A NEW CLASS OF MEROMORPHIC FUNCTIONS

Saqib Hussain

Abstract. In this paper, making use of a linear operator we introduce and study a new class of meromorphic functions. We derive some inclusion relations and a radius problem. This class contain many known classes of meromorphic functions as special cases.

2000 Mathematics Subject Classification: 30C45, 30C50.

1. Introduction

Let M denotes the class of functions of the form

$$
\begin{equation*}
f(z)=\frac{1}{z}+\sum_{n=0}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the punctured open unit disc $D=\{z: 0<|z|<1\}$. Further let $P_{k}(\alpha)$ be the class of functions $p(z), z \in E$, analytic in $E=D \cup\{0\}$ satisfying $p(0)=1$ and

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|\frac{\operatorname{Re} p(z)-\alpha}{1-\alpha}\right| d \theta \leq k \pi \tag{1.2}
\end{equation*}
$$

where $z=r e^{i \theta}, k \geq 2,0 \leq \alpha<1$. This class was introduced by Padmanbhan and Paravatham [5]. For $\alpha=0$ we obtain the class P_{k} defined by Pinchuk [6] and $P_{2}(\alpha)=P(\alpha)$ is the class with positive real part greater than α. Also $p \in P_{k}(\alpha)$, if and only if

$$
\begin{equation*}
p(z)=\left(\frac{k}{4}+\frac{1}{2}\right) p_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) p_{2}(z), \tag{1.3}
\end{equation*}
$$

where $p_{1}, p_{2} \in P(\alpha), z \in E$. The class M is closed under then the convolution or Hadamard product denoted and defined by

$$
\begin{equation*}
(f * g)(z)=\frac{1}{z}+\sum_{n=0}^{\infty} a_{n} b_{n} z^{n} \tag{1.4}
\end{equation*}
$$

where

$$
f(z)=\frac{1}{z}+\sum_{n=0}^{\infty} a_{n} z^{n}, g(z)=\frac{1}{z}+\sum_{n=0}^{\infty} b_{n} z^{n} .
$$

The incomplete Beta function is defined by

$$
\begin{equation*}
\phi(a, c ; z)=\frac{1}{z}+\sum_{n=0}^{\infty} \frac{(a)_{n+1}}{(c)_{n+1}} z^{n}, \quad a, c \in R, c \neq 0,-1,-2, \ldots, z \in D \tag{1.5}
\end{equation*}
$$

where $(a)_{n}$ is the Pochhammer symbol. Using $\phi(a, c ; z)$ Liu and Srivastava [3] defined an operator $£(a, c): M \rightarrow M$, as

$$
\begin{equation*}
£(a, c) f(z)=\phi(a, c ; z) * f(z) . \tag{1.6}
\end{equation*}
$$

This operator is closely related to the Carlson-Shaffer operator studied in [1]. Analogous to $£(a, c)$, in [2] Cho and Noor defined $I_{\mu}(a, c): M \rightarrow M$ as

$$
\begin{equation*}
I_{\mu}(a, c) f(z)=(\phi(a, c ; z))^{-1} * f(z), \quad(\mu>0, a>0, c \neq-1,-2,-3, \ldots, \quad z \in D) . \tag{1.7}
\end{equation*}
$$

We note that

$$
I_{2}(2,1) f(z)=f(z), \quad \text { and } \quad I_{2}(1,1) f(z)=z f^{\prime}(z)+2 f(z)
$$

Using (1.7), it can be easily verified that

$$
\begin{equation*}
z\left(I_{\mu}(a+1, c) f(z)\right)^{\prime}=a I_{\mu}(a, c) f(z)-(a+1) I_{\mu}(a+1, c) f(z) \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
z\left(I_{\mu}(a, c) f(z)^{\prime}=\mu I_{\mu+1}(a, c) f(z)-(\mu+1) I_{\mu}(a, c) f(z)\right. \tag{1.9}
\end{equation*}
$$

Furthermore for $f \in M, \operatorname{Re} b>0$ the Generalized Bernadi Operator is defined as

$$
\begin{equation*}
J_{b} f(z)=\frac{b}{z^{b+1}} \int_{0}^{z} t^{b} f(t) d t \tag{1.10}
\end{equation*}
$$

Using (1.10) it can easily be verified that

$$
\begin{equation*}
z\left(I_{\mu}(a, c) J_{b} f(z)\right)^{\prime}=b I_{\mu}(a, c) f(z)-(b+1) I_{\mu}(a, c) J_{b} f(z) \tag{1.11}
\end{equation*}
$$

Now using the operator $I_{\mu}(a, c)$, we define the following class of meromorphic functions.

