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1. INTRODUCTION

Let N, Z and R denote the sets of all natural numbers, integers and real numbers
respectively. For a, b ∈ Z, define Z(a) = {a, a + 1, · · · }, Z(a, b) = {a, a + 1, · · · , b}
when a ≤ b. ∆ is the forward difference operator defined by ∆un = un+1 − un. k is
a positive integer and * is the transpose sign for a vector.

Consider the second order functional difference equation

Lun = f(n, un+1, un, un−1), (1)

with boundary value conditions

u0 = A, uk+1 = B, (2)

where the operator L is the Jacobi operator

Lun = anun+1 + an−1un−1 + bnun,

an and bn are real valued for each n ∈ Z, f ∈ C(R4,R), A and B are constants.
We may think of Eq. (1) as being a discrete analogue of the second order

functional differential equation

Su(t) + f(t, u(t + 1), u(t), u(t− 1)) = 0, t ∈ R (3)
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which includes the following equation

c2u′′(t) = V ′(u(t + 1)− u(t))− V ′(u(t)− u(t− 1)), t ∈ R (4)

where S is the Sturm-Liouville differential expression and f ∈ C(R4,R). Eq. (4)
has been studied extensively by many scholars. For example, Smets and Willem
have obtained the existence of solitary waves of lattice differential equations, see
[21] and the references cited therein.

Jacobi operators appear in a variety of applications [22]. They can be viewed as
the discrete analogue of Sturm-Liouville operators and their investigation has many
similarities with Sturm-Liouville theory. Whereas numerous books about Sturm-
Liouville operators have been written, only few on Jacobi operators exist. In par-
ticular, there are currently fewer researches available which cover some basic topics
(like positive solutions, periodic operators, boundary value problems, etc.) typically
found in textbooks on Sturm-Liouville operators [12].

It is well known that difference equations occur widely in numerous setting and
forms, both in mathematics itself and in its applications to statistics, computing,
electrical circuit analysis, dynamical systems, economics, biology and other fields, see
for examples [1,6,9,10,14,19]. Since the last decade, there has been much progress on
the qualitative properties of difference equations, which included results on stability
and attractivity and results on oscillation and other topics, see [1-4,6-11,14-16,18-
20,23-25]. However, to our best knowledge, no similar results are obtained in the
literature for the boundary value problem (BVP) (1) with (2). Since f in Eq. (1)
depends on un+1 and un−1, the traditional ways of establishing the functional in
[2,23-25] are inapplicable to our case.

Our aim in this paper is to use the critical point theory to give some sufficient
conditions for the existence and multiplicity of the BVP (1) with (2). The main idea
in this paper is to transfer the existence of the BVP (1) with (2) into the existence
of the critical points [13] of some functional.

Our main results are as follows.
Let

pmax = max{an : n ∈ Z(0, k)}, pmin = min{an : n ∈ Z(0, k)},

qmax = max{bn +an−1 +an : n ∈ Z(1, k)}, qmin = min{bn +an−1 +an : n ∈ Z(1, k)}.

Theorem 1. Assume that the following hypotheses are satisfied:

(F1) there exists a constant M0 > 0 and a functional F (n, ·) ∈ C1(Z×R2,R) with
F (0, ·) = 0 such that for any n ∈ Z(1, k),

∂F (n− 1, v2, v3)
∂v2

+
∂F (n, v1, v2)

∂v2
= f(n, v1, v2, v3),
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∣∣∣∣∂F (n, v1, v2)
∂v1

∣∣∣∣ ≤ M0,

∣∣∣∣∂F (n, v1, v2)
∂v2

∣∣∣∣ ≤ M0; (5)

(F2) for any n ∈ Z(0, k), an > 0; for any n ∈ Z(1, k), bn + an−1 + an > 0;
(F3) 4pmax < qmin.
Then the BVP (1) with (2) possesses at least one solution.

Remark 1. (5) implies that there exists a constant M1 > 0 such that

|F (n, v1, v2)| ≤ M1 + M0(|v1|+ |v2|), ∀n ∈ Z(1, k). (6)

Corollary 1. Suppose that (F1) and (F3) are satisfied. And if
(F4) for any n ∈ Z(0, k), an < 0; for any n ∈ Z(1, k), bn + an−1 + an < 0.
Then the BVP (1) with (2) possesses at least one solution.
Corollary 2. Assume that (F1)is satisfied. And if
(F5) for any n ∈ Z(0, k), an < 0; for any n ∈ Z(1, k), bn + an−1 + an > 0.
Then the BVP (1) with (2) possesses at least one solution.
Theorem 2. Suppose that the following hypotheses are satisfied:
(F6) there exists a functional F (n, ·) ∈ C1(Z×R2,R) with F (0, ·) = 0 such that

lim
r→0

F (n, v1, v2)
r2

= 0, r =
√

v2
1 + v2

2, ∀n ∈ Z(1, k);

