ON THE LOCALIZATION OF FACTORED FOURIER SERIES

HÜSEYİN BOR

Abstract. In this paper, a general theorem dealing with the local property of $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ summability of factored Fourier series has been proved, which generalizes some known results.

2010 AMS Subject Classification: 40G99, 42A24, 42B08.
Key Words: Absolute summability, infinite series, local property, Fourier series.

1.Introduction

Let $\sum a_{n}$ be a given infinite series with partial sums $\left(s_{n}\right)$. Let $\left(p_{n}\right)$ be a sequence of positive numbers such that

$$
\begin{equation*}
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty, \quad\left(P_{-i}=p_{-i}=0, i \geq 1\right) \tag{1}
\end{equation*}
$$

The sequence-to-sequence transformation

$$
\begin{equation*}
\sigma_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v} \tag{2}
\end{equation*}
$$

defines the sequence (σ_{n}) of the Riesz mean or simply the (\bar{N}, p_{n}) mean of the sequence $\left(s_{n}\right)$, generated by the sequence of coefficients $\left(p_{n}\right)$ (see [6]). The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$, if (see [2])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(P_{n} / p_{n}\right)^{k-1}\left|\Delta \sigma_{n-1}\right|^{k}<\infty \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta \sigma_{n-1}=-\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} P_{v-1} a_{v}, \quad n \geq 1 \tag{4}
\end{equation*}
$$

In the special case $p_{n}=1$ for all values of $\mathrm{n},\left|\bar{N}, p_{n}\right|_{k}$ summability is the same as $|C, 1|_{k}$ summability. Also, if we take $k=1$ and $p_{n}=1 /(n+1)$, then summability $\left|N, p_{n}\right|_{k}$ is equivalent to the summability $|R, \log n, 1|$. Let $\left(\theta_{n}\right)$ be any sequence of positive constants. The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}, k \geq 1$, if (see [9])

$$
\begin{equation*}
\sum_{n=1}^{\infty} \theta_{n}^{k-1}\left|\Delta \sigma_{n-1}\right|^{k}<\infty \tag{5}
\end{equation*}
$$

If we take $\theta_{n}=\frac{P_{n}}{p_{n}}$, then $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ summability reduces to $\left|\bar{N}, p_{n}\right|_{k}$ summability. Also, if we take $\theta_{n}=n$ and $p_{n}=1$ for all values of n, then we get $|C, 1|_{k}$ summability.
Furthermore, if we take $\theta_{n}=n$, then $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ summability reduces to $\left|R, p_{n}\right|_{k}$ (see [4]) summability. A sequence (λ_{n}) is said to be convex if $\Delta^{2} \lambda_{n} \geq 0$ for every positive integer n, where $\Delta^{2} \lambda_{n}=\Delta\left(\Delta \lambda_{n}\right)$ and $\Delta \lambda_{n}=\lambda_{n}-\lambda_{n+1}$. Let $f(t)$ be a periodic function with period 2π and integrable (L) over $(-\pi, \pi)$. Without any loss of generality we may assume that the constant term in the Fourier series of $f(t)$ is zero, so that

$$
\begin{equation*}
\int_{-\pi}^{\pi} f(t) d t=0 \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
f(t) \sim \sum_{n=1}^{\infty}\left(b_{n} \cos n t+c_{n} \sin n t\right)=\sum_{n=1}^{\infty} A_{n}(t) \tag{7}
\end{equation*}
$$

where $\left(b_{n}\right)$ and $\left(c_{n}\right)$ denote the Fourier coefficients. It is well known that the convergence of the Fourier series at $t=x$ is a local property of the generating function $\mathrm{f}(\mathrm{t})$ (i. e., it depends only on the behaviour of f in a arbitrarily small neighbourhood of x), and hence the summability of the Fourier series at $t=x$ by any regular linear summability method is also a local property of the generating function $f(t)$ (see [10]).

2.Known Result

Mohanty [8] has demonstrated that the summability $|R, \log n, 1|$ of

$$
\begin{equation*}
\sum A_{n}(t) / \log (n+1), \tag{8}
\end{equation*}
$$

at $t=x$, is a local property of the generating function of $\sum A_{n}(t)$. Later on Matsumoto [7] improved this result by replacing the series (8) by

$$
\begin{equation*}
\sum A_{n}(t) / \log \log (n+1)^{1+\epsilon}, \epsilon>0 \tag{9}
\end{equation*}
$$

Generalizing the above result Bhatt [1] proved the following theorem.
Theorem A. If $\left(\lambda_{n}\right)$ is a convex sequence such that $\sum n^{-1} \lambda_{n}$ is convergent, then the summability $|R, \log n, 1|$ of the series $\sum A_{n}(t) \lambda_{n} \log n$ at a point can be ensured by a local property.
Bor [4] has proved Theorem A in a more general form which includes of the above results as special cases. Also it should be noted that the conditions on the sequence $\left(\lambda_{n}\right)$ in that theorem, are somewhat more general than in Theorem A. His theorem is as follows.

