) is almost

Hadamard, because its rescaling U = H/
√
N globally maximizes the 1-norm on

U(N). This follows indeed from Proposition 1.2 above, or simply from Cauchy-
Schwarz, as follows:

||U ||1 =
∑
ij

|Uij| ≤ N

(∑
ij

|Uij|2
)1/2

= N
√
N

Let us mention right away that our goal in what follows will be that of providing
evidence for the following conjecture:

Conjecture 4.2 (Almost Hadamard Conjecture, AHC). The only complex al-
most Hadamard matrices are the complex Hadamard matrices.

Let us begin our study by building on the work in sections 1-3, by examining
the AHM conditions found in Theorem 3.5 above. Our claim is that a careful
analysis of the inequality found there can actually lead us to a simpler statement.
We first have:
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Proposition 4.3. For a self-adjoint matrix X ∈MN(C), the following are equiv-
alent:

(1) Tr(XA2) ≤ 0, for any anti-hermitian matrix A ∈MN(C).
(2) Tr(XB2) ≥ 0, for any hermitian matrix B ∈MN(C).
(3) Tr(XC) ≥ 0, for any positive matrix C ∈MN(C).
(4) X ≥ 0.

Proof. These equivalences are well-known, the proof being as follows:
(1) =⇒ (2) follows by taking B = iA.
(2) =⇒ (3) follows by taking C = B2.
(3) =⇒ (4) follows by diagonalizing X, and then taking C to be diagonal.

(4) =⇒ (1) is clear as well, because with Y =
√
X we have:

Tr(XA2) = Tr(Y 2A2) = Tr(Y A2Y ) = −Tr((Y A)(Y A)∗) ≤ 0

Thus, the above four conditions are indeed equivalent. �

In view of some further discussion, let us record as well the following result:

Proposition 4.4. For a symmetric matrix X ∈MN(R), the following are equiv-
alent:

(1) Tr(XA2) ≤ 0, for any antisymmetric matrix A.
(2) The sum of the two smallest eigenvalues of X is positive: λN +λN−1 ≥ 0,

where λN ≤ λN−1 ≤ . . . ≤ λ1 are the eigenvalues of X.

Proof. Let a = vec(A) be the vectorization of A, given by:

a =
N∑

i,j=1

Aijei ⊗ ej

Since A is an antisymmetric matrix, a is an antisymmetric vector, a ∈ Λ2(RN).
It is clear (see Figure 2 below) that we have the following formula:

Tr(XA2) = 〈X,A2〉 = −〈AX,A〉 = −〈a, (IN ⊗X)a〉

Thus the condition (1) is equivalent to P−(IN⊗X)P− being a PSD matrix, with
P− being the orthogonal projector on the antisymmetric subspace in RN ⊗ RN .

Figure 2. From antisymmetric matrices to antisymmetric vectors:
using the diagrammatic indentification on the bottom, between ma-
trices and their vectorizations, we obtain the identity on top.
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However, for any two eigenvectors xi ⊥ xj of X with eigenvalues λi, λj, we
have:

P−(IN ⊗X)P−(xi ⊗ xj − xj ⊗ xi) = P−(λjxi ⊗ xj − λixj ⊗ xi)

=
λi + λj

2
(xi ⊗ xj − xj ⊗ xi)

Thus, the non-trivial eigenvalues of P−(IN ⊗ X)P− are (λi + λj)/2, for every
ordered pair of indices (i < j), and this gives the result. �

We can now formulate a better result regarding the almost Hadamard matrices:

Proposition 4.5. Given U ∈ U(N), set Sij = sgn(Uij), and X = S∗U .

(1) U locally maximizes the 1-norm on U(N) precisely when X ≥ 0, and when

Φ(U,B) = Tr(XB2)−
∑
ij

Re
[
(UB)ijSij

]2
|Uij|

is positive, for any hermitian matrix B ∈MN(C).
(2) If U ∈ O(N), this matrix locally maximizes the 1-norm on O(N) precisely

when X is self-adjoint, and the sum of its two smallest eigenvalues is
positive.

Proof. Here (1) follows from Theorem 3.5, by setting A = iB, and by using
Proposition 4.3, which shows that we must have indeed X ≥ 0. As for (2),
this follows from (1), with the remark that the right term vanishes, and from
Proposition 4.4. �

The result (2) above corrects an omission in our previous work [1], [2], [3], [4],
where the stronger condition X ≥ 0 was thought to be the revelant one. However,
we conjecture here that the conditions found in (2) above should actually imply
X ≥ 0.

Let us study now more in detail the quantity Φ(U,B) appearing in Proposition
4.5 (1). As a first observation here, we have the following result:

Proposition 4.6. With Sij = sgn(Uij) and X = S∗U as above, we have

Φ(U,B) = Φ(U,B +D)

for any D ∈MN(R) diagonal.

Proof. The matrices X,B,D being all self-adjoint, we have (XBD)∗ = DBX,
and so when computing Φ(U,B +D), the trace term decomposes as follows:

Tr(X(B +D)2) = Tr(XB2) + Tr(XBD) + Tr(XDB) + Tr(XD2)

= Tr(XB2) + Tr(XBD) + Tr(DBX) + Tr(XD2)

= Tr(XB2) + 2Re[Tr(XBD)] + Tr(XD2)
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Regarding now the second term, with D = diag(λ1, . . . , λN) with λi ∈ R we
have (UD)ijSij = UijλjSij = λj|Uij|, and so this term decomposes as follows:∑

ij

Re
[
(UB + UD)ijSij

]2
|Uij|

=
∑
ij

Re
[
(UB)ijSij + λj|Uij|

]2
|Uij|

=
∑
ij

[
Re
[
(UB)ijSij

]
+ λj|Uij|

]2
|Uij|

=
∑
ij

Re
[
(UB)ijSij

]2
|Uij|

+ 2
∑
ij

λjRe
[
(UB)ijSij

]
+
∑
ij

λ2
j |Uij|

Now observe that the middle term in this expression is given by:

2
∑
ij

λjRe
[
(UB)ijSij

]
= 2Re

[∑
ij

λj(UB)ijSij

]

= 2Re

[∑
ij

(S∗)ji(UB)ijDjj

]
= 2Re[Tr(XBD)]

As for the term on the right in the above expression, this is given by:∑
ij

λ2
j |Uij| =

∑
ij

λ2
jSijUij =

∑
ij

Sij(UD
2)ij = Tr(XD2)

Thus when doing the substraction we obtain Φ(U,B + D) = Φ(U,B), as
claimed. �

Observe that with B = 0 we obtain Φ(U,D) = 0, for any D ∈MN(R) diagonal.
In other words, the inequality is Proposition 4.5 is an equality, when B is diagonal.

