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1. Introduction

Let A denote the class of functions of the form:

f(z) = z +
∞∑

k=2

akz
k (z ∈ U), (1)

which are analytic in the open unit disk

U := {z : z ∈ C and |z| < 1}.

Let S denote the subclass of A whose members are analytic and univalent func-
tions in U. For 0 5 β < 1, We denote by S∗(β) and K(β) the usual subclasses of
A consisting of functions which are, respectively, starlike of order β and convex of
order β in U.

Salagean [1] once introduced the following operator which called the Salagean
operator:

D0f(z) = f(z), D1f(z) = Df(z) = zf ′(z),
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and
Dnf(z) = D(Dn−1f(z)) (n ∈ N := {1, 2, . . .}) .

We note that

Dnf(z) = z +
∞∑

k=2

knakz
k (n ∈ N0 := N ∪ {0}) . (2)

A function f ∈ A is said to be in the class Nm,n(α, β) if it satisfies the inequality:

<
(

Dmf(z)
Dnf(z)

)
> α

∣∣∣∣Dmf(z)
Dnf(z)

− 1
∣∣∣∣+ β (α = 0, 0 5 β < 1; m ∈ N, n ∈ N0). (3)

Also let Ms
m,n(α, β)(s ∈ N0) be the subclass of A consisting of functions f which

are satisfied the condition:

f ∈Ms
m,n(α, β) ⇐⇒ Dsf ∈ Nm,n(α, β). (4)

It is easy to see that if s = 0, then M0
m,n(α, β) ≡ Nm,n(α, β). We observe that,

by specializing the parameters m, n, α and β, we obtain the following subclasses
studied by various authors.

(1) N1,0(0, β) ≡ S∗(β) and N2,1(0, β) ≡ K(β) (see Silverman [2]).
(2) N1,0(α, β) ≡ SD(α, β) and N2,1(α, β) ≡ KD(α, β) (see Shams et al. [3], Owa

et al. [4]).
(3) Nm,n(0, β) ≡ Km,n(β) and Ms

m,n(0, β) ≡Ms
m,n(β) (see Eker and Owa [5]).

The function classes Nm,n(α, β) and Ms
m,n(α, β) were introduced and investi-

gated by Eker and Owa [6] (see also Srivastava and Eker [7]). They obtained many
interesting results associated with them. In this paper, we aim at proving some co-
efficient inequalities for the function classes Nm,n(α, β) and Ms

m,n(α, β). Relevant
connections of the results presented here with those given in earlier works are also
pointed out.

2. Main Results

In order to prove our main results, we need the following lemma.

Lemma 1. Let δ > 0, m ∈ N and n ∈ N0. Suppose also that the sequence {Bk}∞k=1

is defined by

B1 = 1, B2 =
δ

|2m − 2n|
,
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and

Bk =
δ

|km − kn|

k−1∑
j=1

jnBj (k ∈ N \ {1, 2}). (5)

Then

Bk =
δ

|km − kn|

k−1∏
j=2

(
1 +

δjn

|jm − jn|

)
(k ∈ N \ {1, 2}). (6)

Proof. We make use of the principle of mathematical induction to prove the assertion
(6).

For k = 3, we know that

B3 =
δ

|3m − 3n|
(1 + 2nB2) =

δ

|3m − 3n|

2∏
j=2

(
1 +

δjn

|jm − jn|

)
,

which implies that (6) holds for k = 3.
We now suppose that (6) holds for k = 3, 4, · · · , r. Then

Br =
δ

|rm − rn|

r−1∏
j=2

(
1 +

δjn

|jm − jn|

)
. (7)

Combining (5) and (7), we find that

Br+1 =
δ

|(r + 1)m − (r + 1)n|

r∑
j=1

jnBj

=
δ

|(r + 1)m − (r + 1)n|

r−1∑
j=1

jnBj +
δrn

|(r + 1)m − (r + 1)n|
Br

=
δ

|(r + 1)m − (r + 1)n|
|rm − rn|

δ
Br +

δrn

|(r + 1)m − (r + 1)n|
Br

=
|rm − rn|+ δrn

|(r + 1)m − (r + 1)n|
δ

|rm − rn|

r−1∏
j=2

(
1 +

δjn

|jm − jn|

)

=
δ

|(r + 1)m − (r + 1)n|

(
1 +

δrn

|rm − rn|

) r−1∏
j=2

(
1 +

δjn

|jm − jn|

)

=
δ

|(r + 1)m − (r + 1)n|

r∏
j=2

(
1 +

δjn

|jm − jn|

)
,
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which shows that (6) holds for k = r + 1. The proof of Lemma 1 is evidently
completed.

Theorem 1. If f ∈ Nm,n(α, β), then

|a2| 5
2(1− β)

|1− α| |2m − 2n|
, (8)

and

|ak| 5
2(1− β)

|1− α| |km − kn|

k−1∏
j=2

(
1 +

2(1− β)jn

|1− α| |jm − jn|

)
(k ∈ N \ {1, 2}). (9)

Proof. Let f ∈ Nm,n(α, β) and suppose that

p(z) :=
(1− α)Dmf(z)

Dnf(z) − (β − α)

1− β
(z ∈ U) . (10)

Then p is analytic in U with

p(0) = 1 and <(p(z)) > 0 (z ∈ U).

