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CERTAIN RESULTS ON MULTIVALENT FUNCTIONS
INVOLVING WRIGHT HYPERGEOMETRIC FUNCTIONS

THOMAS ROSY, S. KAVITHA,
G. MURUGUSUNDARAMOORTHY

ABSTRACT. The purpose of this paper is to derive certain results on mul-
tivalent functions in the open unit disc involving Wright Hypergeometric func-
tion operator W, (z). As special cases of these results, sufficient conditions
for analytic functions to have a positive real part is defined.
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1. INTRODUCTION

Let H be the class of functions analytic in
A:={zeC:|z| <1} (1)

For any n € N and a € C let, H[a,n| be the subclass of H consisting of
functions of the form f(z) = a + a,2" + ay112"™ + .... Let A, denote the
class of all analytic functions of the form

fz)=2"4 > @zt (z€A) (2)

k=p+1

and let A; := A. For two functions f(z) given by (2) and g(z) = 2F +
D hepil brz*, the Hadamard product (or convolution) of f and g is defined

by
(fx9)(2) :=2"+ > a2’ =: (g% f)(2). (3)

k=p+1
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Let f and g be functions analytic in A. Then we say that the function f is
subordinate to g if there exists a Schwarz function w(z), analytic in A with

w(0) =0 and |w(z)] <1 (z€A),

such that
f(z) = g(w(z)) (z€A).
We denote this subordination by

f=g or [f(z)<g(z) (z€A).

In particular, if the function ¢ is univalent in A, the above subordination is
equivalent to

f(0) =g(0) and f(A) Cg(A)

For positive real parameters oy, Ay ..., aq, Ajand Gy, By ..., B, B (I,m €
N ={1,2,3,...}) such that

m l
1+ B, — > A, >0,
n=1 n=1
the Wright generalized hypergeometric function [22] is given by

I\Pm[(ala A1)7 Ty (ala Al)7 (617 Bl)7 T (ﬁm) Bm)7 Z] :
= 1V, [(ow, Ar)1; (Brs Bi)1m; 2]

is defined by

00 l m
12"
(Ul (i, Ak)10(Brs Be)vm: 2] = Y _{] [ Tl + nA) H] [ T8k + nBr)} 15'
n=0 k=0 k=0
If A, =1(k=1,2,..,1) and B, = 1(k =1,2,...,m) we have the relation-
ship:

@l‘llm[(ak? 1>1,l<5k7 1)1,m; Z] = Fm(&lﬂ Ce Qg ﬂla U 75711? Z) (4)

L (a)n - (@) 2"
(Ba - G 8

n=
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(l£m+1;l,me Ny = NU{0};z € A) is the generalized hypergeomet-
ric function(see for details [4]) where («), is the Pochhammer symbol ( or
ascending factorial) defined by

1 forn=20
(@), = { a(a+1)..(a+n—-1) forn=123.. ©)
and

o- (Hr<ak>) (nw). o

k=0

Corresponding to the function

Wi (o, ai B By 2 )
= ZplFm(ah'"aal;ﬁla"'767%;2)7

the linear operator W' (as, ..., au; 1, - - -, Bm) f(2) is defined by the Hadamard
product

WAm(al, te 7al;ﬁla s aﬁm)f(z) = ngy,m(ala s 7al;ﬁl7 tet 7ﬁm72) * f(Z)

= 2+ Z on(n)anz". (8)

n=p+1
where © is given by (7) and o,,(ay) is defined by

Or' (a1 + Ai(n —p)) ... T(as + Ai(n — p))
n—p)!L(B1 + Bi(n —p)) ... T(Bn + Bu(n —p))

For convenience, we write

WE (e, Ak) 10 (B Bi)im) f(2) = W laa] f(2). (10)

(9)

O'n<041> - (

so that we have the recurrence
z (W£7m(&1)f(z))/ = 041W1€7m(041 + 1) f(2) = (a1 — 1)Wé7m(041)f(z). (11)

This operator, for the univalent case is introduced by Dziok and Raina [6],
which is called as the Wright’s operator (see [6]). If A, =1 (k=1,...,1), By =
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1 (k = 1,..,m), we have the Dziok and Srivastava linear operator [4]. In
this paper, we extend the Dziok- Srivastava linear operator by using Wright
generalized hypergeometric function. We remark here that the special cases of
the Dziok-Srivastava linear operator includes the Hohlov linear operator [§],
the Carlson-Shaffer linear operator [2], the Ruscheweyh derivative operator
[20], the generalized Bernardi-Libera-Livingston linear integral operator (cf.
[1], [10], [11]) and the Srivastava-Owa fractional derivative operators (cf. [15],
[16]). Hence, each of our result will give five more results involving the earlier
operators as listed here eventhough we omit the details of those.

