A NOTE ON SUBCLASS OF ANALYTIC FUNCTIONS DEFINED BY LINEAR OPERATOR

M. K. Aouf, A. O. Mostafa, A.M. Shahin and S. M. Madian

Abstract. In this paper, we introduce a new class $M(g, n, \gamma, \lambda, \zeta)$ of analytic functions which defined by linear operator $D_{\lambda}^{n}(f * g)(z)$ and obtain its relations with some well-known subclasses of analytic univalent functions.

2000 Mathematics Subject Classification: 30C45.

1. Introduction

Let A denote the class of all functions of the form:

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

which are analytic in the open disc $U=\{z: z \in \mathbb{C}$ and $|z|<1\}$ and normalized by $f(0)=0=f^{\prime}(0)-1$. Also let S denote the subclass of all functions in A which are univalent in U.

A function $f(z) \in S$ is said to be starlike of order $\zeta(0 \leq \zeta<1)$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\zeta \quad(z \in U) \tag{1.2}
\end{equation*}
$$

We denote by $S^{*}(\zeta)$ the class of all starlike functions of order ζ.
A function $f(z) \in S$ is said to be convex of order $\zeta(0 \leq \zeta<1)$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\zeta \quad(z \in U) \tag{1.3}
\end{equation*}
$$

We denote by $K(\zeta)$ the class of all convex functions of order ζ and denote by $R(\zeta)$ the class of all functions in A which satisfy

$$
\begin{equation*}
\operatorname{Re}\left\{f^{\prime}(z)\right\}>\zeta \quad(z \in U) \tag{1.4}
\end{equation*}
$$

M. K. Aouf, A. O. Mostafa, A. M. Shahin and S. M. Madian - A note on subclass...

It is well known that $K(\zeta) \subset S^{*}(\zeta) \subset S$.
For functions f given by (1.1) and $g \in A$ given by

$$
\begin{equation*}
g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k} \tag{1.5}
\end{equation*}
$$

the Hadamard product (or convolution) of f and g is defined by

$$
\begin{equation*}
(f * g)(z)=z+\sum_{k=2}^{\infty} a_{k} b_{k} z^{k}=(g * f)(z) \tag{1.6}
\end{equation*}
$$

For two analytic functions f and g in U, f is subordinate to g, written $f \prec$ g or $f(z) \prec g(z)$, if there exists an analytic function $w(z)$ in U, with $w(0)=0$ and $|w(z)|<1$ such that $f(z)=g(w(z))$. If $g(z)$ is univalent function, then $f \prec g$ if and only if (see [15] and [16])

$$
f(0)=g(0) \text { and } f(U) \subset g(U)
$$

For functions $f, g \in A$, we define the linear operator $D_{\lambda}^{n}: A \rightarrow A(\lambda \geq 0, n \in$ $\left.\mathbb{N}_{0}=\mathbb{N} \cup\{0\}, \mathbb{N}=\{1,2, \ldots\}\right)$ by:

$$
\begin{gather*}
D_{\lambda}^{0}(f * g)(z)=(f * g)(z) \\
D_{\lambda}^{1}(f * g)(z)=D_{\lambda}(f * g)(z)=(1-\lambda)(f * g)(z)+\lambda z((f * g)(z))^{\prime} \tag{1.7}
\end{gather*}
$$

and (in general)

$$
\begin{align*}
D_{\lambda}^{n}(f * g)(z) & =D_{\lambda}\left(D_{\lambda}^{n-1}(f * g)(z)\right) \\
& =z+\sum_{k=2}^{\infty}[1+\lambda(k-1)]^{n} a_{k} b_{k} z^{k} \quad\left(\lambda \geq 0 ; n \in \mathbb{N}_{0}\right) \tag{1.8}
\end{align*}
$$

From (1.8), we can easily deduce that

$$
\begin{equation*}
\lambda z\left(D_{\lambda}^{n}(f * g)(z)\right)^{\prime}=D_{\lambda}^{n+1}(f * g)(z)-(1-\lambda) D_{\lambda}^{n}(f * g)(z)(\lambda>0) \tag{1.9}
\end{equation*}
$$

The linear operator $D_{\lambda}^{n}(f * g)(z)$ was introduced by Aouf and Mostafa [3], Aouf and Seoudy [4] and Mostafa and Aouf [17] and we observe that $D_{\lambda}^{n}(f * g)(z)$ reduces to several interesting many other linear operators considered earlier for different choices of n, λ and the function g.
M. K. Aouf, A. O. Mostafa, A. M. Shahin and S. M. Madian - A note on subclass...