Definition 1.1 Let $f \in M$, then $f(z) \in Q_{k}^{\mu}(a, c, \lambda, \alpha)$, if and only if

$$
-\frac{z\left(I_{\mu}(a, c) f(z)\right)^{\prime}+\lambda z^{2}\left(I_{\mu}(a, c) f(z)\right)^{\prime \prime}}{(1-\lambda) I_{\mu}(a, c) f(z)+\lambda z\left(I_{\mu}(a, c) f(z)\right)^{\prime}} \in P_{k}(\alpha)
$$

where $k \geq 2,0 \leq \lambda \leq 1,0 \leq \alpha<1, \mu>0, a>0, c \neq-1,-2,-3, \ldots, \quad z \in D$.

Special Cases:

(i) For $\lambda=0$ and $\lambda=1$ this class was already discussed by Noor in [2].
(ii) For $\lambda=0, \mu=2, a=2, c=1, k=2-\frac{z f^{\prime}(z)}{f(z)} \in P(\alpha)$.
(iii) For $\lambda=1, \mu=2, a=2, c=1, k=2$

$$
-\frac{\left[z f^{\prime}(z)\right]^{\prime}}{f^{\prime}(z)} \in P(\alpha) .
$$

2.Preliminary Results

Lemma 2.1 [4]. Let $u=u_{1}+i u_{2}$ and $v=v_{1}+i v_{2}$ and let $\varphi(u, v)$ be a complex valued function satisfying the conditions:
i) $\varphi(u, v)$ is continuous in $D \subset C^{2}$,
ii) $(1,0) \in D$ and $\operatorname{Re} \varphi(1,0)>0$,
iii) $\operatorname{Re} \varphi\left(i u_{2}, v_{1}\right) \leqslant 0$ whenever $\left(i u_{2}, v_{1}\right) \in D$ and $v_{1} \leqslant-\frac{1}{2}\left(1+u_{2}^{2}\right)$.

If $h(z)$ is a function analytic in $D \cup\{0\}$ such that $\left(h(z), z h^{\prime}(z)\right) \in D$ and $\operatorname{Re} \varphi\left(h(z), z h^{\prime}(z)\right)>0$ for $z \in D \cup\{0\}$, then $\operatorname{Re} h(z)>0$ in $D \cup\{0\}$.

3.Main Results

Theorem 3.1. For $k \geq 2,0 \leq \lambda \leq 1,0 \leq \alpha<1, \mu>0, a>0, c \neq$ $-1,-2,-3, \ldots, \quad z \in D$.

$$
Q_{k}^{\mu+1}(a, c, \lambda, \alpha) \subset Q_{k}^{\mu}(a, c, \lambda, \beta) \subset Q_{k}^{\mu}(a+1, c, \lambda, \gamma)
$$

Proof. First we prove that

$$
Q_{k}^{\mu+1}(a, c, \lambda, \alpha) \subset Q_{k}^{\mu}(a, c, \lambda, \beta) .
$$

Let $f(z) \in Q_{k}^{\mu+1}(a, c, \lambda, \alpha)$ and set

$$
\begin{equation*}
-\frac{z\left(I_{\mu}(a, c) f(z)\right)^{\prime}+\lambda z^{2}\left(I_{\mu}(a, c) f(z)\right)^{\prime \prime}}{(1-\lambda) I_{\mu}(a, c) f(z)+\lambda z\left(I_{\mu}(a, c) f(z)\right)^{\prime}}=H(z) \tag{3.1}
\end{equation*}
$$

