AN INTEGRAL FORMULA FOR WILLMORE SURFACES IN AN N-DIMENSIONAL SPHERE

MİHRİBAN KÜLAHCI, DURSUN SOYLU AND MEHMET BEKTAŞ

Abstract. A surface $x: M \rightarrow S^{n}$ is called a Willmore surface if it is a critical surface of the Willmore functional. In this paper, we obtain an integral formula using \square self-adjoint operator for compact Willmore surfaces in S^{n}.

2000 Mathematics Subject Classification: 53C42, 53A10.

1. Introduction

We use the same notations and terminologies as in [2], [5], [6]. Let $x: M \rightarrow S^{n}$ be a surface in an n-dimensional unit sphere space S^{n}. If $h_{i j}^{\alpha}$ denotes the second fundamental form of M, S denotes the square of the length of the second fundamental form, \mathbf{H} denotes the mean curvature vector, and H denotes the mean curvature of M , then we have

$$
S=\sum_{\alpha} \sum\left(h_{i j}^{\alpha}\right)^{2}, \quad \mathbf{H}=\sum_{\alpha} H^{\alpha} e_{\alpha}, \quad H^{\alpha}=\frac{1}{2} \sum_{k} h_{k k}^{\alpha}, \quad H=|\mathbf{H}|,
$$

where $e_{\alpha}(3 \leq \alpha \leq n)$ are orthonormal vector fields of M in S^{n}.
We define the following nonnegative function on M :

$$
\begin{equation*}
\rho^{2}=S-2 H^{2} \tag{1.1}
\end{equation*}
$$

which vanishes exactly at the umbilic points of M .
The Willmore functional is the following non-negative functional (see[1])

$$
\begin{equation*}
w(x)=\int_{M} \rho^{2} d v=\int_{M}\left(S-2 H^{2}\right) d v \tag{1.2}
\end{equation*}
$$

M.Külahci, D. Soylu, M. Bektaş - An integral formula for Willmore surfaces...
that this functional is an invariant under conformal transformations of S^{n}.
Ximin [8] studied compact space-like submanifolds in a de Sitter space $M_{p}^{n+p}(c)$. Furthermore, in [9], the authors studied Willmore submanifolds in a sphere.

In this paper we studied Willmore surfaces in S^{n} and using the method of proof which is given in [4], [8], [9], we obtained an integral formula.

1. Local Formulas

Let $x: M \rightarrow S^{n}$ be a surface in an n-dimensional unit sphere. We choose an orthonormal basis e_{1}, \ldots, e_{n} of S^{n} such that $\left\{e_{1}, e_{2}\right\}$ are tangent to $x(M)$ and $\left\{e_{3}, \ldots, e_{n}\right\}$ is a local frame in the normal bundle. Let $\left\{w_{1}, w_{2}\right\}$ be the dual forms of $\left\{e_{1}, e_{2}\right\}$. We use the following convention on the ranges of indices:

$$
1 \leq i, j, k, \ldots \leq 2 ; 3 \leq \alpha, \beta, \gamma, \ldots \leq n
$$

Then we have the structure equations

$$
\begin{align*}
d x & =\sum_{i} w_{i} e_{i} \tag{2.1}\\
d e_{i} & =\sum_{j} w_{i j} e_{j}+\sum_{\alpha, j} h_{i j}^{\alpha} w_{j} e_{\alpha}-w_{i} x \tag{2.2}\\
d e_{\alpha} & =-\sum_{i, j} h_{i j}^{\alpha} w_{j} e_{i}+\sum_{\beta} w_{\alpha \beta} e_{\beta}, h_{i j}^{\alpha}=h_{j i}^{\alpha} \tag{2.3}
\end{align*}
$$

The Gauss equations and Ricci equations are

$$
\begin{align*}
R_{i j k l} & =\left(\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}\right)+\sum_{\alpha}\left(h_{i k}^{\alpha} h_{j l}^{\alpha}-h_{i l}^{\alpha} h_{j k}^{\alpha}\right) \tag{2.4}\\
R_{i k} & =\delta_{i k}+2 \sum_{\alpha} H^{\alpha} h_{i k}^{\alpha}-\sum_{\alpha, j} h_{i j}^{\alpha} h_{j k}^{\alpha}, \tag{2.5}\\
2 K & =2+4 H^{2}-S \tag{2.6}\\
R_{\beta \alpha 12} & =\sum_{i}\left(h_{1 i}^{\beta} h_{i 2}^{\alpha}-h_{2 i}^{\beta} h_{i 1}^{\alpha}\right), \tag{2.7}
\end{align*}
$$

where K is the Gauss curvature of M and $S=\sum_{\alpha, i, j}\left(h_{i j}^{\alpha}\right)^{2}$ is the norm of the square of the second fundamental form, $\mathbf{H}=\sum_{\alpha} H^{\alpha} e_{\alpha}=\left(\frac{1}{2}\right) \sum_{\alpha}\left(\sum_{\alpha} h_{k k}^{\alpha}\right) e_{\alpha}$
M.Külahci, D. Soylu, M. Bektaş - An integral formula for Willmore surfaces...
$=\frac{1}{2} \sum_{\alpha} \operatorname{tr}\left(h_{\alpha}\right) e_{\alpha}$ is the mean curvature vector and $H=|\mathbf{H}|$ is the mean curvature of M.