Many properties of analytic functions defined by all the above linear oper-
ators were studied by (among others) Cho and Kim [3], Frasin [7], Kim and
Srivastva [9], Liu and Owa [12], Liu and Srivastava [13], [14], Owa and Sri-
vastava [16], Patel et al.  [17], Saitoh [18] and also by Shanmugam et al.
[19].

In this paper we shall derive some properties of multivalent functions de-
fined by the Wright-hypergeometric function operator. In order to prove the
main results, we need the following lemma due to Yang [23].

Lemma 1 Let P, be the class of functions

q(2) =14 2" + g1 2" +

be analytic in the unit disk A. Let h(z) be analytic and starlike (with respect
to the origin) univalent in U with h(0) = 0. If

2q'(z) < h(z), (12)

q(z)<1+l/zwdu.

n u

then

2.MAIN RESULTS

We begin with the following

Wimloalf(2)
W)l +1]f(2)

WL (o + 1f(2)
" (1 o+ D@ ()

Theorem 1 Let a; +1 > 0, %0 for z € A. Suppose that

@(l,m)(f)) <M (z€A), (13)
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where
Wy +Df() Wyl +2)/(2)
d(L,m)(f) = <1+ W @) WL @nf ) > (14)
and n
1<M§1+2(a1+1)p10g2. (15)
Then,
WL . (ar+1)f(2) 2p(on + 1)(M —1
iﬁ%( MEnTE] ) N n)( Jlog2 (€ A). (16)
The result in (16) is best possible.
Proof. Define the function ¢(z) by
) 4% (%
o) = pml1]f(2) (17)

- Wymlaa +11f(2)°

Then, clearly ¢(z) = 1+ ¢,2" + ¢ny 12" + ... is analytic in A with ¢(z) # 0
for z € A. It follows from (17) that

2q(z) W] f(2)) 2OV mlaa + 1f(2))

WG T Wl W riie)
By making use of the familiar identity (11) in (18), we get
Wi (a1 +2) f(2) _ 1 N ay 2q(?) (19)
Wil + DF2)  ar 41 (a4 Da(e)  (ar+ Da(a)
Hence,
1 zq'(2) 1
S eamie) (20
where

W@ DAE) [ e+ DAY W+ 25()
DI = S i) (* W (@) (2) ) W] )
e1)
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It follows from (13) that

1 1+ 2
- ploa + 1)(M — 1)¢1(lvm)f(2) <1
Equivalently,
W lon +17(2) .
’ ( W o] f(2) ) < plar + (M = 1)
Hence, by using Lemma 1, we have
W,l,,m[a1 +1]f(2) 2p(cn + 1)(M — 1) -
W] mlaa] f(2) = n log(1—2) = Q(2) (z€A). (22)
Since, Q(z) is convex univalent in A and
RQ(:)) > 1 2p(aq + 1) (M —1) g2 (z € A),

n
from (22), we get the desired inequality (16). To show that the bound in (16)
cannot be increased, we consider

-1

2p(ar + 1)(M —1) log(1 — 2") (2 €4)

n

q(z) = {1 -

where M satisfies (14). A simple computation shows that ¢(z) is in P, and
satisfies the inequality (13). On the other hand, we have

R Womlon +1]f(2) ) L (e +1)(M - 1)
Wzla,m[al]f<z) n

log2 (z€A)

as z — e . The proof of the theorem is now complete.
Forp=1,1=1 m=1,Ai =1, By =1, a; =1, and ; = 1, we have the
following result.

f(z)
2f'(2)

G (AR () A2 )
" l” 27(2) (1 * Zf’(Z)> ) <M zed)

Corollary 1 Let f € A with

#0 for |z| < 1. If
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where

n
l<M<14-—2
< T Ilog2’

then

AEN MM
%(f(z))>1 —log2, (z€A). (23)

The bound in (23) is best possible.

Letting M =1+ 41n X in Corollary 1, we have the following result.
og
f(z)
Corollary 2 f € A with #0 for|z| < 1. If
2f'(2)
2f'(z) Zf” z) + ZQf”( )/2 n
R (1 14— A
[+2f(z ( ) ) gy B8
then (2)
z2f'(z
R ( ) > 0. 24
2 2y

In other words, f is starlike in A. The result is best possible.