Theorem B. Let $k \geq 1$. If $\left(\lambda_{n}\right)$ is a non-negative and non-increasing sequence such that $\sum p_{n} \lambda_{n}$ is convergent, then the summability $\left|\bar{N}, p_{n}\right|_{k}$ of the series $\sum A_{n}(t) \lambda_{n} P_{n}$ at a point is a local property of the generating function $f(t)$.

3.The main result

The aim of the present paper is to generalize Theorem B for $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ summability under suitable conditions. We shall prove the following theorem.

Theorem . Let $k \geq 1$. If $\left(\lambda_{n}\right)$ is a non-negative and non-increasing sequence such that $\sum p_{n} \lambda_{n}$ is convergent and $\left(\theta_{n}\right)$ is any sequence of positive constants such that

$$
\begin{gather*}
\sum_{v=1}^{m}\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} P_{v} \Delta \lambda_{v}=O(1) \quad \text { as } \quad m \rightarrow \infty \tag{10}\\
\sum_{v=1}^{m}\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} p_{v} \lambda_{v}=O(1) \quad \text { as } \quad m \rightarrow \infty \tag{11}\\
\sum_{v=1}^{m}\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} p_{v+1} \lambda_{v+1}=O(1) \quad \text { as } \quad m \rightarrow \infty \tag{12}\\
\sum_{n=v+1}^{m+1}\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)^{k-1} \frac{p_{n}}{P_{n} P_{n-1}}=O\left\{\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \frac{1}{P_{v}}\right\}, \tag{13}
\end{gather*}
$$

then the summability $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ of the series $\sum A_{n}(t) \lambda_{n} P_{n}$ at a point is a local property of the generating function $f(t)$.

It should be noted that if we take $\theta_{n}=\frac{P_{n}}{p_{n}}$, then we get Theorem B. In this case conditions (10)-(12) are obvious and condition (13) reduces to

$$
\begin{equation*}
\sum_{n=v+1}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}}=O\left\{\frac{1}{P_{v}}\right\} \tag{14}
\end{equation*}
$$

which always holds .Also, if we take $k=1$ and $p_{n}=1 /(n+1)$,then we obtain Theorem A.

We need the following lemmas for the proof of our theorem.
Lemma $1([5])$. If $\left(\lambda_{n}\right)$ is a non-negative and non-increasing sequence such that $\sum p_{n} \lambda_{n}$ is convergent, then $P_{n} \lambda_{n}=O(1)$ as $n \rightarrow \infty$ and $\sum P_{n} \Delta \lambda_{n}<\infty$.
Lemma 2. Let $\left(s_{n}\right)=a_{1}+a_{2}+\ldots+a_{n}=O(1)$. If $\left(\lambda_{n}\right)$ is a non-negative and nonincreasing sequence such that $\sum p_{n} \lambda_{n}$ is convergent and the conditions (10)-(13) are satisfied, then the series $\sum a_{n} \lambda_{n} P_{n}$ is summable $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}, k \geq 1$.
Proof. Let $\left(T_{n}\right)$ denotes the (\bar{N}, p_{n}) mean of the series $\sum a_{n} \lambda_{n} P_{n}$. Then, by definition, we have

$$
T_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} \sum_{r=0}^{v} a_{r} \lambda_{r} P_{r}=\frac{1}{P_{n}} \sum_{v=0}^{n}\left(P_{n}-P_{v-1}\right) a_{v} \lambda_{v} P_{v} .
$$

Then, for $n \geq 1$, we have that

$$
T_{n}-T_{n-1}=\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} P_{v-1} P_{v} a_{v} \lambda_{v} .
$$

By Abel's transformation, we have

$$
\begin{aligned}
T_{n}-T_{n-1} & =\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} P_{v} s_{v} \Delta \lambda_{v}-\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} s_{v} p_{v} \lambda_{v} \\
& -\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} p_{v+1} s_{v} \lambda_{v+1}+s_{n} p_{n} \lambda_{n} \\
& =T_{n, 1}+T_{n, 2}+T_{n, 3}+T_{n, 4}, \quad \text { say. }
\end{aligned}
$$

By Minkowski's inequality for $k>1$, to complete the proof of the Lemma 2, it is sufficient to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \theta_{n}^{k-1}\left|T_{n, r}\right|^{k}<\infty, \quad \text { for } \quad r=1,2,3,4 \tag{15}
\end{equation*}
$$