From (1.9) and (3.1), we have

$$
\begin{equation*}
\frac{\mu\left[\lambda z\left(I_{\mu+1}(a, c) f(z)\right)^{\prime}+(1-\lambda) I_{\mu+1}(a, c) f(z)\right]}{(1-\lambda) I_{\mu}(a, c) f(z)+\lambda z\left(I_{\mu}(a, c) f(z)\right)^{\prime}}=-H(z)+(\mu+1) . \tag{3.2}
\end{equation*}
$$

After multiplying (3.2) by z and then by logarithmic differentiation, we obtain

$$
-\frac{z\left(I_{\mu+1}(a, c) f(z)\right)^{\prime}+\lambda z^{2}\left(I_{\mu+1}(a, c) f(z)\right)^{\prime \prime}}{(1-\lambda) I_{\mu+1}(a, c) f(z)+\lambda z\left(I_{\mu+1}(a, c) f(z)\right)^{\prime}}=H(z)+\frac{z H^{\prime}(z)}{-H(z)+(\mu+1)} \in P_{k}(\alpha) .
$$

Let

$$
\varphi_{\mu}(z)=\frac{1}{\mu+1}\left[\frac{1}{z}+\sum_{k=0}^{\infty} z^{k}\right]+\frac{\mu}{\mu+1}\left[\frac{1}{z}+\sum_{k=0}^{\infty} k z^{k}\right]
$$

then

$$
\begin{aligned}
H(z) * z \varphi_{\mu}(z) & =H(z)+\frac{z H^{\prime}(z)}{-H(z)+(\mu+1)} \\
& =\left(\frac{k}{4}+\frac{1}{2}\right)\left(h_{1}(z)+z \varphi_{\mu}(z)\right)-\left(\frac{k}{4}-\frac{1}{2}\right)\left(h_{2}(z)+z \varphi_{\mu}(z)\right) \\
& =\left(\frac{k}{4}+\frac{1}{2}\right)\left\{h_{1}(z)+\frac{z h_{1}(z)}{-h_{1}(z)+(\mu+1)}\right\}- \\
& -\left(\frac{k}{4}-\frac{1}{2}\right)\left\{h_{1}(z)+\frac{z h_{2}(z)}{-h_{2}(z)+(\mu+1)}\right\} .
\end{aligned}
$$

As $f(z) \in Q_{k}^{\mu+1}(a, c, \lambda, \alpha)$, so

$$
h_{i}(z)+\frac{z h_{i}^{\prime}(z)}{-h_{i}(z)+(\mu+1)} \in P(\alpha) \quad i=1,2
$$

Let $h_{i}(z)=(1-\beta) p_{i}(z)+\beta$, then

$$
\left[(1-\beta) p_{i}(z)+\frac{(1-\beta) z p_{i}^{\prime}(z)}{-(1-\beta) p_{i}(z)+(\mu-\beta+1)}+(\beta-\alpha)\right] \in P .
$$

We want to show that $p_{i} \in P$, for $i=1,2$. For this we formulate a functional $\varphi(u, v)$ by taking $u=p_{i}(z)$ and $v=z p_{i}{ }^{\prime}(z)$ as follows:

$$
\varphi(u, v)=(1-\beta) u+\frac{(1-\beta) v}{-(1-\beta) u+(\mu-\beta+1)}+(\beta-\alpha)
$$

The first two conditions of Lemma 2.1 are clearly satisfied. For the third condition we proceed as follows:

$$
\operatorname{Re} \varphi\left(i u_{2}, v_{1}\right)=(\beta-\alpha)+\frac{(1-\beta) v_{1}}{(1-\beta)^{2} u_{2}^{2}+(\mu-\beta+1)^{2}}
$$

When $v_{1} \leq-\frac{1}{2}\left(1+u_{2}^{2}\right)$, then

$$
\begin{aligned}
\operatorname{Re} \varphi\left(i u_{2}, v_{1}\right) & \leq(\beta-\alpha)-\frac{(1-\beta)(\mu-\beta+1)\left(1+u_{2}^{2}\right)}{2\left[(1-\beta)^{2} u_{2}^{2}+(\mu-\beta+1)^{2}\right]} \\
& =\frac{A+B u_{2}^{2}}{2 C}
\end{aligned}
$$

where

$$
\begin{aligned}
& A=(\mu-\beta+1)\{2(\beta-\alpha)(\mu-\beta+1)-(1-\beta)\} \\
& B=(1-\beta)\{2(\beta-\alpha)(1-\beta)-(\mu-\beta+1)\} \\
& C=(1-\beta)^{2} u_{2}^{2}+(\mu-\beta+1)^{2}
\end{aligned}
$$