Consider now the following matrix, which is the basic example of real AHM:

KN =
1√
N


2−N 2 . . . 2

2 2−N . . . 2
. . . . . . . . . . . .
2 2 . . . 2−N


We have the following result, which provides the first piece of evidence for the

AHC:

Theorem 4.7. Consider the matrix U = 1
N

(2JN − N1N). Assuming that B ∈
MN(R) is symmetric and satisfies UB = λB, we have:

Φ(U,B) = λ · N − 4

2

[
Tr(B2) +

λN

N − 2

∑
i

B2
ii

]
In particular, KN =

√
NU is not complex AHM at N 6= 4, because:

(1) For B = JN we have Φ(U,B) = N2(N−1)(N−4)
2(N−2)

, which is negative at N = 3.
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(2) For B ∈MN(R) nonzero, symmetric, and satisfying BJN = 0, diag(B) =
0 we have Φ(U,B) = (2− N

2
)Tr(B2), which is negative at N ≥ 5.

Proof. With U ∈ O(N), B ∈MN(R), the formula in Proposition 4.5 reads:

Φ(U,B) = Tr(StUB2)−
∑
ij

(UB)2
ij

|Uij|

Asusming now U = 1
N

(2JN −N1N) and UB = λB, this formula becomes:

Φ(U,B) = λ

[
Tr(StB2)− λN

∑
ij

B2
ij

|2−Nδij|

]
Since we have JNB = N

2
(U + 1N)B = (λ+1)N

2
B, the trace term is:

Tr(StB2) = Tr
[
(JN − 21N)B2

]
=

(
(λ+ 1)N

2
− 2

)
Tr(B2)

Regarding now the sum on the right, this can be computed as follows:∑
ij

B2
ij

|2−Nδij|
=

∑
ij

B2
ij

(
1

2
+

(
1

N − 2
− 1

2

)
δij

)
=

∑
ij

B2
ij

(
1

2
− N − 4

2(N − 2)
δij

)
=

1

2
Tr(B2)− N − 4

2(N − 2)

∑
i

B2
ii

We obtain the following formula, which gives the one in the statement:

Φ(U,B) = λ

[(
(λ+ 1)N

2
− 2− λN

2

)
Tr(B2) +

λN(N − 4)

2(N − 2)

∑
i

B2
ii

]
We can now prove our various results, as follows:
(1) Here we have λ = 1, and we obtain, as claimed:

Φ(U,B) =
N − 4

2

[
N2 +

N2

N − 2

]
=
N2(N − 4)(N − 1)

2(N − 2)

(2) Here we have λ = −1, and we obtain, as claimed:

Φ(U,B) =

(
2− N

2

)
Tr(B2)

It remains to prove that matrices B as in the statement exist, at any N ≥ 5.
As a first remark, such matrices cannot exist at N = 2, 3. At N = 4, however,
we have solutions, which are as follows, with x+ y + z = 0, not all zero:

B =


0 x y z
x 0 z y
y z 0 x
z y x 0


At N ≥ 5 now, we can simply use this matrix, completed with 0 entries. �
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We will see later on, in section 7 below, that the above result admits a uniform
proof.

5. Block designs

In this section and in the next ones we work out various generalizations of
Theorem 4.7. As a first observation, the matrix U = 1

N
(2JN − N1N) appearing

there has only 2 entries, U ∈MN(x, y). In addition, with a = 0, b = 1, c = N −2,
any two rows of this matrix look as follows, up to a permutation of the columns:

x . . . x x . . . x y . . . y y . . . y
x . . . x︸ ︷︷ ︸

a

y . . . y︸ ︷︷ ︸
b

x . . . x︸ ︷︷ ︸
b

y . . . y︸ ︷︷ ︸
c

Following [4], we call (a, b, c) pattern any matrix M ∈ MN(0, 1) having this
property, with x = 0, y = 1. With this notion in hand, we have the following
result:

Proposition 5.1. If U ∈MN(x, y) is unitary then, up to the multiplication by a
complex number of modulus 1, one of the following must happen:

(1) U is a permutation matrix.

(2) U = H/
√
N , with H being a two-entry complex Hadamard matrix.

(3) U comes from an (a, b, c) pattern, by replacing the 0, 1 entries with

y =
1√

(a+ b)t2 + b+ c
, x = −εty

where ε ∈ T and t > 0 are subject to the condition at2− 2bRe(ε)t+ c = 0.

In addition, assuming that we are in the third case, and not in the second one,
the transpose matrix U t comes from an (a, b, c) pattern too, and b2 − b = ac.

Proof. Let us look at an arbitrary pair of rows of U . Up to a permutation of the
columns, this pair of rows must look as follows:

x . . . x x . . . x y . . . y y . . . y
x . . . x︸ ︷︷ ︸

a

y . . . y︸ ︷︷ ︸
b

x . . . x︸ ︷︷ ︸
b′

y . . . y︸ ︷︷ ︸
c

The orthogonality equations for these two rows are as follows:

a|x|2 + bxȳ + b′yx̄+ c|y|2 = 0

(a+ b)|x|2 + (b′ + c)|y|2 = 1

(a+ b′)|x|2 + (b+ c)|y|2 = 1

Assuming y = 0, we cannot have x = 0, so the first equation reads a = 0, and
then the second and third equations read b|x|2 = b′|x|2 = 1. Thus the row picture
is:

x . . . x 0 . . . 0 0 . . . 0
0 . . . 0︸ ︷︷ ︸

b

x . . . x︸ ︷︷ ︸
b

0 . . . 0︸ ︷︷ ︸
c

Since this is true for any two rows, and we have a square matrix, we must have
b = 1, and so in this case U appears as a rescaled permutation matrix, as in (1).
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Assuming now y 6= 0, we can rescale, as to have y > 0. Now observe that the
first orthogonality equation gives bx+b′x̄ ∈ R, and so (b−b′)x ∈ R, and by taking
the difference between the second and third equations, we obtain (b − b′)(|x|2 −
y2) = 0.

