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A NOTE ON A NONLINEAR BACKWARD HEAT EQUATION:
STABILITY AND ERROR ESTIMATES

Nguyen Huy Tuan and Dang Duc Trong

Abstract. We consider the problem of finding, from the final data u(x, y, T ) =
ϕ(x, y), the initial data u(x, y, 0) of the temperature function u(x, y, t), (x, y) ∈ I ≡
(0, π)× (0, π), t ∈ [0, T ] satisfying the following nonlinear system

ut = uxx + uyy + g(x, y, t, u(x, y, t)), (x, y, t) ∈ I × (0, T ),
u(0, y, t) = u(π, y, t) = u(x, 0, t) = u(x, π, t) = 0, t ∈ (0, T ).

The problem is nonlinear and severely ill-posed. Using the eigenfunction expansion
method we shall improve the results of some recent papers [18, 19, 20] and get some
new error estimates. A numerical example also shows that the method works effec-
tively.

2000 Mathematics Subject Classification: 35K05, 35K99, 47J06, 47H10.

1. Introduction

Let T be a positive number. We consider the problem of finding the tempereture
u(x, y, t), (x, y, t) ∈ I × [0, T ] such that the following system

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
+ g(x, y, t, u(x, y, t)) (x, y, t) ∈ I × (0, T ),

u(x, y, t) = 0 (x, y, t) ∈ ∂I × [0, T ],
u(x, y, T ) = ϕ(x, y) (x, y) ∈ I,

(1)

where I = (0, π) × (0, π), ∂I is the boundary of I and ϕ(x, y), g(z) are given. The
problem is called the backward heat problem, the backward Cauchy problem or the
final value problem.

As we known, the problem is severely ill-posed, i.e., solutions do not always exist,
and in the case of existence, these do not depend continuously on the given data.
In fact, from small noise contaminated physical measurements, the corresponding
solutions have large errors. It makes difficult to numerical calculations. Hence, a
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regularization is in order. The linear case was studied extensively in the last four
decades by many methods. The literature related to the problem is impressive (see,
e.g. [2, 5, 8] and the references therein). In the pioneering work [8] in 1967, the
authors present, in a heuristic way, the quasi-reversibility method. They approxi-
mated the problem by adding a ”corrector” into the main equation. In fact, they
considered the problem construct explicitly the adjoint A∗ of the operator A

ut + Au− εA∗Au = 0, t ∈ [0, T ],
u(T ) = ϕ.

The stability magnitude of the method are of order ecε−1
. In [1], the problem is

approximated with

ut + Au + εAut = 0, t ∈ [0, T ],
u(T ) = ϕ.

The method is useful if we cannot construct clearly the operator A∗. However,
the stability order in the case are quite large as in the original quasi-reversibility
methods. In [15], using the method, so-called, of stabilized quasi reversibility, the
author approximated the problem with

ut + f(A)u = 0, t ∈ [0, T ],
u(T ) = ϕ.

He shown that, with appropriate conditions on the ”corrector” f(A), the stability
magnitude of the method is of order cε−1.

Sixteen years after the pioneering work by Lattes-Lions,in 1983, Showalter [12]presented
the quasi-boundary method. He considered the problem

ut −Au(t) = Bu(t), t ∈ [0, T ],
u(0) = ϕ,

and approximated the problem with

ut −Au(t) = Bu(t), t ∈ [0, T ],
u(0) + εu(T ) = ϕ.

He introduced a better stability estimate than the other discussed methods.
Clark and Oppenheimer, in their paper [5], used the quasi-boundary method to
regularize the backward problem with

ut + Au(t) = 0, t ∈ [0, T ],
u(T ) + εu(0) = ϕ.
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The authors shown that the stability estimate of the method is of order ε−1. In
[6], the quasi-boundary method was used to solve a backward heat equation with
integral boundary condition.

