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Abstract.Some direct theorems for the linear combinations of a new class of
positive linear operators have been obtained for both, pointwise and uniform simul-
taneous approximations. A number of well known positive linear operators such as
Gamma-Operators of Muller, Post-Widder and modified Post-Widder Operators are
special cases of this class of operators.
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1. Introduction

Let G be a non negative function measurable on positive real line IR+ ≡
(0,∞),which is continuousat the point ′1′, and satisfies the following properties:

( i ) for each δ > 0,
∥∥∥χc

δ,1G
∥∥∥
∞

< G(1), and

( ii ) there exists θ1, θ2 > 0 such that (uθ1 + u−θ2)G(u)
is essentially bounded. Such a function will be called an ”admissible” kernel func-

tion. The set of admissible kernel functions will be denoted by T (IR+). Throughout
the paper χδ,x(χc

δ,x) denotes the characteristic function of (x− δ, x + δ){IR+− (x−
δ, x + δ)}.

Let G ∈ T (IR+), α ∈ IR. Then for λ, x ∈ IR+ and a non negative function
f measurable on IR+, we define

(1) Tλ(f ;x) = xα−1

a(λ)

∫∞
0 u−αf(u)Gλ(xu−1)du,

where a(λ) =
∫∞
0 uα−2Gλ(u)du,

whenever the above integral exists.
The equation (1) defines a class of linear positive approximation methods,

which contains as particular cases, a number of well known linear positive opera-
tors; e.g. Post Widder and modified Post Widder Operators [5] and the Gamma-
Operators of Muller [6] etc., as shown in [3].

In the present paper we study the following problems:
(i) Is it possible to approximate the derivatives of f by the derivatives of Tλ(f)?
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(ii)Can we use certain linear combinations of Tλ to obtain a better order of
approximation?

We introduce notations and definitions used in this paper.
Let Ω(> 1) be a continuous function defined on IR+. We call Ω a bounding

function [8] for G if for each compact K ⊆ IR+ there exist positive numbers λK

and MK such that
TλK

(Ω; x) < MK , x ∈ K.
It is clear that if G ∈ T (IR+), then Ω(u) = up + u−q for p, q > 0 is a

bounding function for G. The notion of a bounding function enables us to obtain
results in a uniform set-up, which, at the same time , are applicable for a general
G ∈ T (IR+).

For a bounding function Ω, we define the set
DΩ = {f : f is locally integrable on IR+ and is such that

lim supu→0
f(u)
Ω(u) and lim supu→∞

f(u)
Ω(u) exist}

D
(k)
Ω = {f : f ∈ DΩ and f is k-times continuously differentiable on

IR+ and f (i) ∈ DΩ, i = 1, 2, ....k}
C

(m)
b (IR+) = {f : f is m−times continuously differentiable and is

such that f (k), k = 0, 1, 2, ...m, are bounded on IR+}
T∞(IR+) = {G ∈ T (IR+) : G is continuously differentiable at u=1

and G′′(1) 6= 0}

2.Simultaneous Approximation for Continuous Derivatives

We consider first the ”elementary” case of simultaneous approximation by the
operatorsTλ wherein the derivatives of f are assumed to be continuous. We have
termed this case elementary, for it is possible here to deduce the results on the si-
multaneous approximation :(Tλf)(k) → f (k)(k ∈ IN) from the corresponding results
on the ordinary approximation : Tλf → f . Indeed, the operators Tλf become dif-
ferentiable either by assuming the differentiability of G or that of f . The situation
of the present section corresponds to the latter case.

Theorem 1 -If f ∈ D
(k)
Ω , then T

(k)
λ (f ;x) for x ∈ [a, b] exist for all sufficiently large

λ and
(2) limλ→∞ T

(k)
λ (f ;x) = f (k)(x), uniformly for x ∈ [a, b].

Proof. - We have

Tλ(f ;x) = 1
a(λ)

∞∫
0

uα−2Gλ(u)f(xu−1)du.
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A formal k-times differentiation within the integral sign leads to

T
(k)
λ (f ;x) = xα−k−1

a(λ)

∞∫
0

u−(α−k)Gλ(xu−1)f (k)(u)du.

It follows that T
(k)
λ (f ;x), x ∈ [a, b], exist for all λ sufficiently large.

Let T ∗
λ denote the operator obtained from (1) after replacing α by α − k.

Let the corresponding a(λ) be denoted by a∗(λ). Then we have
(3) T

(k)
λ (f ;x) = a∗(λ)

a(λ) T ∗
λ (f (k);x).