Definition 1. For $0 \leq \zeta<1, f, g \in A$ given by (1.1) and (1.5), respectively, and $\gamma \geq 0$, a function f given by (1.1), is said to be in the class $M(g, n, \gamma, \lambda, \zeta)$ if it satisfies the following condition:

$$
\begin{equation*}
\left|\frac{D_{\lambda}^{n+1}(f * g)(z)}{z}\left(\frac{z}{D_{\lambda}^{n}(f * g)(z)}\right)^{\gamma}-1\right|<1-\zeta(z \in U) \tag{1.10}
\end{equation*}
$$

The class $M(g, n, \gamma, \lambda, \zeta)$ includes various new subclasses of analytic univalent functions. We observe that:
(i) Putting $n=0, \lambda=1$ and $g(z)=\frac{z}{1-z}$ in (1.10), then the class $M\left(\frac{z}{1-z}, 0, \gamma, 1, \zeta\right)$ reduces to the class
$B(\zeta, \gamma)$, which was introduced by Frasin and Jahangiri [11] and Murugusundaramoorthy and Magesh [18]. Further $B(\zeta, 2)$ has been studied by Frasin and Darus [10].
(ii) Putting $n=0, \lambda=1$ and $g(z)=z+\sum_{k=2}^{\infty} \Gamma_{k}\left(a_{1}\right) z^{k}$, where

$$
\begin{equation*}
\Gamma_{k}\left(a_{1}\right)=\frac{\left(a_{1}\right)_{k-1} \ldots\left(a_{l}\right)_{k-1}}{\left(b_{1}\right)_{k-1} \ldots\left(b_{m}\right)_{k-1}(1)_{k-1}} \tag{1.11}
\end{equation*}
$$

$a_{i} \in \mathbb{C} ; i=1, \ldots, l ; b_{j} \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}=\{0,-1,-2, \ldots\}, j=1, \ldots, m, l \leq m+1, l, m \in$ $\mathbb{N}_{0}, z \in U$ and

$$
(x)_{k}=\left\{\begin{array}{lr}
1 & \left(k=0 ; x \in \mathbb{C}^{*}=\mathbb{C} \backslash\{0\}\right) \\
x(x+1) \ldots(x+k-1) & (k \in \mathbb{N} ; x \in \mathbb{C})
\end{array}\right.
$$

in (1.10), then the class $M\left(z+\sum_{k=2}^{\infty} \Gamma_{k}\left(a_{1}\right) z^{k}, 0, \gamma, 1, \zeta\right)$ reduces to the class $K_{l, m}\left(a_{1}, b_{1}, \gamma, \zeta\right)$, which is defined by:

$$
\begin{equation*}
\left|\left(H_{l, m}\left(a_{1} ; b_{1}\right) f(z)\right)^{\prime}\left(\frac{z}{H_{l, m}\left(a_{1} ; b_{1}\right) f(z)}\right)^{\gamma}-1\right|<1-\zeta(\gamma \geq 0 ; 0 \leq \zeta<1 ; z \in U) \tag{1.12}
\end{equation*}
$$

where the operator $H_{l, m}\left(a_{1} ; b_{1}\right)$ is the Dziok-Srivastava operator introduced and studied by Dziok and Srivastava [9].
(iii) Putting $n=0, \lambda=1$ and $g(z)=z+\sum_{k=2}^{\infty}\left[\frac{\ell+1+\theta(k-1)}{\ell+1}\right]^{m} z^{k}$, where $\theta>0, \ell \geq 0$ and $m \in \mathbb{N}_{0}$ in (1.10), then the class $M\left(z+\sum_{k=2}^{\infty}\left[\frac{\ell+1+\theta(k-1)}{\ell+1}\right]^{m} z^{k}, 0, \gamma, 1, \zeta\right)$ reduces to the class $B(\ell, m, \theta, \gamma, \zeta)$, which is defined by:
M. K. Aouf, A. O. Mostafa, A. M. Shahin and S. M. Madian - A note on subclass...