For two dimensional homogeneous backward heat, we refer the reader to [4, 9, 10].
Very recently, in [11], J.Liu and his coauthors applied the Tikhonov method to regu-
larized the homogeneous 2-D backward heat. Although we have many works on the
linear homogeneous case of the backward heat problem, the literature on the linear
nonhomogeneous case and the nonlinear case of the problem are quite scarce. To our
knowledge, there are rarely results of treating the 2-D nonhomogeneous and nonlin-
ear cases of the backward problem until now. In 2009, Trong and Tuan [20] regular-
ized the nonhomogeneous 2-D backward heat problem by using the quasi-boundary
value method. Very recently, Trong et al [21] established the error estimates in H2

norm by using the truncation method.
In the present paper, we apply the eigenfunction expansion method to regularize

the problem (1) from a new point of view. To form the approximate problem, we
don’t follow the way of Clark and Oppenheimer. We introduce a new regularized
problem in the following integral problem. Our idea is as follows: first, we transform
the problem (1) into a integral equation. Then, we approximate the exact solution
by replace the instability terms by the stability terms. Finally, some new error es-
timates are established. Especially, the convergence of the approximate solution at
t = 0 is also proved. This is an improvement of many previous results [16, 18, 19, 20].

2. Regularization and error estimate

For the system (1) we have no guarantee that the solutions exists. In the simplest
case g = 0, the problem (1) has a unique solution if and only if

∞∑
i=1

∞∑
j=1

e2T (i2+j2)ϕ2
ij < ∞

where ϕij = 4
π2

∫ π
0

∫ π
0 ϕ(x, y) sin(ix) sin(jy)(see [5]). If g = g(x, y, t), (See [22], p.43,

Lemma 1) then the problem (1) has a unique solution if and only if

∞∑
i=1

∞∑
j=1

(
eT (i2+j2)ϕij −

∫ T

0
es(i2+j2)gij(s)ds

)2

< ∞,

where gij(s) = 4
π2

∫ π
0

∫ π
0 g(x, y, s) sin(ix) sin(jy)dxdy. When g = g(x, y, t, u), we do

not know any general condition under which the problem (1) is solvable. In [18], we
present a simple way to check the existence of problem (1)(See Theorem 3.2a, page
239). The main purpose of this paper is to find a stable computation method to
approximate the exact solution when it exists. Hence, the regularization techniques
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are required. Informally, problem (1) can be transformed to the following integral
equation (See,e.g., [3],chapter 4)

u(x, y, t) =

4
π2

∞∑
i=1

∞∑
j=1

(
e(T−t)(i2+j2)ϕij −

∫ T

t
e(s−t)(i2+j2)gij(u)(s)ds

)
sin(ix) sin(jy).

The terms e(T−t)(i2+j2) and e(s−t)(i2+j2) are the unstability cause. Hence, in or-
der to regularize the problem, we have to replace these terms by the better terms.
Naturally, we shall replace these terms by e(T−t)(i2+j2)

1+β(i2+j2)eT (i2+j2)
and e(s−t)(i2+j2)

1+β(i2+j2)eT (i2+j2)

respectively. Thus, we shall approximate problem (4) by the following integral equa-
tion

uβ(x, y, t) =

4
π2

∞∑
i=1

∞∑
j=1

(
e(T−t)(i2+j2)

1 + β(i2 + j2)eT (i2+j2)
ϕij −

∫ T

t

e(s−t)(i2+j2)

1 + β(i2 + j2)eT (i2+j2)
gij(uβ)(s)ds

)
sin(ix) sin(jy).

For a short, we rewrite the equation (4) and (5) respectively as follows

u(x, y, t) =
∞∑
i=1

∞∑
j=1

(
A(i, j, t)ϕij −

∫ T

t
Gij(u)(t, s)ds

)
Xi(x)Xj(y).

uβ(x, y, t) =
∞∑
i=1

∞∑
j=1

(
Aβ(i, j, t)ϕij −

∫ T

t
Gβ

ij(u
β)(t, s)ds

)
Xi(x)Xj(y) (2)

where we denote for i, j ∈ N , x, y ∈ [0, π]

Xi(x) =
2
π

sin(ix), Xj(y) =
2
π

sin(jy), ϕij =
∫

I
ϕ(x, y)Xi(x)Xj(y)dxdy, λij = (i2+j2).