We therefore have two cases, as follows:
(I) Case b 6= b′. Here we obtain x ∈ R, |x| = y, and since x = y is impossible,

we must have x = −y, and we are therefore in the Hadamard matrix case.
(II) Case b = b′. Here with x = −εty with |ε| = 1, t > 0, the equations become:

at2 − 2bRe(ε)t+ c = 0

((a+ b)t2 + b+ c)y2 = 1

Let us compute now a, b, c. We have three linear equations, namely the above
two ones, plus the equation a+2b+c = N . The determinant of the corresponding
system is: ∣∣∣∣∣∣

t2 −2tRe(ε) 1
t2 t2 + 1 1
1 2 1

∣∣∣∣∣∣ = (t2 − 1)(t+ ε)(t+ ε̄)

At t = 1 we have |x| = y, and we are in the Hadamard matrix case. At t 6= 1
this determinant is nonzero, so a, b, c are uniquely determined by x, y, and we
therefore have an (a, b, c) pattern. In addition, the values of x, y are those in the
statement.

Regarding now the last assertion, our assumption that we are not in case (2)
gives t 6= 1. Thus a, b, c are uniquely determined by x, y, and so the transpose
matrix U t, which is a unitary matrix with entries x, y, must come from an (a, b, c)
pattern as well.

In order to establish now the formula b2 − b = ac, consider the following set:

Ik =
{

(i, j)
∣∣∣Uij = Uik = y

}
Our claim is that, by counting this set via two different methods, and by using

the fact that both U,U t come from (a, b, c) patterns, we have:

|Ik| =

{
(b+ c)(b+ c− 1)

(N − 1)c

Indeed, there are b+ c choices for i, and then b+ c− 1 choices for j, and this
gives the first formula. On the other hand, there are N−1 choices for j, and then
c choices for i, and this gives the second formula. Thus, we obtain the following
equality:

b2 + c2 + 2bc− b− c = ac+ 2bc+ c2 − c

But this gives b2 − b = ac, and we are done. �

Let us impose now the critical point condition. The result here is:

Theorem 5.2. Given an (a, b, c) pattern, the associated unitaries U(x, y), with
the normalization y > 0, which are critical points of the 1-norm, are as follows:
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(1) We have two real solutions, given by

x = − t√
b(t+ 1)

, y =
1√

b(t+ 1)

where t > 0 is subject to the condition at2 − 2bt+ c = 0.
(2) We have as well two complex solutions, given by

y =
1√
N

, x = − ε√
N

where ε ∈ T is subject to the condition 2bRe(ε) = a+ c.

Moreover, the real and complex solutions can overlap only when a + c = 2b = N
2

and when U(−1, 1) is Hadamard, the common solution being U(−1, 1)/
√
N .

Proof. If we denote by P,Q ∈ MN(0, 1) the matrices describing the positions of
the 0, 1 entries inside the pattern, then we have the following formulae:

PP t = P tP = aJN + b1N

QQt = QtQ = cJN + b1N

PQt = P tQ = QP t = QtP = bJN − b1N

According to the formulae in Proposition 5.1 above, we have:

U = xP + yQ = y(Q− εtP )

S = sgn(x)P +Q = Q− εP

Thus the matrix X = S∗U from the critical point criterion is given by:

S∗U = y(Qt − ε̄P t)(Q− εtP )

= y(QtQ+ tP tP − εtQtP − ε̄P tQ)

= t [cJN + b1N + t(aJN + b1N)− (εt+ ε̄)(bJN − b1N)]

= y [(c+ at− b(εt+ ε̄))JN + b(1 + t+ εt+ ε̄)1N ]

We conclude that the solutions to our problem are given by:

X = X∗ ⇐⇒ εt+ ε̄ ∈ R
⇐⇒ εt+ ε̄ = ε̄t+ ε

⇐⇒ ε(t− 1) = ε̄(t− 1)

⇐⇒ ε = 1 or t = 1

Here we have used the fact that ε ∈ T and t > 0 must satisfy at2−2bRe(ε)t+c =
0, which shows that we must have Re(ε) > 0, and so that ε ∈ R implies ε = 1.

By using now the formulae in Proposition 5.1, the situations ε = 1 and t = 1
correspond to the situations (1,2) in the statement, and we are done with the
first part.

Regarding now the overlapping case, ε = t = 1, this must come from a+c = 2b,
and so from a+ c = 2b = N

2
. According to (2), our matrix is in this case:

U =
1√
N

(Q− P ) =
1√
N
· U(−1, 1)

Since this matrix is unitary, U(1,−1) must be Hadamard, and we are done. �
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Let us examine now the 4 matrices found above. These matrices depend of
course on the existence of t > 0 and ε ∈ T as above, so we can have 0, 1, 2, 3, 4
solutions.

Best here is to work out first an explicit, key example, as follows:

Proposition 5.3. With a = 0, b = 1, c = N − 2, the critical points found above,
rescaled by

√
N , are as follows:

(1) The real solutions appear only at N ≥ 3, and there is only one solution
for any such N , namely the matrix KN = 1√

N
(2JN −N1N).

(2) The complex solutions appear only at N = 2, 3, 4, and here we obtain
respectively 2, 2, 1 complex Hadamard matrices, equivalent to F2, F3, K4.

In addition, the real and complex solutions overlap only at N = 4, over the matrix
K4.

Proof. We use Theorem 5.2. Before rescaling, the situation is as follows:
(1) For the real solutions, t > 0 is subject to 2t = N − 2, and so we must have

N ≥ 3, and the solutions are given by x = 2−N
N
, y = 2

N
. Thus, there is exactly

one real solution at each N ≥ 3, namely the matrix UN = 1
N

(2JN − N1N) from
Theorem 4.7.