W, mlan +1]f(2)

Theorem 2 Let 6(a; +1) > 0, —2 £ 0 for z € A and suppose
z
that
g l
2 Wy m(a1+2) f(z)
R s <M (z€A). (25
{ (W;?,m(al T 1)f(z)) (W})m(al TD/G) (zed). (25
then where n
l<M=1+ (26)

2pd(ay + 1) log2’
Then,

2 ° ~ 2pd(an +1)(M — 1) 002 (5
R (ngj7m(a1 +1)f(z)) > 1 . log2 (z € A). (27)

The result in (27) is best possible.
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Proof. Define the function ¢(z) by

o) = (Wp,m(al +1) f(z)) | 28)

z

Then, clearly ¢(z) = 1 + ¢.2" + gny12" + ... is analytic in A with ¢(z) # 0
for z € A. It follows from (28) that

W) AV UG
PP R Vo I PO 1% R (29)

By making use of the familiar identity (11) in (29), we get

W20 1 ()
W (o T 0f) - Sen 1 1) a(2) (30)
Hence,
1 2q'(z) 2 "W (a1 +2) f(2)
M S D @) (w;,,m<a1 T 1>f<z>) W (ot D) oY

The remaining part of the proof is much akin to that of Theorem 1 and hence
we omit the details involved.

Forp=1,1=1 m=1, A, =1 By =1, a; =1, and ; = 1, we have the
following result.

Corollary 3 Let f € A with f'(z) #0 for |z] < 1. If
(e TN
(7)) |~ <A S

where
I1<M<S 1+

n
401og 2’
then

R () >1- 2D

The bound (32) is best possible.

log2, (z€A). (32)
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Letting 6 = 1, and M = 1+ 81:g2’ in Corollary 3, we have the following
result.
Corollary 4 f € A with f'(z) #0 for |z| < 1. If
Z2f// P
(7o) | @ < Slgy FEA)
R(f'(z)) > 0. (33)

The result is sharp.

W[lJ,m[al + ].]f(Z)

Theorem 3 Let 3 > 0,
M TPy

# 0 for z € A. Suppose that for

z €A, q(z) € P, satisfy

WL (af(z) )
R {1 * (Wzl),m(a/l + l)f(z)> %(l’m)f(z)} <M (34

where

Wynler +2() (Wi \"
Whnlar + D) A\ W (o +DF )

CDQ(Z, m)f(z) = ((041 -+ 1)

n

1<MS1+——.
- +2ﬁplog2

Then,

WL (a)f(z) ) 268p(M — 1)
§R<W},7m(oz1+1)f(2)> >1—Tlog2 (z € A). (37)

The bound in (37) is best possible.

Proof. Define the function ¢(z) by

! (03] z g
o) = (Wp,m< +1)£( )) | (38)

W) m(ea) f(2)
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Then, clearly q(2) = 14 ¢n2" + @12 +. .. is analytic in A with ¢(z) # 0 for
z € A. By making use of the identity (11), and using a simple computation,
we get

1og(x) [ Wia(a)f()
B ¢*(2) Wi mlar + 1D f(

where ®y(1,m)f(2) is as defined in (35). The assertion of the theorem follows

by applying similar steps as in the proof of Theorem 1.

Forp=1,1=1 m=1, A, =1 By =1, a; =1, and ; = 1, we have the

following result.

B

2f'(2)
f(2)

() (G- () ) <m e

1<M<S 1+

Corollary 5 Let 3> 0. f € A with #0 for |z| < 1. If

R

where

n
2(31log?2’

S\ -,
§R<Zf’(z)> > 1 - log2, (z€A). (40)

The bound in (40) is best possible.

then

Letting =1 and M =1+ n , in Corollary 5, we have the following
206 1log 2
result.
Corollary 6 f € A with 2z #0 for |z| < 1. If
f(z)
f2) " 2f"(2) f2) " n
w () (1 +re - (7o) )] I gy FEN
then £(2)
z
R (zf’(z)) > 0. (41)

The result is sharp.
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z
W) mlar +1]f(2)

Theorem 4 Let \,a; +1 > 0, # 0 for z € A. Suppose that

for z € A q(z) € P, satisfy

- {)\ (W]i’m(ou +1)f(2) B Wzlxm(al - 2)f(2>> + 1} <M (42)

z z
where A
n
<M< : 43
ST o 1 Dplog2 )
Then,
W +1 -
ave( L (e )f(z)) o WD =D Cen)
P n

The bound in (44) is best possible.

Proof. Defining the function ¢(z) by

ya
"W (an + D) f(2)

q(2) (45)

and following the steps as in the proof of Theorem 1, we get the assertion of
Theorem 4.

Forp=1,1=1 m=1 A =1, B, =1, a; = 1, and 5; = 1, we have the
following result.

Corollary 7 Let A > 0, f € A with f'(z) #0 for |z| < 1. If

ave{um;(z)] <M, (z€A),
where )
n
<
1<M:1+410g2,
then MM -1
§R(f'(z))>1—glog2, (z € A). (46)

nA
The bound in (46) is best possible.
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A
Letting and M =1+ ﬁ, in Corollary (7), we have the following result.
0og

Corollary 8 Let A >0, f € A with f'(z) #0 for |z| < 1. If

A
+ (z € A),

Az f"(2)
1-— 1
R 2 1 < 4log?2’
then
R(f'(2)) > 0. (47)
The result is sharp.
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