A(i, j, t) = exp{(T − t)λij}.

Aβ(i, j, t) =
e(T−t)λij

1 + β(i2 + j2)eTλij
.

Cβ(i, j, t, s) =
exp{(s− t− T )(i2 + j2)}
β(i2 + j2) + e−T (i2+j2)

.

Gij(w)(t, s) = e(s−t)λijgij(w)(s).

Gβ
ij(w)(t, s) = Cβ(i, j, t, s)gij(w)(s).
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For λ > 0, we have the following inequality

1
βλ + e−Tλ

≤ T

β
(
1 + ln(T

β )
) .

The proof of the above inequality can be found on page 4, [20]. Applying this
inequality and (3)-(3), we obtain

Cβ(i, j, t, s) =
exp{(s− t− T )(i2 + j2)}
β(i2 + j2) + e−T (i2+j2)

=
e(s−t−T )(i2+j2)(

β(i2 + j2) + e−T (i2+j2)
) s−t

T (β(i2 + j2) + e−T (i2+j2))
T+t−s

T

≤ e(s−t−T )λij

(e−T (i2+j2))
T+t−s

T

1

(βλij + e−T (i2+j2))
s
T
− t

T

≤

 T

β
(
1 + ln(T

β )
)
 s

T
− t

T

=

= β
t
T
− s

T

(
T

1 + ln(T
β )

) s
T
− t

T

= β
t
T
− s

T (Mβ)
s
T
− t

T . (3)

where

Mβ = T

(
1 + ln(

T

β

)−1

.

Let s = T in (3) , we get

Cβ(i, j, t, T ) = Aβ(i, j, t)

=
e−tλij

βλij + e−Tλij

≤ β
t
T
−1(Mβ)1−

t
T . (4)

Throught out this paper, denote ‖.‖ is the norm of L2(I) .
In the section, we shall study the existence, the uniqueness and the stability of a
solution of Problem (2). In fact, one has

Theorem 1
Let ϕ ∈ L2(I) and let g ∈ L∞([0, π]× [0, π]× [0, T ]×R) satisfy

|g(w)− g(v)| ≤ k|w − v|
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for a k > 0 independent of w, v. Then Problem (2) has a unique solution uβ ∈
C([0, T ];H1

0 (I)) ∩ C1((0, T );L2(I)) .

Theorem 2
The solution of the problem (2) depends continuously on ϕ in L2(I).
Theorem 3

Let ϕ, g be as in Theorem 1. Suppose problem (1) has a unique solution u ∈
C([0, T ];H1

0 (I)) ∩ C1((0, T );L2(I)) which satisfies

P = 2 sup
0≤t≤T

 ∞∑
i=1

∞∑
j=1

λ2
ije

2tλij | < u(x, y, t), Xi(x)Xi(y) > |2
 < ∞.

Then

‖‖u(., ., t)− uβ(., ., t) ≤
√

Pek2T (T−t)β
t
T

(
T

1 + ln(T
β )

)1− t
T

(5)

for every t ∈ [0, T ].
Remark.
1) In [18], the stability estimates is order of β

t
T . If the time t is close to the original

time t = 0, the convergence rates here are very slow. This implies that the methods
studied in [16, 18] are not useful to derive the error estimations in the case t is near
zero. Comparing (5) with the previous results obtained in [16, 18], we realize that
this estimate is sharp and good estimate. This is also among of strong point of our
method. If t = 0 then the error (5) becomes

‖‖u(., ., 0)− uβ(., ., 0) ≤
√

Pek2T 2

(
T

1 + ln(T
β )

)
. (6)

Noting that (6) is not given in [16, 18]. These estimates, as noted above, are very
seldom in the theory of ill-posed problems.