(2) For the complex solutions, ε ∈ T is subject to 2Re(ε) = N − 2, and so
we must have N = 2, 3, 4. These cases give respectively Re(ε) = 0, 1

2
, 1, and so

the matrices are as follows, with w being one of the two nontrivial solutions of
w3 = 1:

± 1√
2

(
i 1
1 i

)
,

1√
3

w 1 1
1 w 1
1 1 w

 ,
1

2


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1


Now when rescaling everything by

√
N , and doing some elementary Hadamard

equivalence manipulations on the matrices found above, we obtain the result.
Finally, the last assertion is clear, by comparing the solutions in (1) and (2). �

The matrices in Theorem 5.2 (2) being rescaled complex Hadamard matrices,
we will exclude them from our study. For more on such matrices, see [22].

Regarding the matrices in Theorem 5.2 (1), there are many interesting examples
here, coming from the symmetric balanced incomplete block designs (BIBD). We
have:

Proposition 5.4. Assume that (X,B) is a symmetric BIBD, in the sense that
B ⊂ P(X) with |B| = |X| = a+ 2b+ c has the following properties:

(1) The elements (blocks) of B have the same size, a+ b.
(2) Each pair of distinct points of X is contained in exactly a blocks of B.

The corresponding adjacency matrix MiB = δi∈B is then an (a, b, c) pattern.

Proof. This follows indeed from the basic theory of symmetric BIBD, see [4]. �

As a basic example here, consider the Fano plane, pictured below. The 7 points
and the 7 lines form a symmetric BIBD, with parameters (a, b, c) = (1, 2, 2):
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Figure 3. The Fano plane.

The corresponding adjacency matrix is then a (1, 2, 2) pattern, and with x =
2− 4

√
2, y = 2 + 3

√
2, coming from Theorem 5.2 (1), we obtain a real AHM. See

[4].
Now recall that the Fano plane is the projective plane over F2 = {0, 1}. The

same method works with F2 replaced by an arbitrary finite field Fq, and we have:

Proposition 5.5. Assume that q = pk is a prime power.

(1) The incidence matrix of the projective plane over Fq is a (1, q, q2 − q)
pattern, and the associated matrix U−, denoted Iq

N , with N = q2 + q + 1,
is a real AHM.

(2) More generally, for any integer d ≥ 1 we have an (a, b, c) pattern coming
from the d-dimensional Grassmannian over Fq, with

(a, b, c) =

(
qd − 1

q − 1
, qd, qd(q − 1)

)
and the associated matrix U−, denoted Iq,d

N with N = a+2b+ c, is a real AHM.

Proof. Once again, this follows from the basic theory of symmetric BIBD, see
[4]. �

There are many other interesting examples of symmetric BIBD, and related
real AHM. We refer to [9], [20] for the general theory, and to [4] for the real AHM
aspects.

6. Exclusion results

In this section we prove that some of the matrices found in Theorem 5.2 (1)
above are not complex AHM. For this purpose, we can use the following criterion:

Proposition 6.1. Assuming PB = αB,QB = βB we have:

Φ(U,B) = (αx+ βy)(x+ y)

[
β

x

∑
ij

PijB
2
ij −

α

y

∑
ij

QijB
2
ij

]
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In particular with B = JN we obtain the formula

Φ(U, JN) = Nλ(a+ b)(b+ c)

(
y

x
− x

y

)
where λ = (a+ b)x+ (b+ c)y is the row sum of U .

Proof. With U ∈ O(N), B ∈MN(R), the formula in Proposition 4.5 becomes:

Φ(U,B) = Tr(StUB2)−
∑
ij

(UB)2
ij

|Uij|

Our assumptions PB = αB,QB = βB show successively that we have:

UB = (xP + yQ)B = (αx+ βy)B

StUB = (Qt − P t)UB = (αx+ βy)(β − α)B

The trace term in the above formula is therefore given by:

Tr(StUB2) = (αx+ βy)(β − α)Tr(B2)

= (αx+ βy)(β − α)

(∑
ij

PijB
2
ij +

∑
ij

QijB
2
ij

)
Regarding now the sum on the right, this is given by:∑

ij

(UB)2
ij

|Uij|
= (αx+ βy)2

∑
ij

B2
ij

|Uij|

= (αx+ βy)2

(
1

y

∑
ij

QijB
2
ij −

1

x

∑
ij

PijB
2
ij

)
By summing, we obtain the formula in the statement. Finally, with B = JN

we have α = a+ b, β = b+ c, and we obtain:

Φ(U,B) = ((a+ b)x+ (b+ c)y)(x+ y)

[
b+ c

x
·N(a+ b)− a+ b

y
·N(b+ c)

]
But this gives the formula in the statement, and we are done. �

As we will see later on, the above criterion excludes some of the known real
AHM, but has its limitations. Thus, we are in need of more exclusion criteria.

When P,Q are symmetric, we have as well some extra directions B, coming
from:

Proposition 6.2. Assuming P = P t, Q = Qt, the solutions B = uP + vQ+w1N

of PB = αB, QB = βB are, up to a multiplication by a scalar, as follows:

(1) B = JN . Here α = a+ b, β = b+ c.

(2) B = 1− U−. Here α =
√
b, β = −

√
b.

(3) B = 1 + U+. Here α = −
√
b, β =

√
b.



ALMOST HADAMARD MATRICES 165

Proof. Let us first solve the equation PB = αB. We have:

PB = uP 2 + vPQ+ wP

= u(aJN + b1N) + v(bJN − b1N) + wP

= (ua+ vb)JN + (u− v)b1N + wP

= (ua+ vb+ w)P + (ua+ vb)Q+ (u− v)b1N

We conclude that we have the following equivalences:

PB = αB ⇐⇒ [ua+ vb+ w = αu , ua+ vb = αv , ub− vb = αw]

⇐⇒ [w = α(u− v) , ua+ vb = αv , (u− v)b = α2(u− v)]

In the case u = v we obtain w = 0, and so B = uJN . In the case u 6= v we
must have α = ±

√
b, and with the choice v = ∓1, the solutions are:

α =
√
b , u =

b−
√
b

a
, v = −1, , w =

√
b(u− v)

α = −
√
b , u = −b+

√
b

a
, v = 1, , w =

√
b(v − u)

In order to further process these extra solutions, we use the equation at2 −
2bt+ c = 0. In terms of the solutions t = t±, the above two extra solutions are:

B− = t−P −Q+
√
b(t− + 1) = −x−P − y−Q+ 1 = 1− U−

B+ = −t+P +Q+
√
b(t+ + 1) = x+P + y+Q+ 1 = 1 + U+

Let us solve now the equation QB = βB. Here we have:

QB = uQP + vQ2 + wQ

= u(bJN − b1N) + v(cJN + b1N) + wQ

= (ub+ vc)JN + (v − u)b1N + wQ

= (ub+ vc)P + (ub+ vc+ w)Q+ (v − u)b1N

We conclude that we have the following equivalences:

QB = βB ⇐⇒ [ub+ vc+ w = βv , ub+ vc = βu , (v − u)b = βw]

⇐⇒ [w = β(v − u) , ub+ vc = βu , (v − u)b = β2(v − u)]

In the case u = v we obtain w = 0, and so B = uJN . In the case u 6= v we
must have β = ±

√
b, and with the choice v = ±1, the solutions are:

β =
√
b , u = − c

b−
√
b

, v = 1, , w =
√
b(v − u)

β = −
√
b , u =

c

b+
√
b

, v = −1, , w =
√
b(u− v)

Now by using b2 − b = ac we conclude that these two solutions coincide with
those found above, for the equation PB = αB, and this finishes the proof. �

Let us go back to the matrices U± from Theorem 5.2 (1). As it is known from
[4], and explained in Proposition 6.4 (4) below, U+ is not AHM. Thus we are
only interested in U−, and for dealing with it, we will only need the direction
B = 1− U−. We have:
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Proposition 6.3. Assuming P = P t, Q = Qt and b2 − b = ac, with U = U− we
have

Φ(U, 1− U) = b(y2 − x2)
[
N(λ− 2) + Tr(Ũ)

]
where λ = (a+ b)x+ (b+ c)y is the row sum of U , and Ũ = P

x
+ Q

y
.

Proof. We use the general formula of Φ(U,B) found in Proposition 6.1. The

multiplication parameters α, β being in our case α =
√
b, β = −

√
b, we obtain:

Φ(U,B) = (
√
bx−

√
by)(x+ y)

[
−
√
b

x

∑
ij

PijB
2
ij −

√
b

y

∑
ij

QijB
2
ij

]

= b(y2 − x2)

[
1

x

∑
ij

PijB
2
ij +

1

y

∑
ij

QijB
2
ij

]

= b(y2 − x2)

[
1

x

∑
ij

Pij(δij − x)2 +
1

y

∑
ij

Qij(δij − y)2

]
By expanding the quantities on the right, we obtain:

Φ(U,B)

= b(y2 − x2)

[
x
∑
ij

Pij +

(
1

x
− 2

)∑
i

Pii + y
∑
ij

Qij +

(
1

y
− 2

)∑
ij

Qii

]

= b(y2 − x2)

[
x
∑
ij

Pij + y
∑
ij

Qij − 2Tr(P +Q) + Tr

(
P

x
+
Q

y

)]

= b(y2 − x2)

[
N(a+ b)x+N(b+ c)y − 2N + Tr

(
P

x
+
Q

y

)]
= b(y2 − x2)

[
N(λ− 2) + Tr

(
P

x
+
Q

y

)]
Thus we have reached to the formula in the statement, and we are done. �

In order to apply our criteria, we use the following result:

Proposition 6.4. The matrices U± from Theorem 5.2 (1) are as follows:

(1) The row sum for U± is ∓1.
(2) We have |x| > |y| for U− precisely when a < b < a+c

2
.

(3) We have |y| > |x| for U+ precisely when b < a, a+c
2

.
(4) We have X > 0 for U± precisely when 0 ≥ ±(c− a).

Proof. We use the above results, along with some previous computations from
[4]:

(1) The row sum is indeed given by the following formula:

λ =
(b+ c)− (a+ b)t√

b(t+ 1)
=

(ab+ ac)− (a+ b)(b±
√
b)√

b(a+ b±
√
b)

= ∓1
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(2) For the matrix U−, this follows from:

|x| > |y| ⇐⇒ t > 1 ⇐⇒
√
b2 − ac < b− a

(3) For the matrix U+ the study is similar, as follows:

|y| > |x| ⇐⇒ t < 1 ⇐⇒
√
b2 − ac < a− b

(4) This follows indeed by using the formula of X = S∗U from the proof of
Theorem 5.2, and we refer to [4] for details. �

We are now in position of stating our main result, regarding the (a, b, c) pat-
terns, or rather the main examples of such patterns, coming from [4]:

Theorem 6.5. The following matrices are not complex AHM:

(1) The matrices KN = 1
N

(2JN −N1N), with N 6= 4.

(2) The matrices Iq,d
N coming from the Grassmannians over Fq.

(3) The matrix P11 coming from the Paley biplane.

Proof. Here (1) is from Theorem 4.7. Regarding (2,3), the idea is that the matri-
ces here are excluded either by Proposition 6.1, or by Proposition 6.3. In order
to study Iq,d

N , we can use the criterion in Proposition 6.4 (2), and we obtain:

|x| ≥ |y| ⇐⇒ qd − 1

q − 1
< qd <

qd−1
q−1

+ qd(q − 1)

2
⇐⇒ q > 2

Thus the matrices I2,d
N are excluded by Proposition 6.1. In general now, with

q = r2, the parameters (a, b, c) and the smallest root of at2−2bt+ c = 0 are given
by:

a =
r2d − 1

r2 − 1
, b = r2d , c = r2d(r2 − 1) , t =

rd(r2 − 1)

rd + 1

Let us compute now the quantities appearing in Proposition 6.3. Since the
diagonal of the design has the same structure as the rows and the columns, we
have:

Tr(Ũ) =
a+ b

x
+
b+ c

y

=
√
b
[
(b+ c)(t+ 1)− (a+ b)(t−1 + 1)

]
= rd

[
r2d+2 · r

d+2 + 1

rd + 1
− r2d+2 − 1

r2 − 1
· r

d+2 + 1

rd(r2 − 1)

]
= (rd+2 + 1)

[
r3d+2

rd + 1
− r2d+2 − 1

(r2 − 1)2

]
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On the other hand, since we have λ = 1 by Proposition 6.4 (1), we obtain:

N(λ− 2) = −N
= −

[
(a+ b) + (b+ c)

]
= −

[
r2d+2 − 1

r2 − 1
+ r2d+2

]
= −r

2d+4 − 1

r2 − 1

Now by summing the above two quantities, we obtain the following formula:

N(λ− 2) + Tr(Ũ) = (rd+2 + 1)

[
r3d+2

rd + 1
− r2d+2 − 1

(r2 − 1)2
− r2d+4 − 1

(r2 − 1)(rd+2 + 1)

]
Now by getting back to the integer q =

√
r, and performing a numeric study,

we conclude that this quantity is positive precisely for q > 2. Thus, we have
Φ(U, 1 − U) < 0 at q > 2, and so the matrices Iq,d

N with q > 2 are excluded by
Proposition 6.3.