We also note that
(4) a∗(λ)

a(λ) = Tλ(uk; 1), as λ →∞.

Applying the known approximation Tλf → f to (3), we find that
T

(k)
λ (f ;x) = a∗(λ)

a(λ) T ∗
λ (f (k);x) → f (k)(x) as λ →∞.

This completes the proof of the theorem.

Theorem 2 - Let G ∈ T (IR+), G′′′(1) exist and G′′(1) be non-zero and f ∈ D
(k)
Ω .

Then, at each x ∈ IR+ where f (k+2) exists,
(5) T

(k)
λ (f ;x)− f (k)(x) = 1

2λ[G′′(1)]2 [f (k)(x)kG(1){(2α− k− 5)G′′(1)−G′′′(1)}
+xf (k+1)(x)G(1){2(α− k − 3)G′′(1)−G′′′(1)}
−x2f (k+2)(x)G(1)G′′(1)] + o( 1

λ), λ →∞.

Further, if f (k+2) exists and is continuous on < a, b >, the open interval con-
taining [a, b], then (5) holds uniformly in x ∈ [a, b].

Proof. Using Voronovskaya formula [3] [8] [5] [9] [10] for T ∗
λ and (3),the result

follows.
In the similar manner, one can prove the following results:

Theorem 3 - Let G ∈ T (IR+) and G′′(1) be non-zero. If f is such that f (k) exists
on IR+ and is continuous on IR+, then

(6)
∣∣∣T (k)

λ (f ;x)− f (k)(x)
∣∣∣ ≤ .ωf (k)(λ−

1
2 )[1 + min(x2{− G(1)

G′′(1) + o(1)},

x{− G(1)
G′′(1) + o(1)}

1
2 )]+ o( 1

λ),
(λ →∞, x ∈ IR+),

where ωf (k) is the modulus of continuity of f (k),[11]

Theorem 4 -With the same assumption on G as in Theorem2, letf be such
thatf (k+1) exists on IR+. Then, for x ∈ IR+

(7)
∣∣∣T (k)

λ (f ;x)− f (k)(x)
∣∣∣ ≤ k|f (k)(x)|

2λ[G′′(1)]2 {G(1) |(2α− k − 5)G′′(1)−G′′′(1)|}

+
x|f (k+1)(x)|
2λ[G′′(1)]2 {G(1) |2(α− k − 3)G′′(1)−G′′′(1)|}
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+o( 1
λ) + ωf (k+1)(λ−

1
2 )[ x

λ
1
2
{(− G(1)

G′(1))
1
2 + o(1)}

+ x2

2λ
1
2
{− G(1)

G′′(1) + o(1)}],
(λ →∞, x ∈ IR+).

3.Pointwise Simultaneous Approximation

In the present section we consider the ”non-elementary” case of simultaneous
approximation wherein only G is assumed to be sufficiently smooth. Then, assum-
ing only that f (k)(x) exists at some point x, we solve the problem of point-wise
approximation. Before proving this result , we establish:

Lemma 5 1- Let G ∈ C
(m)
b (IR+) ∩ T (IR+) and λ > m ∈ IN (set of natural

numbers). Then

(8) ∂m

∂xm {xα−1Gλ(xu−1)} = xα−1Gλ−m(xu−1)
m∑

k=0

[m−k
2

]∑
υ=0

λυ+k{G′(xu−1)}kgυ,k,m(x, u)

where [x] denotes the integral part of x ∈ IR+ and the function gυ,k,m(x, u) are
certain linear combinations of products of the powers of u−1, x−1 and G(k)(xu−1), k =
0, 1, 2, ...m and are independent of λ.

Proof. - We proceed by induction on m. We note that
(9) ∂

∂x{x
α−1Gλ(xu−1)} = xα−1Gλ−1(xu−1)[α−1

x G(xu−1) + λ
uG′(xu−1)].

Putting g0,0,1(x, u) = α−1
x G(xu−1) and g0,1,1(x, u) = 1

u , we observe that (9)
is of the form (8). Hence the result is true for m = 1.