$$
\begin{equation*}
\left|\left(I^{m}(\theta, \ell) f(z)\right)^{\prime}\left(\frac{z}{I^{m}(\theta, \ell) f(z)}\right)^{\gamma}-1\right|<1-\zeta(\gamma \geq 0 ; 0 \leq \zeta<1 ; z \in U) \tag{1.13}
\end{equation*}
$$

where $I^{m}(\theta, \ell)$ is the generalized multiplier transformation which was introduced and studied by Cătaş et al. [5].
(iv) Putting $n=0, \lambda=1$ and $g(z)=z+\sum_{k=2}^{\infty}\left[\frac{\ell+k}{\ell+1}\right]^{m} z^{k}$, where $\ell \geq 0$ and $m \in \mathbb{N}_{0}$ in (1.10), then the class $M\left(z+\sum_{k=2}^{\infty}\left[\frac{\ell+k}{\ell+1}\right]^{m} z^{k}, 0, \gamma, 1, \zeta\right)$ reduces to the class $S(\ell, m, \gamma, \zeta)$, which is defined by:

$$
\begin{equation*}
\left|\left(I^{m}(\ell) f(z)\right)^{\prime}\left(\frac{z}{I^{m}(\ell) f(z)}\right)^{\gamma}-1\right|<1-\zeta(\gamma \geq 0 ; 0 \leq \zeta<1 ; z \in U) \tag{1.14}
\end{equation*}
$$

where $I^{m}(\ell)$ is the multiplier transformation (see Cho and Srivastava [7] and Cho and $\operatorname{Kim}[6]$).
(v) Putting $n=0, \lambda=1, g(z)=z+\sum_{k=2}^{\infty}[1+\theta(k-1)]^{m} z^{k}$, where $\theta \geq 0$ and $m \in$ \mathbb{N}_{0} in (1.10), then the class $M\left(z+\sum_{k=2}^{\infty}[1+\theta(k-1)]^{m} z^{k}, 0, \gamma, 1, \zeta\right)$ reduces to the class $Q(\theta, m, \gamma, \zeta)$, which is defined by:

$$
\begin{equation*}
\left|\left(D_{\theta}^{m} f(z)\right)^{\prime}\left(\frac{z}{D_{\theta}^{m} f(z)}\right)^{\gamma}-1\right|<1-\zeta(\gamma \geq 0 ; 0 \leq \zeta<1 ; z \in U), \tag{1.15}
\end{equation*}
$$

where D_{θ}^{m} is the generalized Sălăgean operator (see AL-Oboudi [1]).
(vi) Putting $n=0, \lambda=1, g(z)=z+\sum_{k=2}^{\infty} k^{m} z^{k}$, where $m \in \mathbb{N}_{0}$ in (1.10), then the class $M\left(z+\sum_{k=2}^{\infty} k^{m} z^{k}, 0, \gamma, 1, \zeta\right)$ reduces to the class $\Psi(m, \gamma, \zeta)$, which is defined by:

$$
\begin{equation*}
\left|\left(D^{m} f(z)\right)^{\prime}\left(\frac{z}{D^{m} f(z)}\right)^{\gamma}-1\right|<1-\zeta(\gamma \geq 0 ; 0 \leq \zeta<1 ; z \in U) \tag{1.16}
\end{equation*}
$$

where the operator D^{m} is the Sălăgean operator (see Sălăgean [19]).
(vii) Putting $n=0, \lambda=1$ and $g(z)=z+\sum_{k=2}^{\infty}\left(\frac{1+b}{k+b}\right)^{s} z^{k}\left(b \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}, s \in \mathbb{C}\right)$ in
(1.10), then the class $M\left(z+\sum_{k=2}^{\infty}\left(\frac{1+b}{k+b}\right)^{s} z^{k}, 0, \gamma, 1, \zeta\right)$ reduces to the class $\mathcal{G}(s, b, \gamma, \zeta)$,
M. K. Aouf, A. O. Mostafa, A. M. Shahin and S. M. Madian - A note on subclass...
which is defined by:

$$
\begin{equation*}
\left|\left(J_{s, b} f(z)\right)^{\prime}\left(\frac{z}{J_{s, b} f(z)}\right)^{\gamma}-1\right|<1-\zeta(\gamma \geq 0 ; 0 \leq \zeta<1 ; z \in U) \tag{1.17}
\end{equation*}
$$

