THE MATRIX TRANSFORMATIONS ON DOUBLE SEQUENCE SPACE OF χ^{2}

N. Subramanian and U.K. Misra

Abstract. Let χ^{2} denote the space of all prime sense double gai sequences and Λ^{2} the space of all prime sense double analytic sequences. First we show that the set $E=\left\{s^{(m n)}: m, n=1,2,3, \cdots\right\}$ is a determining set for χ^{2}. The set of all finite matrices transforming χ^{2} into FK-space Y denoted by $\left(\chi^{2}: Y\right)$. We characterize the classes $\left(\chi^{2}: Y\right)$ when $Y=c_{0}^{2}, c^{2}, \chi^{2}, \ell^{2}, \Lambda^{2}$.

\nearrow	c_{0}^{2}	c^{2}	χ^{2}	ℓ^{2}	Λ^{2}
χ^{2}	Necessary and sufficient condition on the matrix are obtained				

But the approach to obtain these result in the present paper is by determining set for χ^{2}. First, we investigate a determining set for χ^{2} and then we characterize the classes of matrix transformations involving χ^{2} and other known sequence spaces.

Keywords : Determining set, gai sequence, analytic sequence, double sequence 2000 Mathematics Subject Classification : 40A05,40C05,40D05.

1. Introduction

Throughout w, χ and Λ denote the classes of all, gai and analytic scalar valued single sequences respectively.
We write w^{2} for the set of all complex sequences $\left(x_{m n}\right)$, where $m, n \in \mathbb{N}$ the set of positive integers. Then w^{2} is a linear space under the coordinate wise addition and scalar multiplication.

Some initial works on double sequence spaces is found in Bromwich[2]. Later on it was investigated by Hardy[3], Moricz[4], Moricz and Rhoades[5], Basarir and Solankan[1], Tripathy[6], Colak and Turkmenoglu[7], Turkmenoglu[8], and many others.

We need the following inequality in the sequel of the paper. For $a, b, \geq 0$ and $0<p<1$, we have

$$
\begin{equation*}
(a+b)^{p} \leq a^{p}+b^{p} \tag{1}
\end{equation*}
$$

The double series $\sum_{m, n=1}^{\infty} x_{m n}$ is called convergent if and only if the double sequence. $\left(s_{m n}\right)$ is called convergent, where $s_{m n}=\sum_{i, j=1}^{m, n} x_{i j}(m, n=1,2,3, \ldots)$ (see[9]). A sequence $x=\left(x_{m n}\right)$ is said to be double analytic if
$\sup _{m n}\left|x_{m n}\right|^{1 / m+n}<\infty$. The vector space of all double analytic sequences will be denoted by Λ^{2}. A sequence $x=\left(x_{m n}\right)$ is called double gai sequence if $\left((m+n)!\left|x_{m n}\right|\right)^{1 / m+n} \rightarrow 0$ as $m, n \rightarrow \infty$. The double gai sequences will be denoted by χ^{2}. Let $\phi=\{$ allfinitesequences $\}$. Consider a double sequence $x=\left(x_{i j}\right)$. The $(m, n)^{t h}$ section $x^{[m, n]}$ of the sequence is defined by $x^{[m, n]}=\sum_{i, j=0}^{m, n} x_{i j} \Im_{i j}$ for all $m, n \in \mathbb{N}$,

$$
\Im_{m n}=\left(\begin{array}{ccccc}
0, & 0, & \ldots 0, & 0, & \ldots \\
0, & 0, & \ldots 0, & 0, & \ldots \\
\cdot & & & & \\
\cdot & & & & \\
. & & & & \\
0, & 0, & \ldots 1, & -1, & \ldots \\
0, & 0, & \ldots 0, & 0, & \ldots
\end{array}\right)
$$