2)We also note that the condition of solution u in (5) depend on the nonlinear term
g and therefore gp, gp(u) are very difficult to be valued. Such an obscurity makes this
theorem hard to be used for numerical computations. To improve this, in Theorem
3, we only require the assumption on u, depending not on the function g(u). Infact,
in the simplest case g(x, y, t, u(x, y, t)) = 0, then

P = 2 sup
0≤t≤T

 ∞∑
i=1

∞∑
j=1

λ2
ije

2tλij | < u(x, y, t), Xi(x)Xi(y) > |2
 = 2‖uxx + uyy‖2.
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Hence, this condition is natural and acceptable.

Theorem 4
Let u be the exact solution of (1) corresponding to ϕ . Let ϕβ be a measured data
such that

‖‖ϕβ − ϕ ≤ β.

Then there exists a function wβ satisfying

‖‖u(., ., t)− wβ(., ., t) ≤ (2 +
√

P )ek2T (T−t)β
t
T

(
T

1 + ln(T
β )

)1− t
T

(7)

for every t ∈ [0, T ].

3. Proof of the main results

Proof of Theorem 1.
The existence and the uniqueness of solution of (2).
Now we consider the operator

K : C([0, T ];L2(I)) → C([0, T ];L2(I))

defined by

K(w)(x, y, t) = Ψ(x, y, t)−
∞∑
i=1

∞∑
j=1

 T∫
t

Gβ
ij(w)(t, s)ds

Xi(x)Xj(y)

where

Ψ(x, y, t) =
∞∑
i=1

∞∑
j=1

Aβ(i, j, t)ϕijXi(x)Xj(y).

By induction, we shall prove the following inequality

‖Kp(u)(., ., t)−Kp(v)(., ., t)‖2 ≤
(

k

β

)2p (T − t)pCp

p!
|||u− v|||2 (8)

for every p ≥ 1, where C = max{T, 1} and |||.||| is sup norm in C([0, T ];L2(I)).
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Thus, for p = 1, we have

‖K(u)(., ., t) − K(v)(., ., t)‖2

=
∞∑
i=1

∞∑
j=1

 T∫
t

(
Gβ

ij(u)(t, s)−Gβ
ij(v)(t, s)

)
ds

2

≤
∞∑
i=1

∞∑
j=1

T∫
t

(Cβ(i, j, t, s))2 ds

T∫
t

(gij(u)(s)− gij(v)(s))2ds

≤ 1
β2

(T − t)

T∫
t

π∫
0

π∫
0

(g(u(x, y, s))− g(v(x, y, s))2dxdyds

≤ k2

β2
(T − t)

T∫
t

π∫
0

π∫
0

|u(x, y, s)− v(x, y, s)|2dxdyds

≤ C
k2

β2
(T − t)|||u− v|||2.

Hence, (8) holds. Let (8) holds for p = m. We prove that (8) holds for p = m + 1.
We have

‖Km+1(u)(., ., t) − Km+1(v)(., ., t)‖2 =

=
∞∑
i=1

∞∑
j=1

 T∫
t

Cβ(i, j, t, s) (Gij(Km(u))(t, s)−Gij(Km(v))(t, s)) ds

2

≤ 1
β2

∞∑
i=1

∞∑
j=1

 T∫
t

|Gij(Km(u))(t, s)−Gij(Km(v))(t, s)|ds

2

≤ 1
β2

(T − t)k2

T∫
t

‖Km(u)(., ., s)−Km(v)(., ., s)‖2ds

≤ 1
β2

(T − t)k2

(
k

β

)2m
T∫

t

(T − s)m

m!
dsCm|||u− v|||2

≤
(

k

β

)2(m+1) (T − t)m+1

(m + 1)!
Cm+1|||u− v|||2.

Therefore

|||Kp(u)−Kp(v)||| ≤
(

k

β

)p T p/2

√
p!