We note that $\operatorname{Re} \varphi\left(i u_{2}, v_{1}\right) \leq 0$ if and only if $A \leq 0$, and $B \leq 0$. From $A \leq 0$, we have

$$
\beta=\frac{1}{4}\left[(3+2 \mu+2 \alpha)-\sqrt{(3+2 \mu+2 \alpha)^{2}-8(2 \alpha+2 \alpha \mu+1)}\right],
$$

and $B \leq 0$ gives us $0 \leq \beta<1$. Hence by Lemma 2.1, $p_{i} \in P$, for $i=1,2$ and consequently, $f(z) \in Q_{k}^{\mu}(a, c, \lambda, \beta)$. Similarly, we can prove the other inclusion.

Theorem 3.2. If $f(z) \in Q_{k}^{\mu+1}(a, c, \lambda, \alpha)$ and J_{b} is given by (1.11) then $J_{b} f(z) \in$ $Q_{k}^{\mu+1}(a, c, \lambda, \beta)$.

Proof. Let $f(z) \in Q_{k}^{\mu+1}(a, c, \lambda, \alpha)$ and set

$$
\begin{equation*}
-\frac{z\left(I_{\mu}(a, c) J_{b} f(z)\right)^{\prime}+\lambda z^{2}\left(I_{\mu}(a, c) J_{b} f(z)\right)^{\prime \prime}}{(1-\lambda) I_{\mu}(a, c) J_{b} f(z)+\lambda z\left(I_{\mu}(a, c) J_{b} f(z)\right)^{\prime}}=H(z) \tag{3.3}
\end{equation*}
$$

Using (1.11), (3.3) and after some simplifications, we obtain

$$
\begin{equation*}
-\frac{z\left(I_{\mu}(a, c) f(z)\right)^{\prime}+\lambda z^{2}\left(I_{\mu}(a, c) f(z)\right)^{\prime \prime}}{(1-\lambda) I_{\mu}(a, c) f(z)+\lambda z\left(I_{\mu}(a, c) f(z)\right)^{\prime}}=H(z)+\frac{z H^{\prime}(z)}{-H(z)+(b+1)} . \tag{3.4}
\end{equation*}
$$

Now working as in Theorem 3.1 we obtain the desired result.
Theorem 3.3. If $f(z) \in Q_{k}^{\mu}(a, c, \lambda, \alpha)$ then $f(z) \in Q_{k}^{\mu+1}(a, c, \lambda, \alpha)$, for $|z|<r_{0}$, where

$$
\begin{equation*}
r_{0}=\frac{1}{4}\{\sqrt{4+\mu(\mu+2)}-2\} . \tag{3.5}
\end{equation*}
$$

Proof. Since $f(z) \in Q_{k}^{\mu}(a, c, \lambda, \alpha)$, so working in the same way as in Theorem 3.1, we have

$$
\begin{equation*}
-\frac{z\left(I_{\mu}(a, c) f(z)\right)^{\prime}+\lambda z^{2}\left(I_{\mu}(a, c) f(z)\right)^{\prime \prime}}{(1-\lambda) I_{\mu}(a, c) f(z)+\lambda z\left(I_{\mu}(a, c) f(z)\right)^{\prime}}=H(z) \tag{3.6}
\end{equation*}
$$

$$
=\left(\frac{k}{4}+\frac{1}{2}\right) h_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) h_{2}(z),
$$

where $h_{i} \in P(\alpha)$ for $i=1,2$.
From (1.9), (3.6) and after some simplification, we have