with 1 in the $(m, n)^{t h}$ position, -1 in the $(m+1, n+1)^{t h}$ position and zero other wise. An FK-space(or a metric space) X is said to have AK property if ($\Im_{m n}$) is a Schauder basis for X. Or equivalently $x^{[m, n]} \rightarrow x$. An FDK-space is a double sequence space endowed with a complete metrizable; locally convex topology under which the coordinate mappings $x=\left(x_{k}\right) \rightarrow\left(x_{m n}\right)(m, n \in \mathbb{N})$ are also continuous. If X is a sequence space, we give the following definitions:
(i) $X^{\prime}=$ the continuous dual of X;
(ii) $X^{\alpha}=\left\{a=\left(a_{m n}\right): \sum_{m, n=1}^{\infty}\left|a_{m n} x_{m n}\right|<\infty\right.$, for each $\left.x \in X\right\}$
(iii) $X^{\beta}=\left\{a=\left(a_{m n}\right): \sum_{m, n=1}^{\infty} a_{m n} x_{m n}\right.$ is convegent, foreach $\left.x \in X\right\}$
(iv) $X^{\gamma}=\left\{a=\left(a_{m n}\right): m, \stackrel{\text { sup }}{n} \geq 1\left|\sum_{m, n=1}^{M, N} a_{m n} x_{m n}\right|<\infty\right.$, foreach $\left.x \in X\right\}$;
(v)let X beanFK - space $\supset \phi$; then $X^{f}=\left\{f\left(\Im_{m n}\right): f \in X^{\prime}\right\}$;
(vi) $X^{\Lambda}=\left\{a=\left(a_{m n}\right): \sup _{m n}\left|a_{m n} x_{m n}\right|^{1 / m+n}<\infty\right.$, foreach $\left.x \in X\right\}$;
$X^{\alpha} \cdot X^{\beta}, X^{\gamma}$ are called $\alpha-$ (or Köthe - Toeplitz)dual of $X, \beta-$ (or generalized Köthe - Toeplitz) dual of $X, \gamma-$ dual of $X, \Lambda-$ dual of X respectively.

2.Definitions and Preliminaries

Let w^{2} denote the set of all complex double sequences. A sequence $x=\left(x_{m n}\right)$ is said to be double analytic if $\sup _{m n}\left|x_{m n}\right|^{1 / m+n}<\infty$. The vector space of all prime sense double analytic sequences will be denoted by Λ^{2}. A sequence $x=\left(x_{m n}\right)$ is called prime sense double entire sequence if $\left((m+n)!\left|x_{m n}\right|\right)^{1 / m+n} \rightarrow 0$ as $m, n \rightarrow \infty$. The double gai sequences will be denoted by χ^{2}. The space Λ^{2} is a metric space with the metric

$$
\begin{equation*}
d(x, y)=\sup _{m n}\left\{\left|x_{m n}-y_{m n}\right|^{1 / m+n}: m, n: 1,2,3, \ldots\right\} \tag{2}
\end{equation*}
$$

forall $x=\left\{x_{m n}\right\}$ and $y=\left\{y_{m n}\right\}$ in Λ^{2}. The space χ^{2} is a metric space with the metric

$$
\begin{equation*}
d(x, y)=\sup _{m n}\left\{\left((m+n)!\left|x_{m n}-y_{m n}\right|\right)^{1 / m+n}: m, n: 1,2,3, \ldots\right\} \tag{3}
\end{equation*}
$$

forall $x=\left\{x_{m n}\right\}$ and $y=\left\{y_{m n}\right\}$ in χ^{2}.
Let X be an BK-space. Then $D=D(X)=\{x \in \phi:\|x\| \leq 1\}$ we do not assumethat $X \supset \phi$ (i.e) $D=\phi \bigcap($ unit closed sphere in $X)$

Let X be an BK space. A subset E of ϕ will be called a determining set for X if $D(X)$ is the absolutely convexhull of E. In respect of a metric space $(X, d), D=\{x \in \phi: d(x, 0) \leq 1\}$.

Given a sequence $x=\left\{x_{m n}\right\}$ and an four dimensional infinite matrix $A=$ $\left(a_{m n}^{j k}\right), m, n, j, k=1,2, \cdots$ then $A-$ transform of x is the sequence $y=\left(y_{m n}\right)$ when $y_{m n}=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{m n}^{j k} x_{m n}(j, k=1,2, \cdots)$. Whenever $\sum \sum a_{m n}^{j k} x_{m n}$ exists.

Let X and Y be FK-spaces. If $y \in Y$ whenever $x \in X$, then the class of all matrices A is denoted by $(X: Y)$.

3.LEMMA

Let X be a BK-space and E is determining set for X. Let Y be an FK-space and A is an four dimensional infinite matrix. Suppose that either X has AK or A is row finite. Then $A \in(X: Y)$ if and only if (1) The columns of A belong to Y and (2) $A[E]$ is a bounded subset of Y.