Cp|||u− v|||
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for all u, v ∈ C([0, T ];L2(I)).
Since lim

p→∞

(
k
β

)p
T p/2Cp
√

p!
= 0, there exists a positive integer number p0, such that

Kp0 is a contraction. It follows that the equation Kp0(u) = u has a unique solution
uβ ∈ C([0, T ];L2(I)). We claim that K(uβ) = uβ. In fact, one has

K(KP0(uβ)) = K(uβ).

Hence

KP0(K(uβ)) = K(uβ).

By the uniqueness of the fixed point of GP0 , one has G(uβ) = uβ, i.e., the equation
G(u) = u has a unique solution uβ ∈ C([0, T ];L2(I)). The proof is completed.
Proof of Theorem 2. Let u and v be two solutions of (2) corresponding to the
values ϕ and ω.

From (2) one has

‖u(., ., t)− v(., ., t)‖2 ≤
∞∑
i=1

∞∑
j=1

(Aβ(i, j, t)|ϕij − ωij |)2

+
∞∑
i=1

∞∑
j=1

 T∫
t

Cβ(i, j, t, s)|gij(u)(s)− gij(v)(s)|ds

2

(9)

It follows from (21) that

‖u(., ., t)− v(., ., t)‖2 ≤ 2β
2t
T
−2(Mβ)2−

2t
T ‖ϕ− ω‖2 +

≤ 2k2(T − t)β
2t
T (Mβ)2−

2t
T

∫ T

t
β
−2s
T (Mβ)

2s
T
−2‖u(., ., s)− v(., ., s)‖2ds.

Hence

β
−2t
T (Mβ)

2t
T
−2‖u(., ., t)− v(., ., t)‖2 ≤ 2β−2‖ϕ− ω‖2

+ 2k2(T − t)
∫ T

t
β
−2s
T (Mβ)

2s
T
−2‖u(., ., s)− v(., ., s)‖2ds.

By using Gronwall’s inequality, we find that

‖u(., ., t)− v(., ., t)‖ ≤ 2β
t
T
−1(Mβ)1−

t
T exp(k2(T − t)2)‖ϕ− ω‖.

This completes the proof of the theorem.
Proof of Theorem 3.
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We have

|uij(t)− uβ
ij(t)|

≤
∣∣∣∣(A(i, j, 0)−Aβ(i, j, 0))

(
e−tλijϕij −

∫ T

t
e(s−t−T )λijgij(u)(s)ds

)∣∣∣∣
+
∣∣∣∣∫ T

t
Cβ(i, j, s, t)(gij(u)(s)− gij(uβ)(s))ds)

∣∣∣∣
≤

∣∣∣∣β(i2 + j2)Aβ(i, j, t)
(

eT (i2+j2)gij −
∫ T

t
esλijgij(u)(s)ds

)∣∣∣∣
+
∫ T

t
Cβ(i, j, s, t)|gij(u)(s)− gij(uβ)(s)|ds

≤
∣∣∣βAβ(i, j, t)λije

tλijuij(t)
∣∣∣

+
∫ T

t
Cβ(i, j, s, t)|gij(u)(s)− gij(uβ)(s)|ds

≤ β.β
t
T
−1(Mβ)1−

t
T |λije

tλijuij(t)|+

+
∫ T

t
βt/T−1(Mβ)1−

t
T |gij(u)(s)− gij(uβ)(s)|ds.

It follows from (10) that

‖‖u(., ., t)− uβ(., ., t)
2

=
∞∑
i=1

∞∑
j=1

|uij(t)− uβ
ij(t)|

2

≤ 2β
2t
T (Mβ)2−

2t
T

∞∑
i=1

∞∑
j=1

|λije
tλijuij(t)|2 +

2
∞∑
i=1

∞∑
j=1

(∫ T

t
β−

s
T (Mβ)

s
T
−1 |gij(u)(s)− gij(uβ)(s)|ds

)2

.