Now, applying Hölder's inequality with indices k and k^{\prime}, where $\frac{1}{k}+\frac{1}{k^{\prime}}=1$ and $k>1$, we get that

$$
\begin{aligned}
\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|T_{n, 1}\right|^{k} & \leq \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}}\left\{\sum_{v=1}^{n-1}\left|s_{v}\right|^{k} P_{v} P_{v} \Delta \lambda_{v}\right\} \\
& \times\left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} P_{v} P_{v} \Delta \lambda_{v}\right\}^{k-1} \\
& =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} P_{v} P_{v} \Delta \lambda_{v} \\
& =O(1) \sum_{v=1}^{m} P_{v} P_{v} \Delta \lambda_{v} \sum_{n=v+1}^{m+1}\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)^{k-1} \frac{p_{n}}{P_{n} P_{n-1}} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} P_{v} \Delta \lambda_{v}=O(1) \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of the Lemma 2 and Lemma 1. Again

$$
\begin{aligned}
\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|T_{n, 2}\right|^{k} & \leq \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}}\left\{\sum_{v=1}^{n-1}\left|s_{v}\right|^{k}\left(P_{v} \lambda_{v}\right)^{k} p_{v}\right\} \times\left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right\}^{k-1} \\
& =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}} \sum_{v=1}^{n-1}\left(P_{v} \lambda_{v}\right)^{k} p_{v} \\
& =O(1) \sum_{v=1}^{m}\left(P_{v} \lambda_{v}\right)^{k} p_{v} \sum_{n=v+1}^{m+1}\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)^{k-1} \frac{p_{n}}{P_{n} P_{n-1}} \\
& =O(1) \sum_{v=1}^{m}\left(P_{v} \lambda_{v}\right)^{k} \frac{p_{v}}{P_{v}}\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \\
& =O(1) \sum_{v=1}^{m}\left(P_{v} \lambda_{v}\right)^{k-1}\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} p_{v} \lambda_{v} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} p_{v} \lambda_{v}=O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

in view of the hypotheses of the Lemma 2 and Lemma 1. Using the fact that $P_{v}<P_{v+1}$, similarly we have that

$$
\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|T_{n, 3}\right|^{k}=O(1) \sum_{v=1}^{m}\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} p_{v+1} \lambda_{v+1}=O(1) \quad \text { as } \quad m \rightarrow \infty
$$

Finally, we have that

$$
\begin{aligned}
\sum_{n=1}^{m} \theta_{n}^{k-1}\left|T_{n, 4}\right|^{k} & =\sum_{n=1}^{m} \theta_{n}^{k-1}\left|s_{n}\right|^{k} p_{n}^{k} \lambda_{n}^{k} \\
& =O(1) \sum_{n=1}^{m} \theta_{n}^{k-1} p_{n}^{k-1} p_{n} \lambda_{n}^{k-1} \lambda_{n} \frac{P_{n}^{k-1}}{P_{n}^{k-1}} \\
& =O(1) \sum_{n=1}^{m}\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)^{k-1}\left(P_{n} \lambda_{n}\right)^{k-1} p_{n} \lambda_{n} \\
& =O(1) \sum_{n=1}^{m}\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)^{k-1} p_{n} \lambda_{n}=O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of the Lemma 2 and Lemma 1. Therefore, we get that

$$
\sum_{n=1}^{m} \theta_{n}^{k-1}\left|T_{n, r}\right|^{k}=O(1) \quad \text { as } \quad m \rightarrow \infty, \text { for } \quad r=1,2,3,4
$$

This completes the proof of the Lemma 2.

4.Proof of the Theorem

Since the behaviour of the Fourier series, as far as convergence is concerned, for a particular value of x depends on the behaviour of the function in the immediate neighbourhood of this point only, hence the truth of the Theorem is a necessarry consequence of Lemma 2. If we take $\theta_{n}=n$ and $p_{n}=1$ for all values of n, then we have a new local property result dealing with $|C, 1|_{k}$ summability. Also, if we take $\theta_{n}=n$, then we obtain another new local property result for $\left|R, p_{n}\right|_{k}$ summability.

Acknowledgement.The author wishes to express his sincerest thanks Professor L. Leindler (Szeged University, Hungary) for his invaluable suggestions for the improvement of this paper.

References

[1] S. N. Bhatt, An aspect of local property of $|R, \operatorname{logn}, 1|$ summability of the factored Fourier series, Proc. Nat. Inst. Sci. India, 26 (1960), 69-73.
[2] H. Bor, On two summability methods, Math. Proc. Cambridge Philos Soc., 97 (1985),147-149.
[3] H. Bor, On the relative strength of two absolute summability methods, Proc. Amer. Math. Soc., 113 (1991), 1009-1012.
[4] H. Bor, Localization of factored Fourier series, J.Inequal. Pure Appl. Math., 6 (2005), Article 40 , (electronic).
[5] H. Bor, A note on local property of factored Fourier series , Nonlinear Anal., 64 (2006), 513-517 .
[6] G. H. Hardy, Divergent series, Oxford Univ. Press, Oxford, (1949).
[7] K. Matsumoto, Local property of the summability $|R, \operatorname{logn}, 1|$, Tôhoku Math. J. (2), 8 (1956), 114-124.
[8] R. Mohanty, On the summability | R, logw, $1 \mid$ of Fourier series, J. London Math. Soc., 25 (1950), 67-72.
[9] W. T. Sulaiman, On some summability factors of infinite series, Proc. Amer. Math. Soc., 115 (1992), 313-317.
[10] E.C. Titchmarsh, The Theory of Functions, Oxford Univ. Press, London, (1961).

Hüseyin BOR
Department of Mathematics
Erciyes University
38039 Kayseri, Turkey
E-mail: bor@erciyes.edu.tr ; hbor33@gmail.com