Next, let us assume that the lemma holds for a certain m. Let G ∈
C

(m+1)
b (IR+) ∩ T (IR+). Then G ∈ C

(m)
b (IR+) ∩ T (IR+) and therefore by the in-

duction hypothesis,

(10) ∂m+1

∂xm+1 {xα−1Gλ(xu−1)} = xα−1Gλ−m−1(xu−1)
m+1∑
k=0

[m+1−k
2

]∑
υ=0

λυ+k{G′(xu−1)}k·

· gυ,k,m+1(x, u),
wherewith gυ,k,m(x, u) ≡ 0 for k > m or k < 0, υ < 0 or υ > [m−k

2 ], we have
put

gυ,k,m+1(x, u) = α−1
x gυ,k,m(x, u)G(xu−1)− λ

uG′(xu−1)gυ,k,m(x, u)+ ∂
∂xgυ,k,m(x, u)

+ 1
ugυ,k−1,m(x, u)+ k+1

u G′′(xu−1)gυ−1,k+1,m(x, u),
for k = 0, 1, 2, ...,m + 1 and υ = 0, 1, 2, ..., [m+1−k

2 ]
It is clear that gυ,k,m+1(x, u) satisfies the other required properties and

hence the result is true for m+1. Hence it follows that (8) holds for all m = 1, 2, .....
This completes the proof.
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Remark 1 : It can be seen that for G ∈ C
(m)
b (IR+) ∩ T (IR+) andf ∈ DΩ, where

Ω is some bounding function for G, T
(k)
λ (f ;x) exist where x ∈ [a, b], 0 < a < b < ∞

and k = 1, 2, 3, ...m.

Theorem 6 5: Let m ∈ IN,G ∈ C
(m)
b (IR+) and G”(1) exist and be non-zero. If

Ω is a bounding function for G andf ∈ DΩ, then
(11) limλ→∞ T

(m)
λ (f ;x) = f (m)(x),

whenever x ∈ IR+ is such thatf (m)(x) exists. Moreover iff (m) exists and is
continuous on < a, b >, (11) holds uniformly in x ∈ [a, b].

Proof. If f (m)(x) exists at some x ∈ IR+, given an arbitrary ε > 0 we can find
a δ satisfying x > δ > 0 such that

f(u) =
m∑

k=0

f (k)(x)
k! (u− x)k + hx(u)(u− x)m, |u− x| ≤ δ,

where hx(u) is a certain measurable function on [x− δ, x + δ] satisfying the
inequality |hx(u)| ≤ ε, |u− x| ≤ δ. Hence

(12) T
(m)
λ (f ;x) =

m∑
k=0

f (k)(x)
k!

k∑
j=0

(
k
j

)
(−1)jxjT

(m)
λ (uk−j ;x)

+T
(m)
λ (hx(u)(u− x)(m)χδ,x(u);x) + T

(m)
λ (fχc

δ,x;x)
=

∑
1 +

∑
2 +

∑
3, (say).

Using the fact that Tλ maps polynomials into polynomials, and the basic
convergence theorem [3] we obtain

(13)
∑

1 = f (m)(x)Tλ(um; 1) → f (m)(x), λ →∞.
It follows from Lemma1 that

T
(m)
λ (hx(u)(u−x)(m)χδ,x(u);x) = xα−1

a(λ)

m∑
k=0

[m−k
2

]∑
υ=0

λυ+k

x+δ∫
x−δ

u−αhx(u)(u−x)m

Gλ−m(xu−1)
∣∣G′(xu−1)

∣∣k gυ,k,m(x, u)du.
The δ above can be chosen so small that∣∣G′(xu−1)

∣∣ ≤ A |u− x| , |u− x| < δ,
where A is some constant. Since the functions gυ,k, m(x, u) are bounded on

[x − δ, x + δ], it is clear that there exists a constant M1 independent of λ, ε and δ
such that for all λ sufficiently large,∣∣∣T (m)

λ (hx(u)(u− x)(m)χδ,x(u);x)
∣∣∣ ≤ εM1

m∑
k=0

[m−k
2

]∑
υ=0

λυ+kTλ(|u− x|m+k ;x)

≤ εM2

m∑
k=0

[m−k
2

]∑
υ=0

λυ+k−m+k
2 ,
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by [3] where M2 is another constant not depending on λ, ε and δ. Since
υ ≤ [m−k

2 ], υ + k − m+k
2 − [m−k

2 ]− m−k
2 ≤ 0, there exists a constant M independent

of λ, ε and δ such that
(14) |

∑
2| ≤ M, for all λ sufficiently large.