4.Main Results

Theorem 1. Let E be the set of all sequences in ϕ each of whose non-zero terms is

$$
\left(\begin{array}{ccccc}
0, & 0, & \ldots 0, & 0, & \ldots \\
0, & 0, & \ldots 0, & 0, & \ldots \\
\cdot & & & & \\
\cdot & & & & \\
\cdot & & & & \\
0, & 0, & \cdots & \frac{1}{(m+n)!}, & \frac{-1}{(m+n)!}, \\
0, & 0, & \ldots 0, & 0, & \ldots
\end{array}\right)
$$

with $\frac{1}{(m+n)!}$, in the $(m, n)^{t h}, \frac{-1}{(m+n)!}$, in the $(m+1, n+1)^{\text {th }}$ position and zero other wise. Then E is determining set of χ^{2}.

Proof. Step1. Recall that χ^{2} is a metric space with the metric

$$
d(x, y)=\sup _{m n}\left\{\left((m+n)!\left|x_{m n}-y_{m n}\right|\right)^{1 / m+n}: m, n=1,2,3, \cdots\right\}
$$

Let A be the absolutely convex hull of E. Let $x \in A$. Then $x=\sum_{m=1}^{i} \sum_{n=1}^{j} t_{m n} s^{(m n)}$ with

$$
\begin{equation*}
\sum_{m, n=1}^{i, j}\left|t_{m n}\right| \leq 1 \tag{4}
\end{equation*}
$$

and $s^{(m n)} \in E$.
Then $d(x, 0) \leq\left|t_{11}\right| d\left(s^{(11)}, 0\right)+\cdots+\left|t_{i j}\right| d\left(s^{(i j)}, 0\right)$. But $d\left(s^{(m n)}\right)=1$ for $m, n=$ $1,2,3, \cdots(i, j)$. Hence $d(x, 0) \leq \sum_{m, n=1}^{i, j}\left|t_{m n}\right| \leq 1$ by using (4). Also $x \in \phi$. Hence $x \in D$. Thus

$$
\begin{equation*}
A \subset D \tag{5}
\end{equation*}
$$

Step 2. Let $x \in D$
$\Rightarrow x \in \phi$ and $d(x, 0) \leq 1$.
$x=\left(\begin{array}{ccccc}2!x_{11}, & 3!x_{12}, & \ldots, & (1+n)!x_{1 n}, & \ldots \\ 3!x_{21}, & 4!x_{22}, & \ldots, & (2+n)!x_{2 n}, & \ldots \\ \cdot & & & \\ \cdot & & & \\ \cdot & & & \\ (m+1)!x_{m 1}, & (m+2)!x_{m 2}, & \ldots, & (m+n)!x_{m n}, & \ldots \\ 0, & 0, & \ldots 0, & 0, & \ldots\end{array}\right)$ and
$\sup \left(\begin{array}{ccccc}\left(2!\left|x_{11}\right|\right)^{1 / 2}, & \left(3!\left|x_{12}\right|\right)^{1 / 3}, & \ldots, & \left((1+n)!\left|x_{1 n}\right|\right)^{1 / 1+n}, & \ldots \\ \cdot & & & \\ \cdot & & & \\ \cdot & \left((m+2)!\left|x_{m 2}\right|\right)^{1 / m+2} & , & \ldots, & \left((m+n)!\left|x_{m n}\right|\right)^{1 / m+n}, \\ \left((m+1)!\left|x_{m 1}\right|\right)^{1 / m+1}, & \ldots \\ 0, & 0, & \ldots 0, & 0, & \ldots\end{array}\right)$
Case (i). Suppose that $2!\left|x_{11}\right| \geq \cdots \geq(m+n)!\left|x_{m n}\right|$.
Let $\xi_{m n}=\operatorname{Sgn}\left((m+n)!x_{m n}\right)=\frac{(m+n)!\left|x_{m n}\right|}{(m+n)!x_{m n}}$ for $m, n=1,2, \cdots(i, j)$
$S_{k \ell}=\left(\begin{array}{ccccc}\xi_{11}, & \xi_{12}, & \ldots, & \xi_{1 \ell}, & \cdots \\ \xi_{21}, & \xi_{22}, & \ldots, & \xi_{2 \ell}, & \cdots \\ \cdot & & & & \\ \cdot & & & & \\ \cdot & & & & \\ \xi_{k 1}, & \xi_{k 2}, & \ldots, & \xi_{k \ell}, & \ldots \\ 0, & 0, & \ldots 0, & 0, & \ldots\end{array}\right)$ for $k, \ell=1,2,3, \cdots(i, j)$
Then $s_{k \ell} \in E$ for $k, \ell=1,2,3, \cdots(i, j)$. Also