$$
\begin{align*}
& -\frac{z\left(I_{\mu+1}(a, c) f(z)\right)^{\prime}+\lambda z^{2}\left(I_{\mu+1}(a, c) f(z)\right)^{\prime \prime}}{(1-\lambda) I_{\mu+1}(a, c) f(z)+\lambda z\left(I_{\mu+1}(a, c) f(z)\right)^{\prime}} \\
& =\left(\frac{k}{4}+\frac{1}{2}\right)\left\{h_{1}(z)+\frac{z h_{1}(z)}{-h_{1}(z)+(\mu+1)}\right\} \tag{3.7}\\
& \quad-\left(\frac{k}{4}-\frac{1}{2}\right)\left\{h_{2}(z)+\frac{z h_{2}^{\prime}(z)}{-h_{2}(z)+(\mu+1)}\right\} .
\end{align*}
$$

Let $h_{i}(z)=(1-\alpha) p_{i}(z)+\alpha$. Then (3.7) becomes

$$
\begin{gather*}
\frac{1}{1-\alpha}\left[-\frac{z\left(I_{\mu+1}(a, c) f(z)\right)^{\prime}+\lambda z^{2}\left(I_{\mu+1}(a, c) f(z)\right)^{\prime \prime}}{(1-\lambda) I_{\mu+1}(a, c) f(z)+\lambda z\left(I_{\mu+1}(a, c) f(z)\right)^{\prime}}-\alpha\right] \\
=\left(\frac{k}{4}+\frac{1}{2}\right)\left\{p_{1}(z)+\frac{z p_{1}^{\prime}(z)}{-h_{1}(z)+(\mu+1)}\right\}-\left(\frac{k}{4}-\frac{1}{2}\right)\left\{p_{2}(z)+\frac{z p_{2}^{\prime}(z)}{-p_{2}(z)+(\mu+1)}\right\} . \tag{3.8}
\end{gather*}
$$

Now consider

$$
\operatorname{Re}\left[h_{i}(z)+\frac{z h_{i}^{\prime}(z)}{-h_{i}(z)+(\mu+1)}\right] \geq \operatorname{Re} h_{i}(z)-\left|\frac{z h_{i}^{\prime}(z)}{-h_{i}(z)+(\mu+1)}\right| .
$$

Using the well known distorsion bounds for the class P, we have

$$
\begin{gather*}
\operatorname{Re}\left[h_{i}(z)+\frac{z h_{i}^{\prime}(z)}{-h_{i}(z)+(\mu+1)}\right] \geq \operatorname{Re} h_{i}(z)\left[1+\frac{2 r}{1-r^{2}} \frac{1}{\frac{1+r}{1-r}-(\mu+1)}\right] \\
=\operatorname{Re} h_{i}(z)\left[\frac{(1+r)[(1+r)-(\mu+1)(1-r)]+2 r}{(1+r)[(1+r)-(\mu+1)(1-r)]}\right] \tag{3.9}
\end{gather*}
$$

The right hand side of (3.9) is positive for $r \geq r_{0}$. Consequently, $f(z) \in Q_{k}^{\mu+1}(a, c, \lambda, \alpha)$ for $|z|<r_{0}$, where r_{0} is given by (3.5).

References

[1] B. C. Carlson, D.B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 15(1984), 737-745.
[2] N. E. Cho and K.I. Noor, Inclusion properties for certain classes of meromorphic functions associated with Choi-Saigo- Srivastava operator, J. Math. Anal. Appl., 320(2006), 779-786.
[3] J. L. Liu and H.M. Srivastava, A linear operator and associated families of meromorphically multivalued functions, J. Math. Anal. Appl., 259(2001), 566-581.
[4] S. S. Miller, Differential inequalities and Caratheodory functions, Bull. Amer. Math. Soc., 81(1975), 79-81.
[5] K. S. Padmanbhan, R. Paravatham, Properties of a class of functions with bounded boundary rotation, Ann. Polon. Math., 31(1975), 311-323.
[6] B. Pinchuk, Functions of bounded boundary rotation, Isr. J. Math. , 10(1971), 6-16.

Author:
Saqib Hussain
Department of Mathematics, COMSATS Institute of Information Technology,
Abbottabad, Pakistan
email: saqib_math@yahoo.com