(F7) there exists a constant β > 2 such that for any n ∈ Z(1, k),

∂F (n− 1, v2, v3)
∂v2

+
∂F (n, v1, v2)

∂v2
= f(n, v1, v2, v3),

∂F (n, v1, v2)
∂v1

v1 +
∂F (n, v1, v2)

∂v2
v2 ≤ βF (n, v1, v2) < 0, ∀(v1, v2) 6= 0; (7)

(F8) for any n ∈ Z(0, k), an > 0; for any n ∈ Z(1, k), bn + an−1 + an ≤ 0;
(F9) A = B = 0.
Then the BVP (1) with (2) possesses at least two nontrivial solutions.

Remark 2. (7) implies that there exist constants a1 > 0 and a2 > 0 such that

F (n, v1, v2) ≤ −a1

(√
v2
1 + v2

2

)β

+ a2, ∀n ∈ Z(1, k). (8)

The rest of the paper is organized as follows. In Sect. 2 we shall establish the
variational framework for the BVP (1) with (2) in order to apply the critical point
method and give some useful lemmas. In Sect. 3 we shall complete the proof of the
main results and give an example to illustrate the result.
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2. VARIATIONAL STRUCTURE AND SOME LEMMAS

In order to apply the critical point theory, we shall establish the corresponding
variational framework for the BVP (1) with (2) and give some basic notations and
useful lemmas.

Let Rk be the real Euclidean space with dimension k. Define the inner product
on Rk as follows:

〈u, v〉 =
k∑

j=1

ujvj , ∀u, v ∈ Rk, (9)

by which the norm ‖ · ‖ can be induced by

‖u‖ =

 k∑
j=1

u2
j

 1
2

, ∀u ∈ Rk. (10)

On the other hand, we define the norm ‖ · ‖r on Rk as follows:

‖u‖r =

 k∑
j=1

|uj |r
 1

r

, (11)

for all u ∈ Rk and r > 1.
Since ‖u‖r and ‖u‖2 are equivalent, there exist constants c1, c2 such that c2 ≥

c1 > 0, and
c1‖u‖2 ≤ ‖u‖r ≤ c2‖u‖2, ∀u ∈ Rk. (12)

Clearly, ‖u‖ = ‖u‖2. For the BVP (1) with (2), consider the functional J on Rk

as follows:

J(u) =
1
2

k∑
n=0

an(∆un)2 − 1
2

k∑
n=1

(bn + an−1 + an)u2
n +

k∑
n=1

F (n, un+1, un), (13)

∀u = (u1, u2, · · · , uk)∗ ∈ Rk, u0 = A, uk+1 = B.
Clearly, J ∈ C1(Rk,R) and for any u = {un}k+1

n=0 = (u0, u1, . . . , uk+1)∗, by using
u0 = A, uk+1 = B, we can compute the partial derivative as

∂J

∂un
= −an∆un + an−1∆un−1 − (bn + an−1 + an)un + f(n, un+1, un, un−1)

= −Lun + f(n, un+1, un, un−1), n ∈ Z(1, k).
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Thus, u is a critical point of J on Rk if and only if

Lun = f(n, un+1, un, un−1), ∀n ∈ Z(1, k).

We reduce the existence of the BVP (1) with (2) to the existence of critical points
of J on Rk. That is, the functional J is just the variational framework of the BVP
(1) with (2).

Let E be a real Banach space, J ∈ C1(E,R), i.e., J is a continuously Fréchet-
differentiable functional defined on E. J is said to be satisfying the Palais-Smale
condition (P.S. condition for short) if any sequence

{
u(k)

}
⊂ E for which

{
J
(
u(k)

)}
is bounded and J ′

(
u(k)

)
→ 0(k →∞) possesses a convergent subsequence in E.

Let Bρ denote the open ball in E about 0 of radius ρ and let ∂Bρ denote its
boundary.

Lemma 1 (Mountain Pass Lemma [17]). Let E be a real Banach space and J ∈
C1(E,R) satisfies the P.S. condition. If J(0) = 0 and
(J1) there exist constants ρ, a > 0 such that J |∂Bρ ≥ a, and
(J2) there exists e ∈ E \Bρ such that J(e) ≤ 0.
Then J possesses a critical value c ≥ a given by

c = inf
g∈Γ

max
s∈[0,1]

J(g(s)), (14)

where
Γ = {g ∈ C([0, 1], E)|g(0) = 0, g(1) = e}. (15)

Lemma 2. Suppose that (F6) − (F9) is satisfied. Then the functional J satisfies
the P.S. condition.