To estimate
∑

3, first of all we notice that there exists a positive integer p
and a constant P such that∣∣{G′(xu−1)}kgυ,k,m(x, u)

∣∣ ≤ P (1 + u−p), u ∈ IR+

and 0 ≤ k ≤ m, 0 ≤ υ ≤ [m−k
2 ]. Hence by lemma 1, we have

|
∑

3| ≤ P
m∑

k=0

[m−k
2

]∑
υ=0

λυ+k xα−1

a(λ)

∞∫
0

u−α(1 + u−p)Gλ−m(xu−1)f(u)χc
δ,x(u)du

= P

m∑
k=0

[m−k
2

]∑
υ=0

λυ+k a(λ−m)
a(λ) Tλ−m(fχδ,x;x)+ a∗∗(λ−m)

xpa(λ) T ∗∗
λ−m(fχc

δ,x;x),

where T ∗∗
λ corresponds to the operator (1) with α replaced by α + p and

a∗∗(λ) refers to the a(λ) for T ∗∗
λ . We observe that

limλ→∞
a(λ−m)

a(λ) = |{G(1)}|−m

= limλ→∞
a∗∗(λ−m)

a∗∗(λ) .
Also, by the definition of the operator, Tλ we have

limλ→∞ λυ+kTλ−m(fχc
δ,x;x) = limλ→∞ λυ+kT ∗∗

λ−m(fχc
δ,x;x) = 0.

It follows that
∑

3 → 0 as λ → ∞.In view of this fact and (12)- - (14), it
follows that there exist a λ0 such that∣∣∣T (m)

λ (f ;x)− f (m)(x)
∣∣∣ < (2 + M)ε, λ > λ0.

Since M does not depend on ε we have (11).
The uniformity part is easy to derive from the above proof by noting that, to

begin with, δ can be chosen independent of x ∈ [a, b] so that |hx(u)| ≤ ε for x ∈ [a, b]
whenever |u− x| ≤ δ. Then, it is clear that the various constants occuring in the
above proof can be chosen so as not to depend on x ∈ [a, b].

This completes the proof of Theorem 5.
Finally, we show that the asymptotic formula of Theorem 2 remains valid in

the pointwise simultaneous approximation as well. We observe that the difference
between Theorem2 and the following one lies in the assumptions on f and G. We
have

Theorem 7 -: Let m ∈ IN,G ∈ C
(m)
b (IR+) ∩ T (IR+), G′′′(1) exist and G′′(1) be

non-zero. let Ω be any bounding function for G and f ∈ DΩ. Then
(15) T

(m)
λ (f ;x) − f (m)(x) = 1

2λ[G′′(1)]2 [f (m)(x)mG(1){(2α − m − 5)G′′(1) −
G′′′(1)}

+xf (m+1)(x)G(1){2(α−m− 3)G′′(1)−G′′′(1)}
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+x2f (m+2)(x)G(1)G′′(1)] + o( 1
λ), (λ →∞).

Whenever x ∈ IR+ is such that f (m+2)(x) exists. Also, if f (m+2) exists and is
continuous on < a, b >, then (15) holds uniformly in

x ∈ [a, b].
Proof. :If f (m+2)(x) exists, we have

f(u) =
m+2∑
k=0

f (k)(x)
k! (u− x)k + h(u, x),

where h(u, x) ∈ DΩ and for any ε > 0, there exists a δ > 0, such that
|h(u, x)| ≤ ε |u− x|m+2 for all sufficiently |u− x| ≤ δ.

Thus
(16) T

(m)
λ (f ;x) = T

(m)
λ (Q;x) + T

(m)
λ (h(u, x);x),

where Q =
m+2∑
k=0

f (k)(x)
k! (u− x)k is a polynomial in u.

Clearly, Q ∈ D
(m)
Ω for Ω(u) = 1 + um+2 which is bounding function for

every G ∈ T (IR+). Also, Q(k)(x) = f (k)(x), for k = m,m+1,m+2. Hence applying
Theorem 2, we have

(17) T
(m)
λ (Q;x) = 1

2λ[G′′(1)]2 [f (m)(x)mG(1){(2α−m− 5)G′′(1)−G′′′(1)}
+xf (m+1)(x)G(1){2(α−m− 3)G′′(1)−G′′′(1)}

+x2f (m+2)(x)G(1)G′′(1)] + o( 1
λ), (λ →∞)..

To establish (15), it remains to show that,
(18)T (m)

λ (h(u, x);x) = o( 1
λ), (λ →∞).