where the operator $J_{s, b}$ was introduced and studied by Srivastava and Attiya [21]. (viii) Putting $n=0, \lambda=1$ and $g(z)=z+\sum_{k=2}^{\infty}\left(\frac{2}{k+1}\right)^{\alpha} z^{k}(\alpha \geq 0)$ in (1.10), then the class $M\left(z+\sum_{k=2}^{\infty}\left(\frac{2}{k+1}\right)^{\alpha} z^{k}, 0, \gamma, 1, \zeta\right)$ reduces to the class $\mathcal{H}(\alpha, \gamma, \zeta)$, which is defined by:

$$
\begin{equation*}
\left|\left(\mathrm{I}^{\alpha} f(z)\right)^{\prime}\left(\frac{z}{\mathrm{I}^{\alpha} f(z)}\right)^{\gamma}-1\right|<1-\zeta(\gamma \geq 0 ; 0 \leq \zeta<1 ; z \in U) \tag{1.18}
\end{equation*}
$$

where the operator I^{α} was introduced and studied by Jung et al. [12].
(ix) Putting $n=0, \lambda=1$ and $g(z)=z+\frac{\Gamma(1+\alpha+\beta)}{\Gamma(1+\beta)} \sum_{k=2}^{\infty} \frac{\Gamma(k+\beta)}{\Gamma(k+\alpha+\beta)} z^{k}(\alpha \geq 0, \beta>$ -1) in (1.10), then the class $M\left(z+\frac{\Gamma(1+\alpha+\beta)}{\Gamma(1+\beta)} \sum_{k=2}^{\infty} \frac{\Gamma(k+\beta)}{\Gamma(k+\alpha+\beta)} z^{k}, 0, \gamma, 1, \zeta\right)$ reduces to the class $\mathcal{Z}(\gamma, \zeta, \alpha, \beta)$, which is defined by:

$$
\begin{equation*}
\left|\left(Q_{\beta}^{\alpha} f(z)\right)^{\prime}\left(\frac{z}{Q_{\beta}^{\alpha} f(z)}\right)^{\gamma}-1\right|<1-\zeta(\gamma \geq 0 ; 0 \leq \zeta<1 ; z \in U) \tag{1.19}
\end{equation*}
$$

where the operator Q_{β}^{α} was introduced and studied by Jung et al. [12].
(x) Putting $n=0, \lambda=1, g(z)=z+\sum_{k=2}^{\infty} \frac{(1+\mu)^{v}}{(k+\mu)^{v}} \Gamma_{k}\left(a_{1}\right) z^{k}$, where $\Gamma_{k}\left(a_{1}\right)$ is given by (1.11), $\mu \neq-1$ and $v \in \mathbb{N}_{0}$ in (1.10), then the class $M\left(z+\sum_{k=2}^{\infty} \frac{(1+\mu)^{v}}{(k+\mu)^{v}} \Gamma_{k}\left(a_{1}\right) z^{k}, 0, \gamma, 1, \zeta\right)$ reduces to the class $\mathcal{L}\left(\gamma, \zeta, \mu, q, s, v, a_{1}\right)$, which is defined by:

$$
\begin{equation*}
\left|\left(\mathcal{K}_{\mu, q, s}^{v}\left(a_{1}\right) f(z)\right)^{\prime}\left(\frac{z}{\mathcal{K}_{\mu, q, s}^{v}\left(a_{1}\right) f(z)}\right)^{\gamma}-1\right|<1-\zeta(\gamma \geq 0 ; 0 \leq \zeta<1 ; z \in U) \tag{1.20}
\end{equation*}
$$

where the operator $\mathcal{K}_{\mu, q, s}^{v}$ was introduced and studied by Selvaraj and Karthikeyan [20].
(xi) Putting $n=0, \lambda=1$ and $g(z)=z+\sum_{k=2}^{\infty}\left(\frac{1+b}{k+b}\right)^{s} \frac{\rho!(k+\mu-2)!}{(\mu-1)!(k+\rho-1)!} z^{k}\left(b \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}, s \in\right.$ $\mathbb{C}, \mu>0, \rho>-1)$ in (1.10), then the class $M\left(z+\sum_{k=2}^{\infty}\left(\frac{1+b}{k+b}\right)^{s} \frac{\rho!(k+\mu-2)!}{(\mu-1)!(k+\rho-1)!} z^{k}, 0, \gamma, 1, \zeta\right)$
M. K. Aouf, A. O. Mostafa, A. M. Shahin and S. M. Madian - A note on subclass...
reduces to the class $\mathcal{C}(\gamma, \zeta, \rho, \mu, s, b)$, which is defined by:

$$
\begin{equation*}
\left|\left(J_{s, b}^{\rho, \mu}(f)(z)\right)^{\prime}\left(\frac{z}{J_{s, b}^{\rho, \mu}(f)(z)}\right)^{\gamma}-1\right|<1-\zeta(\gamma \geq 0 ; 0 \leq \zeta<1 ; z \in U) \tag{1.21}
\end{equation*}
$$

where the operator $J_{s, b}^{\rho, \mu}$ was introduced and studied by Al-Shaqsi and Darus [2] and Darus and Al-Shaqsi [8].