We have the following Codazzi equations and Ricci identities:

$$
\begin{align*}
h_{i j k}^{\alpha}-h_{i k j}^{\alpha} & =0, \tag{2.8}\\
h_{i j k l}^{\alpha}-h_{i j l k}^{\alpha} & =h_{i j k l}^{\alpha} R_{m i k l}+\sum_{m} h_{i m}^{\alpha} R_{m j k l}+\sum_{\beta} h_{i j}^{\beta} R_{\beta \alpha k l} \tag{2.9}
\end{align*}
$$

where $h_{i j k}^{\alpha}$ and $h_{i j k l}^{\alpha}$ are defined by

$$
\begin{align*}
\sum_{k} h_{i j k}^{\alpha} w_{k}= & d h_{i j}^{\alpha}+\sum_{k} h_{k j}^{\alpha} w_{k i}+\sum_{k} h_{i k}^{\alpha} w_{k j}+\sum_{\beta} h_{i j}^{\beta} w_{\beta \alpha}, \tag{2.10}\\
\sum_{l} h_{i j k l}^{\alpha} w_{l}= & d h_{i j k}^{\alpha}+\sum_{l} h_{l j k}^{\alpha} w_{l i}+\sum_{l} h_{i l k}^{\alpha} w_{l j}+\sum_{l} h_{i j l}^{\alpha} w_{l k} \tag{2.11}\\
& +\sum_{\beta} h_{i j k}^{\beta} w_{\beta \alpha} .
\end{align*}
$$

As M is a two-dimensional surface, we have from (2.6) and (1.1)

$$
\begin{align*}
2 K & =2+4 H^{2}-S=2+2 H^{2}-\rho^{2} \tag{2.12}\\
R_{i j k l} & =K\left(\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}\right), R_{i k}=K \delta_{i k} . \tag{2.13}
\end{align*}
$$

By a simple calculation, we have the following calculations [3]:

$$
\begin{equation*}
\frac{1}{2} \triangle S=\sum_{\alpha, i, j, k}\left(h_{i j k}^{\alpha}\right)^{2}+\sum_{\alpha, i, j} h_{i j}^{\alpha} \operatorname{tr}\left(h_{\alpha}\right)_{i j}+2 K \rho^{2}-\sum_{\alpha, \beta}\left(R_{\beta \alpha 12}\right)^{2} . \tag{2.14}
\end{equation*}
$$

1. Proof Of The Theorem

Theorem. Let M be a compact Willmore surface in an n-dimensional unit sphere S^{n}. Then, we have

$$
\begin{aligned}
0= & \int\left[|\nabla S|+\sum_{\alpha, i, j} h_{i j}^{\alpha} \operatorname{tr}\left(h_{\alpha}\right)_{i j}+2 K \rho^{2}-\sum_{\alpha, \beta}\left(R_{\beta \alpha 12}\right)^{2}\right. \\
& \left.-4|\nabla H|^{2}-\sum_{i} \lambda_{i}^{\alpha}(2 H)_{i i}\right] d v .
\end{aligned}
$$

Proof.

We know from (2.6) that

$$
\begin{equation*}
4 H^{2}-S=2 K-2 \tag{2.15}
\end{equation*}
$$

Taking the covariant derivative of (2.15) and using the fact that $K=$ const., we obtain

$$
4 H H_{k}=\sum_{i, j, \alpha} h_{i j}^{\alpha} \cdot h_{i j k}^{\alpha}
$$

and hence, by Cauchy-Schwarz inequality, we have

$$
\sum_{k} 16 H^{2}\left(H_{k}\right)^{2}=\sum_{k}\left(\sum_{i, j, \alpha} h_{i j}^{\alpha} \cdot h_{i j k}^{\alpha}\right)^{2} \leq \sum_{i, j, \alpha}\left(h_{i j}^{\alpha}\right)^{2} \cdot \sum_{i, j, k, \alpha}\left(h_{i j k}^{\alpha}\right)^{2}
$$

that is

$$
\begin{equation*}
16 H^{2}\|\nabla H\|^{2} \leq S .\|\nabla S\| \tag{2.16}
\end{equation*}
$$

On the other hand, the Laplacian $\triangle h_{i j}^{\alpha}$ of the fundamental form $h_{i j}^{\alpha}$ is defined to be $\sum_{k} h_{i j k k}^{\alpha}$, and hence using (2.8), (2.9) and the assumption that M has flat normal bundle, we have

$$
\triangle h_{i j}^{\alpha}=\sum_{m} h_{i m}^{\alpha} R_{m j k k}+\sum_{m} h_{m k}^{\alpha} R_{m i j k}+\operatorname{tr}\left(h_{\alpha}\right)_{i j}
$$

Since the normal bundle of M is flat, we choose $e_{3}, \ldots e_{n}$ such that

$$
h_{i j}^{\alpha}=\lambda_{i}^{\alpha} \delta_{i j}
$$

We define an operator \square acting on f by [7]:

$$
\begin{equation*}
\square f=\sum_{i, j}\left(2 H^{\alpha} \delta_{i j}-h_{i j}^{\alpha}\right) f_{i j} \tag{2.17}
\end{equation*}
$$

M.Külahci, D. Soylu, M. Bektaş - An integral formula for Willmore surfaces...