For this we have by Lemma 1∣∣∣T (m)
λ (h(u, x);x)

∣∣∣ ≤ xα−1

a(λ)

m∑
k=0

[m−k
2

]∑
υ=0

λυ+k

∞∫
0

u−αGλ(xu−1)
∣∣G′(xu−1)

∣∣
gυ,k,m(x, u){h(u, x)χc

δ,x(u) + ε |u− x|m+2}du.
Proceeding as in the proof of Theorem 5, we find that the term corresponding

to ε in the above is bounded by εM
λ for some M independent of ε or λ, and the χc

δ,x-
term contributes only a o( 1

λ) quantity (in fact o( 1
λp ) for an arbitrary p > 0).Then in

view of arbitraryness of ε > 0, (18) follows.
Then uniformity part follows a remark similar to that made for the proof of

the uniformity part of Theorem 5. This completes the proof of the theorem.
In the rest of the paper , we study the second problem.

4.Some Direct Theorems for Linear Combinations
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In this section we give some direct theorems for the linear combinations of the
operators Tλ. First, we give some definitions. The k-th moment µλ,k(x), k ∈ IN0(set
of non-negative integers)of the operator Tλ is defined by

(19) µλ,k(x) = Tλ((u− x)k;x) = xkτλ,k (say).
Clearly τλ,k does not depend on x.
Now, we first prove a lemma on the moments µλ,k.

Lemma 8 2- Let G ∈ T∞(IR+) and k ∈ IN0. Then there exist constants γk,υ, υ ≥
[k+1

2 ] such that the following asymptotic expansion is valid:

(20) τυ,k =
∞∑

υ=[ k+1
2

]

γk, υ
λ
υ, λ →∞.

Proof. By the definition we have

τλ,k = 1
a(λ)

∞∫
0

sα−k−2(1− s)kGλ(s)ds.

Let 1
3 < γ < 1

2 . Then
1+λ−γ∫

1−λ−γ

sα−k−2(1− s)kGλ(s)ds

=

1+λ−γ∫
1−λ−γ

sα−k−2(1− s)k exp{λ log[G(1) + (s−1)2

2! G′′(1)

+...+ (s−1)2m

2m! G(2m)(1)+o((s−1)2m)]}ds, (m ≥ 2)

= Gλ(1)

1+λ−γ∫
1−λ−γ

sα−k−2(1− s)k exp{λ[( (s−1)2G′′(1)
2!G(1) + ... + (s−1)2m

(2m)!
G(2m)(1)

G(1)

+o((s− 1)2m))− 1
2( (s−1)2

2!
G′′(1)
G(1) + ... + (s−1)2m

(2m)!
G(2m)(1)

G(1)

+o((s− 1)2m))2 + ...]}ds

= Gλ(1)

1+λ−γ∫
1−λ−γ

sα−k−2(1− s)k exp(λ (s−1)2G′′(1)
2G(1) ) exp{[C3(s− 1)3 + C4(s− 1)4

+... + C2m(s− 1)2m + o((s− 1)2m)]}ds,
(C ′

is being constants depending on G(1), G′′(1), ..., G(2m)(1))

= Gλ(1)

1+λ−γ∫
1−λ−γ

sα−k−2(1− s)k exp(λ (s−1)2G′′(1)
2G(1) )(1
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+
∑

3≤3i≤j≤[2m+ i−1
γ

]

bijλ
i(s− 1)j + o(λ1−2mγ))ds,

(b′ijs depending on C ′
is )

= Gλ(1)

1+λ−γ∫
1−λ−γ

[{
[2m− 1

γ
]∑

l=0

al(s− 1)k+l}

{1+
∑

3≤3i≤j≤[2m+ i−1
γ

]

bijλ
i(s−1)j}+o(λ1−(2m+k)γ)] exp{λ (s−1)2G′′(1)

2G(1) }ds

= Gλ(1)

1+λ−γ∫
1−λ−γ

[
∑

3≤3i≤j≤[2m+ i−1
γ

]

0≤l≤[2m− 1
γ
]

dijlλ
i(s−1)j+k+l+o(λ1−(2m+k)γ)] exp{λ (s−1)2G′′(1)

2G(1) }ds

(where d′ijls are certain constants depending on a′ls
and b′ijs and vanish if j+k+l is odd).

= 2Gλ(1)

1+λ−γ∫
1−λ−γ

[
∑

3≤3i≤j≤[2m+ i−1
γ

]

0≤l≤[2m− 1
γ
]

dijlλ
i(s−1)j+k+l+o(λ1−(2m+k)γ)] exp{λ (s−1)2G′′(1)

2G(1) }ds.