Finally, the Paley biplane matrix P11 is excluded by Proposition 6.1. �

As a comment, what happens for K4, I
q,d
N , P11 is that Φ(U, JN)Φ(U, 1−U) < 0.

So, our conjecture would be that, under suitable assumptions, this inequality
should hold. The problem, however, is that KN with N ≥ 5 is not covered by
this conjecture. We will see later on that these matrices are best approached with
a random derivative method.

7. Circulant matrices

We recall that a matrix U ∈ MN(C) is called circulant if we have Uij = γj−i,
for a certain vector γ ∈ CN . In this section we study the circulant AHM.

We fix N ∈ N, and we denote by F ∈ U(N) the rescaled Fourier matrix,
F = 1√

N
(wij)ij with w = e2πi/N . The following result, already used in [2], [4], is

well-known:

Proposition 7.1. A matrix U ∈ MN(C) is circulant, Uij = γj−i with γ ∈ CN ,
if and only if it is Fourier-diagonal, U = FQF ∗ with Q ∈ MN(C) diagonal. If
so is the case, then with Q = diag(q0, . . . , qN−1) we have γ = 1√

N
F ∗q, and the

following happen:

(1) U is unitary precisely when q ∈ TN .
(2) U is self-adjoint precisely when q ∈ RN .
(3) U is real precisely when q̄i = q−i, for any i.

Proof. Assuming Uij = γj−i, the matrix Q = F ∗UF is indeed diagonal, given by:

Qij =
1

N

∑
kl

wjl−ikγl−k = δij
∑

r

wjrγr

Conversely, if Q ∈MN(C) is diagonal then U = FQF ∗ is circulant, given by:

Uij =
∑

k

FikQkkF̄jk =
1

N

∑
k

w(i−j)kQkk
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Thus we have the equivalence in the statement, and the connecting formula
γ = 1√

N
F ∗q is clear as well, from the above formula of Uij. Regarding now the

other assertions:
(1) This is clear from U = FQF ∗, because Q ∈ U(N) ⇐⇒ q ∈ TN .
(2) By using the formula γ = 1√

N
F ∗q, we obtain:

γ̄i = γ−i ⇐⇒
∑

j

wij q̄j =
∑

j

wijqj ⇐⇒
∑

j

wij(q̄j − qj) = 0

This system admits the unique solution q̄j − qj = 0, and the result follows.
(3) We use the same method as above. From γ = 1√

N
F ∗q we obtain:

γ̄i = γi ⇐⇒
∑

j

wij q̄j =
∑

j

w−ijqj ⇐⇒
∑

j

wij(q̄j − q−j) = 0

This system admits the unique solution q̄j−q−j = 0, and the result follows. �

With this Fourier analysis picture in hand, let us study now the circulant AHM.
We first have the following result, which basically goes back to [2], [4]:

Proposition 7.2. Given a circulant matrix U ∈ MN(C)∗, the matrix X = S∗U
is circulant too, and we have X = FLF ∗, with U → L being obtained as follows:

(1) We write Uij = γj−i, and set ε = sgn(γ).
(2) We construct the vector ρi =

∑
r ε̄rγi+r.

(3) We set λ =
√
N · Fρ, and then L = diag(λ0, . . . , λN−1)

Proof. In terms of the vectors ε and ρ constructed in the statement, the matrix
X = S∗U is given by the following formula:

Xij =
∑

k

S̄kiUkj =
∑

k

ε̄i−kγj−k =
∑

r

ε̄rγj−i+r = ρj−i

Thus X is circulant, with ρ as first row vector, and by using Proposition 7.1
above, we conclude that we have X = FLF ∗, with L being the matrix in the
statement. �

In general, the verification of the critical point condition X = X∗ is a quite
tricky question. However, as observed in [2], [4], this condition is automatic
when U is orthogonal and symmetric. In the unitary and self-adjoint case the
same holds, because we have:

ρ̄i =
∑

r

εrγ̄i+r =
∑

r

ε̄−rγ−i−r = ρ−i

Note that this follows as well from Proposition 2.6 (2) above.
Let us restrict now attention to the orthogonal and symmetric case. Here there

are several interesting examples, known since [2], [4], and with the verification
of X > 0 already done. We will show now that these matrices are not complex
AHM.

As a first exclusion criterion for such matrices, we can use:
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Proposition 7.3. For a circulant matrix U ∈ O(N), Uij = γj−i, we have

Φ(U, JN) = Nu(Ns− uw)

where u, s, v are the row sums of U, S and Wij = 1
|Uij | . Thus Φ(U, JN) < 0 when

E(sgn(γi)) < E(γi)E
(

1

|γi|

)
where the symbol E stands for “average”.

Proof. We have UJN = uJN , which gives the following formulae:

Tr(StUJ2
N) = NTr(StUJN) = NuTr(StJN) = N2us∑
ij

(UJN)2
ij

|Uij|
= u2

∑
ij

1

|Uij|
= Nu2w

By substracting, we obtain the formula in the statement. �

Here is another exclusion criterion, which is useful as well:

Proposition 7.4. If U ∈ U(N) is circulant, Uij = γi−j, and self-adjoint, we
have:

Φ(U,U) = N

(
− 1

|γ0|
+
∑

i

|γi|

)
Proof. Since U is circulant and hermitian, we have U = F diag(q)F ∗, for some
vector q ∈ {±1}N . The first term in the expression of Φ(U,U) reads:

Tr[S∗U · U2] = Tr[S∗U ] =
∑
ij

|Uij| = N
∑

i

|γi|

For the second term in Φ, note that (U2)ij = δij and then:

Sii = sign(Uii) = sign(γ0) = sign

(∑
i

qi

)
∈ {±1}

We therefore obtain:∑
ij

Re[(U2)ijS̄ij]
2

|Uij|
=
∑

i

1

|γ0|
=

N

|γ0|

But this finishes the proof. �

Here is now a more advanced result, making use of a random derivative method:

Proposition 7.5. If U ∈ U(N) is circulant, Uij = γj−i, and self-adjoint, we have

E(Φ(U,B)) = N
∑

i

|γi| −
1

2

(
1

|γ0|
+

1− e

|γN/2|
+
∑

i

1

|γi|

)
where e = 0, 1 is the parity of N and E denotes the expectation with respect to
the uniform measure on the set of circulant self-adjoint unitary matrices B.
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Proof. Since B is circulant, we diagonalize it as B = Fdiag(βi)F
∗. From Propo-

sition 7.1, the requirement that B is unitary and self-adjoint amounts to βi = ±1.
The expectation is taken in the probability space where the random variables βi

are i.i.d., with symmetric Bernoulli distributions (δ−1 + δ1)/2; in particular, we
have E[βiβj] = δij.

Using B2 = 1N , the first term in the expression of Φ(U,B) reads:

Tr(S∗UB2) = Tr(S∗U) =
∑
ij

|Uij| = N
∑

i

|γi|

For the second term in the formula of Φ, we develop first:

Re[(UB)ijS̄ij]
2 =

1

4

[
(UB)2

ijS̄
2
ij + (UB)

2

ijS
2
ij + 2(UB)ij(UB)ij

]
We then have the following computation:

E(UB)2
ij = E(Fdiag(q)diag(β)F ∗)2

ij

= N−2
∑
kl

w(k+l)(i−j)qkqlE(βkβl)

= N−2
∑
kl

w(k+l)(i−j)qkqlδkl

= N−2
∑

k

w2k(i−j)

We therefore obtain the following formula:

E(UB)2
ij =

{
N−1 if 2(i− j) = 0 (mod N)

0 otherwise

Similarly, we have the following formula:

E(UB)ij(UB)ij = N−2
∑
kl

w(k−l)(i−j)qkq̄lE(βkβl) = N−2
∑

k

|qk|2 = N−1

Since in both the cases i = j and i = j + N/2 (when N is even), we have
Sij ∈ {±1}, the above two formulae are all that we need, and we obtain the
following formula:

E
[
Re[(UB)ijS̄ij]

2
]

=
1

4

[
2N−1δij + 2(1− e)N−1δi,j+N/2 + 2N−1

]
Now by summing over i, j, and then taking into account as well the first term

in the expression of Φ(U,B), computed above, we obtain the formula in the
statement. �

In the orthogonal case now, we have a similar result, as follows:

Theorem 7.6. If U ∈ O(N) is circulant, Uij = γj−i, and symmetric, we have

E(Φ(U,B)) = N
∑

i

|γi| −

(
1

|γ0|
+

1− e

|γN/2|
+
N − 2 + e

N

∑
i

1

|γi|

)
where e = 0, 1 is the parity of N and E denotes the expectation with respect to
the uniform measure on the set of circulant symmetric orthogonal matrices B.
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Proof. As before, the expectation is taken with respect to the distribution of the
eigenvalues β0, . . . , βN−1 = ±1 of B, which are constrained in this case by the
extra condition βi = βi−i. The first term in the expression of Φ(U,B) is equal to
N
∑

i |γi|. For the second term in Φ, we need the following covariance term:

E(βkβl) =

{
1 if k ± l = 0

0 otherwise

Since all the quantities are real in this case, we have (recall that qk = q−k = ±1):

E(UB)2
ij = N−2

∑
kl

w(k+l)(i−j)qkqlE(βkβl)

= N−2
∑
kl

w(k+l)(i−j)qkql(δk,l + δk,−l − δ2k,2l,0)

= N−2

[∑
k

w2k(i−j)q2
k +

∑
k

qkq−k − q2
0 − (1− e)q2

N/2

]
= N−2 [Nδ2i,2j +N − 2 + e]

We have then:∑
ij

N−1|Uij|−1δ2i,2j =
∑

k

|γk|−1δ2k,0 =
1

|γ0|
+

1− e

|γN/2|

We have as well:∑
ij

N−2(N − 2 + e)|Uij|−1 =
N − 2 + e

N

∑
i

1

|γi|

Putting everything together gives the formula in the statement. �

As an illustration for the above methods, we can now go back to the matrices
in Theorem 4.7, and find a better proof for the fact that these matrices are not
complex AHM. Indeed, we have the following result, which basically solves the
problem:

Proposition 7.7. With U = 1
N

(2JN −N1N) we have the formula

E(Φ(U,B)) =
4−N

2

(
N − 4− 2 + e

N − 2

)
where e = 0, 1 is the parity of N , and where B varies over the space of or-
thogonal circulant symmetric matrices. This quantity is −2, 0, 0,−3

2
,−18

5
, . . . at

N = 3, 4, 5, 6, 7 . . .

Proof. This follows indeed from the general formula in Theorem 7.6 above. �

We therefore recover Theorem 4.7, modulo a bit of extra work still needed at
N = 5. Regarding the case N = 5, here the above expectation vanishes, but by
using either Proposition 7.3 or Proposition 7.4, we conclude that the vanishing
of the expectation must come from both positive and negative contributions, and
we are done.
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The above results can be used in fact for excluding all the explicit examples
of circulant AHM found in [4]. We have as well extensive computer verifications,
for the AHM considered in [2], taking their input from the computer program
mentioned there.

All these verifications suggest the following conjecture:

Conjecture 7.8. For any U ∈ O(N) which is circulant and symmetric we have

E(Φ(U,B)) ≤ 0

where B varies over the space of orthogonal circulant symmetric matrices. In
addition, a similar result should hold in the unitary, circulant and self-adjoint
case.

This looks like a quite subtle Fourier analytic question, that we don’t know
how to deal with, yet. The problem is that of exploiting the positivity of the
eigenvector L computed in Proposition 7.2 above, in order to obtain an upper
bound for E(Φ(U,B)).

8. Further results

From what we have so far, Conjecture 7.8 is perhaps the most interesting
statement. Now observe that if U ∈ U(N) is circulant and self-adjoint, then
JNU = UJN = JN . In other words, such a matrix is in Sinkhorn normal form, in
the sense of [14]. As a general strategy, we believe that proving the AHC requires
three ingredients, namely:

(1) A strong Fourier analysis input (proof of Conjecture 7.8).
(2) A clever extension, to the matrices in Sinkhorn normal form.
(3) A final extension, using some tricky transport maps, as in [14].