We now set
p(z) = 1 + p1z + p2z

2 + · · · . (11)

Combining (10) and (11), we find that

Dmf(z) = Dnf(z)

(
1 +

1− β

1− α

∞∑
k=1

pkz
k

)
,

which implies that

(km−kn)ak =
1− β

1− α
[pk−1 + 2na2pk−2 + · · ·+ (k − 1)nak−1p1] (k ∈ N\{1}). (12)

On the other hand, it is well known that

|pk| 5 2 (k ∈ N). (13)

Combining (12) and (13), we obtain

|ak| 5
2(1− β)

|1− α| |km − kn|

k−1∑
j=1

jn |aj | (a1 = 1; k ∈ N \ {1}). (14)
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Suppose that δ = 2(1−β)
|1−α| > 0, m ∈ N and n ∈ N0. We define the sequence

{Bk}∞k=1 by

B1 = 1, B2 =
δ

|2m − 2n|
,

and

Bk =
δ

|km − kn|

k−1∑
j=1

jnBj (k ∈ N \ {1, 2}). (15)

In order to prove that
|ak| 5 Bk (k ∈ N \ {1}),

we use the principle of mathematical induction. By noting that

|a2| 5
2(1− β)

|1− α| |2m − 2n|
= B2. (16)

Thus, assuming that
|ak| 5 Bk (k ∈ {2, 3, . . . , r}),

we find from (14) and (15) that

|ar+1| 5
2(1− β)

|1− α| |(r + 1)m − (r + 1)n|

r∑
j=1

jn |aj |

5
δ

|(r + 1)m − (r + 1)n|

r∑
j=1

jnBj = Br+1.

Therefore, we have
|ak| 5 Bk (k ∈ N \ {1}) (17)

as desired.
By virtue of Lemma 1 and (15), we know that

Bk =
2(1− β)

|1− α| |km − kn|

k−1∏
j=2

(
1 +

2(1− β)jn

|1− α| |jm − jn|

)
(k ∈ N \ {1, 2}). (18)

Combining (16), (17) and (18), we readily arrive at the coefficient inequalities (8)
and (9) asserted by Theorem 1.

By virtue of Theorem 1 and (4), we get the following result.
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Corollary 1. If f(z) ∈Ms
m,n(α, β), then

|a2| 5
2(1− β)

|1− α| |2m+s − 2n+s|
,

and

|ak| 5
2(1− β)

|1− α| |km+s − kn+s|

k−1∏
j=2

(
1 +

2(1− β)jn

|1− α| |jm − jn|

)
(k ∈ N \ {1, 2}).

Remark 1. By specializing the parameters m and n, we get the corresponding
results obtained by Owa et al. [4].

By means of Theorem 1 and Corollary 1, we easily get the following distortion
theorems.

Corollary 2. If f ∈ Nm,n(α, β), then

max

0, |z| − 2(1− β)
|1− α|

∞∑
k=2

∏k−1
j=2

(
1 + 2(1−β)jn

|1−α||jm−jn|

)
|km − kn|

|z|k


5 |f(z)| 5 |z|+ 2(1− β)
|1− α|

∞∑
k=2

∏k−1
j=2

(
1 + 2(1−β)jn

|1−α||jm−jn|

)
|km − kn|

|z|k ,

and

max

0, 1− 2(1− β)
|1− α|

∞∑
k=2

∏k−1
j=2

(
1 + 2(1−β)jn

|1−α||jm−jn|

)
|km−1 − kn−1|

|z|k−1


5
∣∣f ′(z)

∣∣ 5 1 +
2(1− β)
|1− α|

∞∑
k=2

∏k−1
j=2

(
1 + 2(1−β)jn

|1−α||jm−jn|

)
|km−1 − kn−1|

|z|k−1 .

Corollary 3. If f ∈Ms
m,n(α, β), then

max

0, |z| − 2(1− β)
|1− α|

∞∑
k=2

∏k−1
j=2

(
1 + 2(1−β)jn

|1−α||jm−jn|

)
|km+s − kn+s|

|z|k


5 |f(z)| 5 |z|+ 2(1− β)
|1− α|

∞∑
k=2

∏k−1
j=2

(
1 + 2(1−β)jn

|1−α||jm−jn|

)
|km+s − kn+s|

|z|k ,
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and

max

0, 1− 2(1− β)
|1− α|

∞∑
k=2

∏k−1
j=2

(
1 + 2(1−β)jn

|1−α||jm−jn|

)
|km+s−1 − kn+s−1|

|z|k−1


5
∣∣f ′(z)

∣∣ 5 1 +
2(1− β)
|1− α|

∞∑
k=2

∏k−1
j=2

(
1 + 2(1−β)jn

|1−α||jm−jn|

)
|km+s−1 − kn+s−1|

|z|k−1 .
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