Putting

λ (s−1)2G′′(1)
2G(1) = −t, s = 1 + {− 2tG(1)

λG′′(1)}
1
2 and ds = {− G(1)

2λG′′(1)t}
1
2 dt,

and the last expression simplifies to

2Gλ(1)

−λ∫
0

1− 2γ G′′(1)
2G(1) [

∑
3≤3i≤j≤[2m+ i−1

γ
]

0≤l≤[2m− 1
γ
]

dijlλ
i{− 2tG(1)

λG′′(1)}
[ j+k+l+1

2
] + o(λ1−(2m+k)γ)] ·

· e−t{− G(1)
2λG′′(1)t}

1
2 dt

(since dijl vanish when j + k + l is odd)

= 2
1
2 Gλ+1

2 (1)

{−λG′′(1)}
1
2
[

−λ∫
0

1− 2γ G′′(1)
2G(1)

∑
0≤3i≤j≤[2m+ i−1

γ
]

d∗ijlλ
i−[ j+k+l−1

2
]t[

j+k+l+1
2

]− 1
2 e−tdt

+o(λ1−(2m+k)γ+1−2γ)],

(where d∗ijl = dijl{− 2G(1)
G′′(1)}

[
j+k+l+1

2 ]

)

= 2
1
2 Gλ+1

2 (1)

{−λG′′(1)}
1
2
[

∑
0≤3i≤j≤[2m+ i−1

γ
]

0≤l≤[2m− 1
γ
]

d∗∗ijlλ
i−[ j+k+l−1

2
] + o(λ2−(2m+2+k)γ)],
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where d∗∗ijl = d∗ijlΓ(([ j+k+l−1
2 ])γ + 1

2) and we have made use of the fact
that by enlarging the integral in above from 0 to ∞, we are only adding the terms
in λ which decay exponentially and therefore can be absorbed in the o-term.

Next we analyse the expression∫
(0,∞)−(1−λ−γ ,1+λ−γ)

sα−k−2(1− s)kGλ(s)ds = E(λ), (say).

we have for any positive integer p,

|E(λ)| ≤ λγp

∞∫
0

sα−k−2 |1− s|k+p Gλ(s)ds

= λγpa∗∗(λ)T ∗∗
λ (|u− 1|k+p ; 1),

where T ∗∗
λ and a∗∗(λ) are the same as considered in the proof of Theorem 5.

By making use of an estimate for the operators T ∗∗
λ [3] we have

|E(λ)| ≤ Aλγp− k+p
2 a∗∗(λ),

where A is certain constant not depending on λ.Again making use of the
same estimate as above, for a∗∗(λ), we have

G−λ(1) |E(λ)| = o(λγp− k+p+1
2 ).

Thus, choosing p such that
p > 2(2m+2+k)

1−2γ ,
we have

∞∫
0

sα−k−2(1− s)kGλ(s)ds

= 2
1
2 Gλ+1

2 (1)

{−λG′′(1)}
1
2
[

∑
0≤3i≤j≤[2m+ i−1

γ
]

0≤l≤[2m− 1
γ
]

d∗∗ijlλ
i−[ j+k+l−1

2
] + o(λ2−(2m+2+k)γ)].

Now, for all indices under consideration we have
[ j+k+l+1

2 ]− i = [ j−2i+k+l+1
2 ] ≥ [k+1

2 ],
and since m could be chosen arbitrarily large, there exist constants

Ck,υ, υ ≥ [k+1
2 ] such that we have the following asymptotic expansion

∞∫
0

sα−k−2(1− s)kGλ(s)ds = {− 2G(1)
λG′′(1)}

1
2 Gλ(1)

∞∑
υ=[ k+1

2
]

Ck,υ

λυ .

Noting that C0,0 = 1, it follows that there exist constants γk,υ, υ ≥ [k+1
2 ]

such that (20) holds. This completes the proof of Lemma 2.
For a G ∈ T∞(IR+) and any fixed set of positive constants αi, i =

0, 1, 2, ..., k, following Rathore [8] the linear combination Tλ,k of the operators Tαiλ, i =
0, 1, 2, ..., k is defined by
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(21) Tλ,k(f ;x) = 1
∆

∣∣∣∣∣∣∣∣∣∣

Tα0λ(f ;x) α−1
0 α−2

0 .... α−k
0

Tα1λ(f ;x) α−1
1 α−2

1 .... α−k
1

..... .... .... .... ....

..... .... .... .... ....