$$
\begin{aligned}
& x=\left(\left|2!x_{11}-3!x_{12}\right|-\left|3!x_{21}-4!x_{22}\right|\right) S_{11}+\cdots+ \\
& \left(\left|(m+n)!x_{m n}-(m+n+1)!x_{m n+1}\right|-\left|(m+n+1)!x_{m+1 n}-(m+n+2)!x_{m+1 n+1}\right|\right) S_{m n} \\
& =t_{11} S_{11}+\cdots+t_{m n} S_{m n} \text {. so that } \\
& t_{11}+\cdots+t_{m n}=\left|2!x_{11}-3!x_{12}\right|-\left|(m+n+1)!x_{m+1 n}-(m+n+2)!x_{m+1 n+1}\right| \\
& =\left|2!x_{11}-3!x_{12}\right| \text { because }\left|(m+n+1)!x_{m+1 n}-(m+n+2)!x_{m+1 n+1}\right|= \\
& 0
\end{aligned}
$$

Hence $x \in A$. Thus $D \subset A$.

Case (ii). Let y be x and let $2!\left|y_{11}\right| \geq \cdots \geq(m+n)!\left|y_{m n}\right|$.

Express y as a member of A as in case(i). Since E is invariant under permutation of the terms of its members, so is A. Hence $x \in A$. Thus $D \subset A$. Therefore in both cases

$$
\begin{equation*}
D \subset A \tag{7}
\end{equation*}
$$

From (5) and (7) $A=D$. Consequently E is a determining set for χ^{2}. This completes the proof.

Proposition 2. χ^{2} has $A K$
Proof. Let $x=\left(x_{m n}\right) \in \chi^{2}$ and take $x^{[m n]}=\sum_{i, j=1}^{m, n} x_{i j} \Im_{i j}$ for all $m, n \in \mathbb{N}$.
Hence $d\left(x, x^{[r s]}\right)=\sup _{m n}\left\{\left((m+n)!\left|x_{m n}\right|\right)^{1 / m+n}: m \geq r+1, n \geq s+1\right\}$

$$
\rightarrow 0 \text { as } m, n \rightarrow \infty
$$

Therefore, $x^{[r s]} \rightarrow x$ as $r, s \rightarrow \infty$ in χ^{2}. Thus χ^{2} has AK. This completes proof.
Proposition 3. An infinite matrix $A=\left(a_{m n}^{j k}\right)$ is in the class

$$
\begin{align*}
A & \in\left(\chi^{2}: c_{0}^{2}\right) \Leftrightarrow \lim _{n, k \rightarrow \infty}\left(a_{m n}^{j k}\right)=0 \tag{8}\\
& \Leftrightarrow \sup _{m n}\left|a_{m 1}^{j 1}+\cdots+a_{m n}^{j k}\right|<\infty \tag{9}
\end{align*}
$$

Proof. In Lemma 1. Take $X=\chi^{2}$. has AK property take $Y=\left(c_{0}^{2}\right)$ be an FKspace. Further more χ^{2} is a determining set E (as in given Theorem 1). Also $A[E]=A\left(s^{(m n)}\right)=\left\{\left(a_{m 1}^{j 1}+\cdots+a_{m n}^{j k}\right)\right\}$. Again by Lemma 1. $A \in\left(\chi^{2}: c_{0}^{2}\right)$ if and only if (i)The columns of A belong to c_{0}^{2} and (ii) $A\left(s^{(m n)}\right)$ is a bounded subset χ^{2}. But the condition
(i) $\Leftrightarrow\left\{a_{m n}^{j k}: j, k=1,2, \cdots\right\}$ is exits for all m, n.
$(\mathrm{ii}) \Leftrightarrow \sup _{m n}\left|a_{m 1}^{j 1}+\cdots+a_{m n}^{j k}\right|<\infty$.
Hence we conclude that $A \in\left(\chi^{2}: c_{0}^{2}\right) \Leftrightarrow$ conditions (8) and (9) are satisfied.
The following proofs are similar. Hence we omit the proof.
Proposition 4. An infinite matrix $A=\left(a_{m n}^{j k}\right)$ is in the class

$$
\begin{equation*}
A \in\left(\chi^{2}: c^{2}\right) \Leftrightarrow \lim _{n, k \rightarrow \infty}\left(a_{m n}^{j k}\right) \operatorname{exists}(m, j=1,2,3, \ldots) \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
\Leftrightarrow \sup _{m n}\left|a_{m 1}^{j 1}+\cdots+a_{m n}^{j k}\right|<\infty \tag{11}
\end{equation*}
$$