Another idea would be that of looking directly for an expectation formula of
type E(Φ(U,B)) ≤ 0, with B varying over some “simple” manifold associated
to U , but this is probably quite naive. As an illustration here, here a “rough”
computation, valid for any U :

Proposition 8.1. For any U ∈ U(N)∗, we have the formula

E(Φ(U,G+G∗)) = (2N − 1)
∑
ij

|Uij| −
∑
ij

|Uij|−1

with G being a random matrix having i.i.d. standard complex Gaussian entries.

Proof. Regarding the trace term in the formula of Φ(U,B), we have:

E
[
Tr(XB2)

]
= Tr[X(EG2 + E(G∗)2 + EGG∗ + EG∗G)]

= 2NTr(X) = 2N
∑
ij

|Uij|

Regarding now the sum in the formula of Φ(U,B), we have:

ERe
[
(UB)ijSij

]2
=

1

4
(E(UB)2

ijS̄
2
ij + E(UB)ij

2
S2

ij + 2E(UB)ij(UB)ij)

=
1

4
(2U2

ijS̄
2
ij + 2Ū2

ijS
2
ij + 2) = 1 + |Uij|2
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Now by summing, this gives the formula in the statement. �

Let us go back now to the inequality in Proposition 4.5. When U is a rescaled
complex Hadamard matrix we have of course equality, and in addition, the fol-
lowing happens:

Proposition 8.2. For a rescaled complex Hadamard matrix, a stronger version of
the inequality in Proposition 4.5 holds, with the real part replaced by the absolute
value.

Proof. Indeed, for a rescaled Hadamard matrix U = H/
√
N we have S = H =√

NU , and thus X =
√
N1N . We therefore obtain:

Φ(U,B) =
√
N

[
Tr(B2)−

∑
ij

Re
[
(UB)ijSij

]2]

≥
√
N

[
Tr(B2)−

∑
ij

|(UB)ijSij|2
]

=
√
N

[
Tr(B2)−

∑
ij

|(UB)ij|2
]

=
√
N
[
Tr(B2)− Tr(UB2U∗)

]
= 0

But this proves our claim, and we are done. �

We have the following result, in relation with the notion of defect, from [24]:

Theorem 8.3. For a rescaled complex Hadamard matrix, the space

EU =
{
B ∈MN(C)

∣∣∣B = B∗,Φ(U,B) = 0
}

is isomorphic, via B → [(UB)ijU ij]ij, to the following space:

DU =

{
A ∈MN(R)

∣∣∣∑
k

ŪkiUkj(Aki − Akj) = 0,∀i, j

}
In particular the two “defects” dimREU and dimRDU coincide.

Proof. Since a self-adjoint matrix B ∈ MN(C) belongs to EU precisely when the
only inequality in the proof of Proposition 8.2 above is saturated, we have:

EU =
{
B ∈MN(C)

∣∣∣B = B∗, Im
[
(UB)ijU ij

]
= 0,∀i, j

}
The condition on the right tells us that the matrix A = (UB)ijŪij must be

real. Now since the construction B → A is injective, we obtain an isomorphism,
as follows:

EU '
{
A ∈MN(R)

∣∣∣Aij = (UB)ijŪij =⇒ B = B∗
}

Our claim is that the space on the right is DU . Indeed, let us pick A ∈MN(R).
The condition Aij = (UB)ijŪij is then equivalent to (UB)ij = NUijAij, and so
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in terms of the matrix Cij = UijAij we have (UB)ij = NCij, and so UB = NC.
Thus B = NU∗C, and we can now perform the study of the condition B = B∗,
as follows:

B = B∗ ⇐⇒ U∗C = C∗U

⇐⇒
∑

k

ŪkiCkj =
∑

k

C̄kiUkj,∀i, j

⇐⇒
∑

k

ŪkiUkjAkj =
∑

k

ŪkiAkiUkj,∀i, j

Thus we have reached to the condition defining DU , and we are done. �

Finally, we have the following conjecture:

Conjecture 8.4. For a matrix U ∈
√
NU(N), the following are equivalent:

(1) U is a strict AHM.
(2) U is an isolated CHM.
(3) U is a CHM with minimal defect.

Here (3) =⇒ (2) =⇒ (1) both hold. Indeed, (3) =⇒ (2) is clear,
and (2) =⇒ (1) follows from the fact that the CHM are the unique global
maximizers of the 1-norm.

Regarding now (1) =⇒ (2) =⇒ (3), observe that (1) =⇒ (2) would follow
from the AHC. As for (2) =⇒ (3), this is a well-known conjecture.

As a conclusion, assuming that the AHC holds, the conjecture “isolated CHM
implies minimal CHM defect” is equivalent to the conjecture “strict AHM im-
plies minimal AHM defect”. Thus, we would have here an AHM approach to a
CHM question. As explained in the introduction, there are of course many other
potential applications of the AHC.

Regarding now a potential proof for the AHC, and for the other conjectures
that we make in this paper, namely Conjecture 7.8 and Conjecture 8.4, an idea
would be that of first looking at these conjectures at small values of N ∈ N,
and then trying to extend the results found there. The problem, however, is
that while the complex Hadamard matrices are well-understood up to N = 5,
and partly at N = 6 as well, cf. [10], the situation it very different for the AHM,
where no small N study has ever been done, and this, even in the real case, where
the notion of AHM goes back to [1]. This probably deserves some explanations:
roughly said, our belief is that any general result in connection with the AHM,
and more generally in connection with the CHM, regarded as analytic objects,
should rather come from a “large N” study, rather than from a “small N” study.
This philosophy is supported by the quantum algebra approach to the CHM,
and by the random matrix theory in general. Now back to our conjectures, the
present supporting results, from sections 6-7 above, are indeed part of a “large N”
study, because what we are doing there is basically uniform in N ∈ N. So, this is
our philosophy, and we intend to keep it in the future. As a main goal towards
proving the AHC, we have the (1,2,3) program explained in the beginning of the
present section, and it is our hope that we will have soon more results here.
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