Tαkλ(f ;x) α−1
k α−2

k .... α−k
k

∣∣∣∣∣∣∣∣∣∣
,

where ∆ is the determinant obtained by replacing the operator column by
the entries ’1’. Clearly

(22) Tλ,k =
k∑

j=0

C(j, k)Tαjλ,

for constants C(j, k), j = 0, 1, 2, ..., k, which satisfy
k∑

j=1

C(j, k) = 1.

Tλ,k is called a linear combination of order k. For k=0, Tλ,0 denotes the
operator Tλ itself. We remark here that the above definition of linear combination
Tλ,k is dependent on the assumption that G ∈ T∞(IR+).That is to say, our results
on the linear combinations Tλ,k are not neccessarily valid if these conditions are
violated.

Theorem 9 7- Let G ∈ T∞(IR+),Ω be a bounding function for G and f ∈ DΩ. If
at a point x ∈ IR+, f (2k+2) exists, then

(23) |Tλ,k(f ;x)− f(x)| = O(λ−(k+1)),
(24) |Tλ,k+1(f ;x)− f(x)| = o(λ−(k+1)),
where k = 0, 1, 2, ..... Also, if f (2k+2)exists and is continuous on < a, b >⊆ IR+,

(23)——(24) hold uniformly on [a, b].

Proof.-First we show that if it is only assumed that G ∈ T (IR+) and G′′(1)
exists and is non-zero, then

(25) Tλ,k(f ;x)− f(x) =
2k+2∑
j=1

xjf (j)(x)
j! τλ,j + o(λ−(k+1)),

if x ∈ IR+ is such that f (2k+2)(x) exists and f ∈ DΩ for a certain bounding
function Ω for G.

To prove (25) with the assumption on f, we have

f(u)− f(x) =
2k+2∑
j=1

f (j)(x)
j! (u− x)j + Rx(u), u → x,

where Rx(u) = o((u − x)(2k+2)), u → x. It is clear from the definition of
τλ,j that we only have to show that

(26) Tλ(Rx(u);x) = o(λ−(k+1)).
Obviously, Rx(u) ∈ DΩ. Now, given an arbitrary ε > 0 we can choose a

δ > 0 such that
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|Rx(u)| ≤ ε(u− x)2k+2, |u− x| ≤ δ.
Hence by using the basic properties of the operators Tλ, we note that the

result follows.
In this case the uniformity part is obvious.
Now, if in addition it is assumed that G ∈ T∞(IR+), Lemma 2 and (25)

imply that

(27) Tλ(f ;x)− f(x) =
2k+2∑
j=1

xjf (j)(x)
j!

k+1∑
υ=[ j+1

2
]

γj,υ

λυ + o(λ−(k+1)),

which, in the uniformity case holds uniformly in x ∈ [a, b].
Since the coefficients C(j, k) in (22) obviously satisfy the relation

(28)
k∑

j=0

C(j, k)α−p
j = 0, p = 1, 2, 3, ..., k,

in view of (27), (23)—-(24) are immediate and so is the uniformity part.
This completes the proof of Theorem 7.
In the same spirit we have,

Theorem 10 8- Let G ∈ T∞(IR+),Ω be a bounding function for G and f ∈ DΩ.
If 0 ≤ p ≤ 2k + 2 and f (p) exists and is continuous on < a, b >⊆ IR+, for each
x ∈ [a, b] and all λ sufficiently large, then

(29) |Tλ,k(f ;x)− f(x)| ≤ max[ C

λ
p
2
ω(f (p);λ−

1
2 ), C′

λk+1 ],

where C = C(k) and C′ = C′(k, f) are constants and ω(f (p); δ) denotes the local
modulus of continuity of f (p) on < a, b > .

Proof.-There exists a δ > 0 such that [a− δ, b + δ] ⊂< a, b > . It is clear that if
u ∈< a, b >, there exists an η lying between x ∈ [a, b] and u

such that

(30)

∣∣∣∣∣∣ f(u)− f(x)−
p∑

j=1

f (j)(x)
j! (u− x)j

∣∣∣∣∣∣ ≤ |u−x|p
p!