Since $\left(2 H^{\alpha} \delta_{i j}-h_{i j}^{\alpha}\right)$ is trace-free it follows from [4] that the operator \square is selfadjoint to the L^{2}-inner product of M, i.e.,

$$
\int_{M} f \square g=\int_{M} g \square f .
$$

Thus we have the following computation by use of (2.17) and (2.14)

$$
\begin{align*}
\square 2 H & =2 H \triangle(2 H)-\sum_{i} \lambda_{i}^{\alpha}(2 H)_{i i} \\
& =\frac{1}{2} \triangle(2 H)^{2}-\sum_{i}(2 H)_{i}^{2}-\sum_{i} \lambda_{i}^{\alpha}(2 H)_{i i} \\
\square 2 H & =\frac{1}{2} \triangle S+\triangle K-4|\nabla H|^{2}-\sum_{i} \lambda_{i}^{\alpha}(2 H)_{i i} \tag{2.18}
\end{align*}
$$

Putting (2.14) in (2.18), we have

$$
\begin{align*}
\square 2 H= & \sum_{\alpha, i, j, k}\left(h_{i j k}^{\alpha}\right)^{2}+\sum_{\alpha, i, j, k} h_{i j}^{\alpha} \operatorname{tr}\left(h_{\alpha}\right)_{i j}+2 K \rho^{2}-\sum_{\alpha, \beta}\left(R_{\beta \alpha 12}\right)^{2} \tag{2.19}\\
& +\triangle K-4|\nabla H|^{2}-\sum_{i} \lambda_{i}^{\alpha}(2 H)_{i i} .
\end{align*}
$$

Now we assume that M is compact and we obtain the following key formula by integrating (2.19) and noting $\int_{M} \triangle K d v=0$ and $\int_{M} \square(2 H) d v=0$,

$$
\begin{aligned}
0= & \int\left[|\nabla S|+\sum_{\alpha, i, j} h_{i j}^{\alpha} \operatorname{tr}\left(h_{\alpha}\right)_{i j}+2 K \rho^{2}-\sum_{\alpha, \beta}\left(R_{\beta \alpha 12}\right)^{2}\right. \\
& \left.-4|\nabla H|^{2}-\sum_{i} \lambda_{i}^{\alpha}(2 H)_{i i}\right] d v .
\end{aligned}
$$

References

[1] Bryant, R., A duality theorem for Willmore surfaces, J.Differential Geom. 20, (1984), 23-53.
[2] Chang, Y. C. and Hsu Y.J., Willmore surfaces in the unit n-sphere, Taiwanese Journal of Mathematics, Vol.8, No.3, (2004), 467-476.
M.Külahci, D. Soylu, M. Bektaş - An integral formula for Willmore surfaces...
[3] Chern, S. S., Do Carmo, M. and Kobayashi, S., Minimal submanifolds of a sphere with second fundamental form of constant length, in F.Brower(ed.), Functional Analysis and Related Fields, Springer-Verlag, Berlin, (1970), pp.59-75.
[4] Haizhong, L., Rigidity theorems of hypersurfaces in a sphere, Publications De L'istitut Mathematique, Novelle serie, tome 67(81), (2000), 112-120.
[5] Haizhong, L., Willmore hypersurfaces in a sphere, Asian J. Math. 5(2001), 365-378.
[6] Haizhong, L., Willmore surfaces in S^{n}, Annals of Global Analysis and Geometry 21, Kluwers Academic Publishers, Netherlands,(2002), 203-213.
[7] Haizhong, L., Willmore submanifolds in a sphere, (2002), arXiv:math.DG/0210239vl
[8] Liu, X., Space-like submanifolds with constant scalar curvature, C.R.Acad. Sci. Paris, t.332, Serie1, (2001), p.729-734.
[9] Külahcı, M., Bektaş, M., Ergüt, M., A note on willmore subanifolds in a sphere, Kirghizistan National Academy, Integral Differential Equations Researchs, (2008), p.146-150.

Mihriban Külahcı
Department of Mathematics
University of Firat
Address: Firat University, Science Faculty, Mathematics Department, 23119, Elazig, Türkiye.
email: mihribankulahci@gmail.com
Dursun Soylu
Department of Primary Teaching
University of Gazi
Address: Gazi University, Gazi Faculty of Education, Department of Primary Teaching, Mathematics Teaching Programme, 06500, Beşevler/Ankara, Türkiye.
email:dsoylu@gazi.edu.tr
Mehmet Bektas
Department of Mathematics
University of Firat
Address: Firat University, Science Faculty, Mathematics Department, 23119, Elazig, Türkiye.
email: mbektas@firat.edu.tr