Proof. Let u(l) ∈ Rk, l ∈ Z(1) be such that
{
J
(
u(l)
)}

is bounded. Then there
exists a positive constant M2 such that

−M2 ≤ J
(
u(l)
)
≤ M2, ∀l ∈ N.

By (1.8), we have

−M2 ≤ J
(
u(l)
)

=
1
2

k∑
n=0

an

(
∆u(l)

n

)2
−1

2

k∑
n=1

(bn+an−1+an)
(
u(l)

n

)2
+

k∑
n=1

F
(
n, u

(l)
n+1, u

(l)
n

)

≤ pmax

k∑
n=0

[(
u

(l)
n+1

)2
+
(
u(l)

n

)2
]
−qmin

2

∥∥∥u(l)
∥∥∥2
−a1

k∑
n=1

[√(
u

(l)
n+1

)2
+
(
u

(l)
n

)2
]β

+a2k

≤ 2pmax

∥∥∥u(l)
∥∥∥2
− qmin

2

∥∥∥u(l)
∥∥∥2
− a1c

β
1

∥∥∥u(l)
∥∥∥β

+ a2k.
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That is,

a1c
β
1

∥∥∥u(l)
∥∥∥β

−
(
2pmax −

qmin

2

)∥∥∥u(l)
∥∥∥2
≤ M2 + a2k.

Since β > 2, there exists a constant M3 > 0 such that∥∥∥u(l)
∥∥∥ ≤ M3, ∀l ∈ N.

Therefore,
{
u(l)
}

is bounded on Rk. As a consequence,
{
u(l)
}

possesses a conver-
gence subsequence in Rk. And thus the P.S. condition is verified.

3. PROOF OF THE MAIN RESULTS

In this section, we shall complete the proof of Theorems 1 and 2.

3.1. Proof of Theorem 1

Proof. By (6), for any u = (u1, u2, · · · , uk)∗ ∈ Rk, we have

J(u) =
1
2

k∑
n=0

an(∆un)2 − 1
2

k∑
n=1

(bn + an−1 + an)u2
n +

k∑
n=1

F (n, un+1, un)

≤ pmax

k∑
n=0

(
u2

n+1 + u2
n

)
− qmin

2
‖u‖2 + M0

k∑
n=1

(|un+1|+ |un|) + M1k

≤ 2pmax

k∑
n=1

u2
n + pmax

(
A2 + B2

)
− qmin

2
‖u‖2 + M0

(
2

k∑
n=1

|un|+ |B|

)
+ M1k

≤
(
2pmax −

qmin

2

)
‖u‖2 + 2M0

√
k‖u‖+ M0|B|+ M1k + pmax

(
A2 + B2

)
→ −∞, (‖u‖ → +∞).

By continuity of J on Rk and above argument, there exists u0 ∈ Rk such that

J(u0) = max
{

J(u)|u ∈ Rk
}

.

Clearly, u0 is a critical point of the functional J . The proof of Theorem 1 is
complete.

3.2. Proof of Theorem 2

Proof. By (F6), for any ε = 1
8pminλ1(λ1 can be referred to (16)), there exists ρ > 0,

such that
|F (n, v1, v2)| ≤

1
8
pminλ1

(
v2
1 + v2

2

)
,∀n ∈ Z(1, k),

28



W.P. Ling, L.W. Yang, H.P. Shi, Z.G. Wang - Dirichlet boundary value....

for
√

v2
1 + v2

2 ≤
√

2ρ.
For any u = (u1, u2, · · · , uk)∗ ∈ Rk and ‖u‖ ≤ ρ, we have |un| ≤ ρ, n ∈ Z(1, k).
For any n ∈ Z(1, k),

J(u) =
1
2

k∑
n=0

an(∆un)2 − 1
2

k∑
n=1

(bn + an−1 + an)u2
n +

k∑
n=1

F (n, un+1, un)

≥ 1
2
pmin

k∑
n=0

(∆un)2 − 1
8
pminλ1

k∑
n=1

(
u2

n+1 + u2
n

)
≥ 1

2
pmin(u∗Du)− 1

4
pminλ1‖u‖2,

where u∗ = (u1, u2, · · · , uk), u ∈ Rk,

D =



2 −1 0 · · · 0 0
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 2 −1
0 0 0 · · · −1 2


k×k.