∣∣f (p)(η)− f (p)(x)
∣∣

≤ |u−x|p
p! (1 + |u−x|

λ−
1
2

)ω(f (p);λ−
1
2 ),

using a well known reesult on modulus of continuity [11]. If the expression
occuring within the modulus sign on the left hand side of the above inequality is
denoted by Fx(u), by a well known property of Tλ, it follows that

Tαjλ(Fx(u)χc
δ,x(u);x) = o(λ−(k+1)),

uniformly in x ∈ [a, b]. By (30), we have∣∣∣Tαjλ(Fx(u)χc
δ,x(u);x)

∣∣∣ ≤ bp

p! (Ap + Ap−1)(αjλ)−
p
2 ω(f (p);λ−

1
2 )

for all λ sufficiently large and x ∈ [a, b]. Here Ap, Ap−1 are constants
depending on p. Hence, for a constant Cp independent of f such that for all x ∈ [a, b],
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(32)
∣∣∣Tλ,k(Fx(u)χc

δ,x(u);x)
∣∣∣ ≤ Cpλ

− p
2 ω(f (p);λ−

1
2 ).

Applying the result (23) for the functions 1, u, u2, ..., up, we find that there
exists a constant C ′′ depending on

max{|f ′(x)| , ...,
∣∣f (p)(x)

∣∣ ;x ∈ [a, b]} and p such that for all x ∈ [a, b],

(33)

∣∣∣∣∣∣Tλ,k(
p∑

j=1

f (j)(x)
j! (u− x)j ;x)

∣∣∣∣∣∣ ≤ C ′′λ−(k+1)

Now, (29) is clear from (31)————(33). This completes the proof of
Theorem 8.

Finally, we prove a result concerned with the degree of simultaneous
approximation by the linear combinations Tλ,k.

Theorem 11 9- Let G ∈ C
(m)
b (IR+) ∩ T∞(IR+),Ω a bounding function for G and

f ∈ DΩ. If at a point x ∈ IR+, f (2k+2+m) exists, then
(34)

∣∣∣T (m)
λ,k (f ;x)− f (m)(x)

∣∣∣ = O(λ−(k+1)),
and
(35)

∣∣∣T (m)
λ,k+1(f ;x)− f (m)(x)

∣∣∣ = o(λ−(k+1)),

where k = 0, 1, 2, ...,. also if f (2k+2+m) exists and is continuous on < a, b >⊆
IR+, (34)——-(35) hold uniformly in x ∈ [a, b].

Proof.- If f (2k+2+m)(x) exists, we can find a neighbourhood (a′, b′) of x such
that f (m) exist and is continuous on (a′, b′). Let g(u) be an infinitely differentiable
function with supp g ⊆ (a′, b′) such that g(u) = 1, for u ∈ [x − δ, x + δ] for some
δ > 0. then , an application of Lemma 1 shows that

(36) T
(m)
λ,k (f(u)− f(u)g(u);x) = o(λ−(k+1)).

In the uniformity case, we consider a g with supp g ⊆< a, b > with g(u) = 1
for u ∈ [a− δ, b + δ] ⊆< a, b > and then (35) holds uniformly in x ∈ [a, b].

Since f(u)g(u) ∈ C
(m)
b (IR+) we have

(37) T
(m)
λ (fg;x) = x−mTλ(um{f(u)g(u)}(m);x).

Now, since um{f(u)g(u)}(m) is (2k + 2)-times differentiable at x(and con-
tinuously on (a− δ, b + δ) in the uniformity case), applying Theorem 7, we
have

(38)
∣∣∣T (m)

λ,k (fg;x)− f (m)(x)
∣∣∣ = O(λ−(k+1)),

and
(39)

∣∣∣T (m)
λ,k+1(fg;x)− f (m)(x)

∣∣∣ = o(λ−(k+1)),
where in the uniformity case these holds in x ∈ [a, b]. Thus, combining

(36)—(39), we get (34)——–(35). This completes the proof of the Theorem 9.
Now, we obtain a result which is the analogue of the Theorem 8, in the

case of simultaneous approximation.

85



B. Kunwar, B. D. Pandey - Simultaneous approximation by a class of linear...

Theorem 12 10- Let m ∈ IN,G ∈ C
(m)
b (IR+) ∩ T∞(IR+),Ω a bounding function

for G and f ∈ DΩ. If 0 ≤ p ≤ 2k + 2 and f (m+p) exists and is continuous on
< a, b >⊆ IR+ for each x ∈ [a, b], then, for all sufficiently large λ,

(40)
∣∣∣T (m)

λ,k (f ;x)− f (m)(x)
∣∣∣ ≤ max{Cm

λ
k
2

ω(f (p+m);λ−
1
2 ), C′

m

λk+1 },

where Cm = Cm(k), C ′
m = C ′

m(k, f) are constants and ω(f (p+m); δ) denotes the
local modulus of continuity of f (p+m) on ,< a, b > .

Proof.- The proof of this theorem follows from Lemma 1 and Theorems 5—–9.
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