Proposition 5. An infinite matrix $A=\left(a_{m n}^{j k}\right)$ is in the class

$$
\begin{gather*}
A \in\left(\chi^{2}: \chi^{2}\right) \Leftrightarrow \sup _{m n}\left(\frac{1}{(m+n)!}\left|a_{m 1}^{j 1}+\cdots+a_{m n}^{j k}\right|\right)^{1 / m+n}<\infty \tag{12}\\
\Leftrightarrow \lim _{n, k \rightarrow \infty}\left(\frac{1}{(m+n)!}\left|a_{m n}^{j k}\right|\right)^{1 / m+n}=0, \text { for } \quad m, j=1,2,3, \ldots \tag{13}\\
\Leftrightarrow d\left(a_{m 1}^{j 1}, a_{m 2}^{j 2}, \cdots, a_{m n}^{j k}\right) \text { is bounded } \tag{14}\\
\quad \text { for each metric } d \text { on } \chi^{2} \text { and for all } m, n .
\end{gather*}
$$

Proposition 6. An infinite matrix $A=\left(a_{m n}^{j k}\right)$ is in the class

$$
\begin{align*}
A \in\left(\chi^{2}: \ell^{2}\right) & \Leftrightarrow \sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left|a_{m n}^{j k}\right| \operatorname{converges}(j, k=1,2,3, \ldots) \tag{15}\\
& \Leftrightarrow \operatorname{sum}_{m n} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left|a_{m n}^{j k}\right|<\infty \tag{16}
\end{align*}
$$

Proposition 7 An infinite matrix $A=\left(a_{m n}^{j k}\right)$ is in the class

$$
\begin{align*}
A \in\left(\chi^{2}: \Lambda^{2}\right) & \Leftrightarrow \sup _{m n}\left(\left|\sum_{\gamma=1}^{n} \sum_{\mu=1}^{k} a_{m \gamma}^{j \mu}\right|^{1 / m+n}\right)<\infty \tag{17}\\
& \Leftrightarrow d\left(a_{m 1}^{j 1}, a_{m 2}^{j 2}, \cdots a_{m n}^{j k}\right) \text { isbounded } \tag{18}
\end{align*}
$$

for each metric d on Λ^{2} and for all m, n.

4.ACKOWLEDGEMENT

I wish to thank the referees for their several remarks and valuable suggestions that improved the presentation of the paper.

References

[1] M.Basarir and O.Solancan, On some double sequence spaces, J. Indian Acad. Math., 21(2) (1999), 193-200.
[2] Bromwich, An introduction to the theory of infinite series Macmillan and Co.Ltd. , New York, 1965.
[3] G.H.Hardy, On the convergence of certain multiple series, Proc. Camb. Phil. Soc., 19 (1917), 86-95.
[4] F.Moricz, Extention of the spaces c and c_{0} from single to double sequences, Acta. Math. Hungerica, 57(1-2), (1991), 129-136.
[5] F.Moricz and B.E.Rhoades, Almost convergence of double sequences and strong regularity of summability matrices, Math. Proc. Camb. Phil. Soc., 104, (1988), 283-294.
[6] B.C.Tripathy, On statistically convergent double sequences, Tamkang J. Math., 34(3), (2003), 231-237.
[7] R.Colak and A.Turkmenoglu, The double sequence spaces $\ell_{\infty}^{2}(p), c_{0}^{2}(p)$ and $c^{2}(p)$, (to appear).
[8] A.Turkmenoglu, Matrix transformation between some classes of double sequences, Jour. Inst. of math. and Comp. Sci. (Math. Seri.), 12(1), (1999), 23-31.
[9] T.Apostol, Mathematical Analysis, Addison-wesley, London, 1978.
[10] Erwin Kreyszig, Introductory Functional Analysis with Applications, by John wiley and sons Inc., 1978.
N.Subramanian

Department of Mathematics,SASTRA University,
Tanjore-613 401, India.
e-mail:nsmaths@yahoo.com
U.K. Misra

Department of Mathematics, Berhampur University, Berhampur-760 007,Odisa, India.
e-mail: umakanta_misra@yahoo.com