Clearly, D is positive definite. Let λ1, λ2, · · · , λk be the other eigenvalues of D.
Applying matrix theory, we know λj > 0, j = 1, 2, · · · , k. Without loss of generality,
we may assume that

0 < λ1 ≤ λ2 ≤ · · · ≤ λk, (16)

then
J(u) ≥ 1

2
pminλ1‖u‖2 − 1

4
pminλ1‖u‖2

=
1
4
pminλ1‖u‖2.

Take a1
4pminλ1‖ρ‖2 > 0. Therefore,

J(u) ≥ a > 0, ∀u ∈ ∂Bρ.

At the same time, we have also proved that there exist constants a > 0 and ρ > 0
such that J |∂Bρ ≥ a. That is to say, J satisfies the condition (J1) of the Mountain
Pass Lemma.

For our setting, clearly J(0) = 0. In order to exploit the Mountain Pass Lemma
in critical point theory, we need to verify other conditions of the Mountain Pass

29



W.P. Ling, L.W. Yang, H.P. Shi, Z.G. Wang - Dirichlet boundary value....

Lemma. By Lemma 2, J satisfies the P.S. condition. So it suffices to verify the
condition (J2).

From the proof of the P.S. condition, we know

J(u) ≤ 2pmax‖u‖2 − qmin

2
‖u‖2 − a1c

β
1‖u‖

β + a2k.

Since β > 2, we can choose ū large enough to ensure that J(ū) < 0.
By the Mountain Pass Lemma, J possesses a critical value c ≥ a > 0, where

c = inf
h∈Γ

sup
s∈[0,1]

J(h(s)),

and
Γ = {h ∈ C([0, 1],Rk) | h(0) = 0, h(1) = ū}.

Let ũ ∈ Rk be a critical point associated to the critical value c of J , i.e., J(ũ) = c.
Similar to the proof of the P.S. condition, we know that there exists û ∈ Rk such
that

J(û) = cmax = max
s∈[0,1]

J(h(s)).

Clearly, û 6= 0. If ũ 6= û, then the conclusion of Theorem 2 holds. Otherwise,
ũ = û. Then c = J(ũ) = cmax = max

s∈[0,1]
J(h(s)). That is,

sup
u∈Rk

J(u) = inf
h∈Γ

sup
s∈[0,1]

J(h(s)).

Therefore,
cmax = max

s∈[0,1]
J(h(s)), ∀h ∈ Γ.

By the continuity of J(h(s)) with respect to s, J(0) = 0 and J(ū) < 0 imply
that there exists s0 ∈ (0, 1) such that

J (h (s0)) = cmax.

Choose h1, h2 ∈ Γ such that {h1(s) | s ∈ (0, 1)} ∩ {h1(s) | s ∈ (0, 1)} is empty,
then there exists s1, s2 ∈ (0, 1) such that

J (h1 (s1)) = J (h2 (s2)) = cmax.

Thus, we get two different critical points of J on Rk denoted by

u1 = h1 (s1) , u2 = h2 (s2) .
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The above argument implies that the BVP (1) with (2) possesses at least two non-
trivial solutions. The proof of Theorem 2 is finished.

Remark 3. As an application of Theorem 2, finally, we give an example to illustrate
our result.

For n ∈ Z(1, k), assume that

2un+1 + 2un−1 − 8un = −βun

[
ϕ(n)

(
u2

n+1 + u2
n

)β
2
−1 + ϕ(n− 1)

(
u2

n + u2
n−1

)β
2
−1
]

,

(17)
with boundary value conditions

u0 = 0, uk+1 = 0, (18)

where β > 2, ϕ is continuously differentiable and ϕ(n) > 0, n ∈ Z(1, k) with
ϕ(0) = 0.

We have
an = an−1 ≡ 2, bn ≡ −8,

f(n, v1, v2, v3) = −βv2

[
ϕ(n)

(
v2
1 + v2

2

)β
2
−1 + ϕ(n− 1)

(
v2
2 + v2

3

)β
2
−1
]

and
F (n, v1, v2) = −ϕ(n)

(
v2
1 + v2

2

)β
2 .

Then

∂F (n− 1, v2, v3)
∂v2

+
∂F (n, v1, v2)

∂v2
= −βv2

[
ϕ(n)

(
v2
1 + v2

2

)β
2
−1 + ϕ(n− 1)

(
v2
2 + v2

3

)β
2
−1
]

.

It is easy to verify all the assumptions of Theorem 2 are satisfied and then the BVP
(17) with (18) possesses at least two nontrivial solutions.
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