This implies

‖‖u(., ., t)− uβ(., ., t)
2 ≤ 2β

2t
T (Mβ)2−

2t
T

∞∑
i=1

∞∑
j=1

λ2
ije

2tλiju2
ij(t) (10)

+ 2k2Tβ
2t
T (Mβ)2−

2t
T

∫ T

t
β−

2s
T (Mβ)

2s
T
−2 ‖‖u(., ., s)− uβ(., ., s)

2
ds.(11)

By using Gronwall’s inequality, we get:

β
−2t
T

(
T

1 + ln(T
β )

) 2t
T
−2

‖‖u(., ., t)− uβ(., ., t)
2 ≤ Pe2k2T (T−t).
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Proof of Theorem 4.
Let wβ and uβ be the solution of problem (7) corresponding to ϕβ and ϕ. Using
Theorems 2 and 3, we get

‖wβ(., ., t)− u(., ., t)‖ ≤ ‖wβ(., ., t)− uβ(., ., t)‖+ ‖uβ(., ., t)− u(., ., t)‖
≤ 2β

t
T
−1(Mβ)1−

t
T exp(k2(T − t)2)‖‖ϕβ − ϕ

+
√

Pek2T (T−t)β
t
T

(
T

1 + ln(T
β )

)1− t
T

≤ (2 +
√

P )ek2T (T−t)β
t
T

(
T

1 + ln(T
β )

)1− t
T

.

4. Numerical example

Let us consider the two dimensional Allen-Cahn equation as follows
ut − uxx − uyy = u− u3 + f(x, y, t), (x, y, t) ∈ (0, π)× (0, π)× (0, 1),
u(x, y, t) = 0 (x, y, t) ∈ ∂I × [0, T ]
u(x, y, 1) = ϕ(x, y), x, y ∈ (0, π)× (0, π)

(12)

where
f(x, y, t) = 2et sinx sin y + e3t sin3 x sin3 y,

and
u(x, y, 1) = ϕ0(x, y) ≡ e sinx sin y.

The exact solution of the latter equation is

u(x, y, t) = et sinx sin y.

Especially

u

(
x, y,

999
1000

)
≡ u(x, y) = exp

(
999
1000

)
sinx sin y.

Denote the regularization parameter β = ε. Let ϕε(x, y) ≡ ϕ(x, y) = (ε+1)e sinx sin y.
We have

‖ϕε − ϕ‖2 =

√√√√√ π∫
0

π∫
0

ε2e2 sin2(x) sin2 ydxdy = εe
π

2
.

We find the regularized solution uε

(
x, y, 999

1000

)
≡ uε(x, y) having the following form

uε(x, y) = vm(x, y) = w11,m sinx sin y + w33,m sin 3x sin 3y,
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where

v1(x, y) = (ε + 1)e sin x sin y

w11,1 = (ε + 1)e,
w12,1 = w13,1 = w21,1 = w22,1 = w23,1 = w31,1 = w32,1 = w33,1 = 0.

and

a = 1
40000

tm = 1− am m = 1, 2, ..., 40

wij,m+1 = e−tm+1(i2+j2)

ε(i2+j2)+e−tm(i2+j2)
wij,m−

− 4
π2

tm∫
tm+1

e−tm+1(i2+j2)

ε(i2+j2)+e−tm(i2+j2)

(
π∫
0

π∫
0

(
vm − v3

m(x, y) + f(x, y, s)
)
sin ix sin jydxdy

)
ds,

i, j = 1, 2, 3.

Let aε = ‖uε−u‖ be the error between the regularized solution uε and the exact
solution u.

Let ε = ε1 = 10−5, ε = ε2 = 10−7, ε = ε3 = 10−10, we have

ε uε aε

ε1 = 10−5 2.699490181 sinx sin y 0.01607476736
−0.0002082242787 sin 3x sin 3y

ε2 = 10−7 2.715403794 sinx sin y 0.0001611532506
−0.0002055494193 sin 3x sin 3y

ε3 = 10−10 2.715563078 sinx sin y 0.000005577348503
−0.001936581654 sin 3x sin 3y
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