The object of the present paper is to investigate the sufficient condition for functions to be in the class $M(g, n, \gamma, \lambda, \zeta)$. Furthermore, as a special case, we show that convex functions of order $1 / 2$ are also members of the class $M(g, n, \gamma, \lambda, \zeta)$.

2. Main Results

Unless otherwise mentioned, we shall assume in the reminder of this paper that the functions f and g are given by (1.1) and (1.5), respectively, $\lambda>0, \gamma \geq 0, n \in \mathbb{N}_{0}$ and $1 / 2 \leq \zeta<1$.

To prove our results we need the following lemma.
Lemma 1 [11]. Let $p(z)$ be analytic in U with $p(0)=1$ and suppose that

$$
\begin{equation*}
R e\left(1+\frac{z p^{\prime}(z)}{p(z)}\right)>\frac{3 \zeta-1}{2 \zeta}(z \in U) \tag{2.1}
\end{equation*}
$$

Then $\operatorname{Re}\{p(z)\}>\zeta$ for $z \in U$ and $1 / 2 \leq \zeta<1$.
Theorem 1. Let $f, g \in A$. If

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{D_{\lambda}^{n+2}(f * g)(z)}{\lambda D_{\lambda}^{n+1}(f * g)(z)}-\frac{\gamma D_{\lambda}^{n+1}(f * g)(z)}{\lambda D_{\lambda}^{n}(f * g)(z)}+\frac{1}{\lambda}(\gamma-1)\right\}>\beta \tag{2.2}
\end{equation*}
$$

where $\beta=\frac{3 \zeta-1}{2 \zeta}$, then $f(z) \in M(g, n, \gamma, \lambda, \zeta)$.
Proof. Define the function $p(z)$ by

$$
\begin{equation*}
p(z)=\frac{D_{\lambda}^{n+1}(f * g)(z)}{z}\left(\frac{z}{D_{\lambda}^{n}(f * g)(z)}\right)^{\gamma} \tag{2.3}
\end{equation*}
$$

Then the function $p(z)$ is analytic in U and $p(0)=1$. Therefore, differentiating (2.3) logarithmically with respect to z and using (1.9) with simple computation, then

$$
\frac{z p^{\prime}(z)}{p(z)}=\frac{D_{\lambda}^{n+2}(f * g)(z)}{\lambda D_{\lambda}^{n+1}(f * g)(z)}-\frac{\gamma D_{\lambda}^{n+1}(f * g)(z)}{\lambda D_{\lambda}^{n}(f * g)(z)}+\frac{1}{\lambda}(\gamma-1)
$$

M. K. Aouf, A. O. Mostafa, A. M. Shahin and S. M. Madian - A note on subclass...
by the hypothesis of the theorem, we have

$$
\operatorname{Re}\left\{1+\frac{z p^{\prime}(z)}{p(z)}\right\}>\frac{3 \zeta-1}{2 \zeta}
$$

Hence by Lemma 1, we have

$$
\operatorname{Re}\left\{\frac{D_{\lambda}^{n+1}(f * g)(z)}{z}\left(\frac{z}{D_{\lambda}^{n}(f * g)(z)}\right)^{\gamma}\right\}>\zeta(z \in U) .
$$

Therefore, in view of Definition 1, we have $f(z) \in M(g, n, \gamma, \lambda, \zeta)$.
Putting $n=0, \lambda=1$ and $g(z)=z+\sum_{k=2}^{\infty} \Gamma_{k}\left(a_{1}\right) z^{k}$, where $\Gamma_{k}\left(a_{1}\right)$ is given by (1.11) in Theorem 1, we obtain the following corollary:

Corollary 1. Let $f \in A$. If

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z\left(H_{l, m}\left(a_{1} ; b_{1}\right) f(z)\right)^{\prime \prime}}{\left(H_{l, m}\left(a_{1} ; b_{1}\right) f(z)\right)^{\prime}}+\gamma a_{1}\left(1-\frac{H_{l, m}\left(a_{1}+1 ; b_{1}\right) f(z)}{H_{l, m}\left(a_{1} ; b_{1}\right) f(z)}\right)\right\}>\beta, \tag{2.4}
\end{equation*}
$$

then $f(z) \in K_{l, m}\left(a_{1}, b_{1}, \gamma, \zeta\right)$, where $\beta=\frac{3 \zeta-1}{2 \zeta}$ and $K_{l, m}\left(a_{1}, b_{1}, \gamma, \zeta\right)$ is given by (1.12).

Putting $n=0, \lambda=1$ and $g(z)=z+\sum_{k=2}^{\infty}\left[\frac{\ell+1+\theta(k-1)}{\ell+1}\right]^{m} z^{k}$, where $\theta>0, \ell \geq 0$ and $m \in \mathbb{N}_{0}$ in Theorem 1, we obtain the following corollary:

Corollary 2. Let $f \in A$. If

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z\left(I^{m}(\theta, \ell) f(z)\right)^{\prime \prime}}{\left(I^{m}(\theta, \ell) f(z)\right)^{\prime}}+\gamma\left(\frac{1+\ell}{\theta}\right)\left(1-\frac{I^{m+1}(\theta, \ell) f(z)}{I^{m}(\theta, \ell) f(z)}\right)\right\}>\beta \tag{2.5}
\end{equation*}
$$

then $f(z) \in B(\ell, m, \theta, \gamma, \zeta)$, where $\beta=\frac{3 \zeta-1}{2 \zeta}$ and $B(\ell, m, \theta, \gamma, \zeta)$ is given by (1.13).
Putting $\theta=1$ in Corollary 2, we obtain the following corollary:
Corollary 3. Let $f \in A$. If

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z\left(I^{m}(\ell) f(z)\right)^{\prime \prime}}{\left(I^{m}(\ell) f(z)\right)^{\prime}}+\gamma(1+\ell)\left(1-\frac{I^{m+1}(\ell) f(z)}{I^{m}(\ell) f(z)}\right)\right\}>\beta, \tag{2.6}
\end{equation*}
$$

then $f(z) \in S(\ell, m, \gamma, \zeta)$, where $\beta=\frac{3 \zeta-1}{2 \zeta}$ and $S(\ell, m, \gamma, \zeta)$ is given by (1.14).
Putting $\ell=0$ in Corollary 2, we obtain the following corollary:
M. K. Aouf, A. O. Mostafa, A. M. Shahin and S. M. Madian - A note on subclass...

Corollary 4. Let $f \in A$. If

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z\left(D_{\theta}^{m} f(z)\right)^{\prime \prime}}{\left(D_{\theta}^{m} f(z)\right)^{\prime}}+\frac{\gamma}{\theta}\left(1-\frac{D_{\theta}^{m+1} f(z)}{D_{\theta}^{m} f(z)}\right)\right\}>\beta \tag{2.7}
\end{equation*}
$$

then $f(z) \in Q(\theta, m, \gamma, \zeta)$, where $\beta=\frac{3 \zeta-1}{2 \zeta}$ and $Q(\theta, m, \gamma, \zeta)$ is given by (1.15).
Putting $\theta=1$ and $\ell=0$ in Corollary 2, we obtain the following corollary:
Corollary 5. Let $f \in A$. If

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z\left(D^{m} f(z)\right)^{\prime \prime}}{\left(D^{m} f(z)\right)^{\prime}}+\gamma\left(1-\frac{D^{m+1} f(z)}{D^{m} f(z)}\right)\right\}>\beta, \tag{2.8}
\end{equation*}
$$

then $f(z) \in \Psi(m, \gamma, \zeta)$, where $\beta=\frac{3 \zeta-1}{2 \zeta}$ and $\Psi(m, \gamma, \zeta)$ is given by(1.16).
Putting $n=0, \lambda=1$ and $g(z)=z+\sum_{k=2}^{\infty}\left(\frac{1+b}{k+b}\right)^{s} z^{k}\left(b \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}, s \in \mathbb{C}\right)$ in Theorem 1, we obtain the following corollary:

Corollary 6. Let $f \in A$. If

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z\left(J_{s, b} f(z)\right)^{\prime \prime}}{\left(J_{s, b} f(z)\right)^{\prime}}+\gamma(1+b)\left(1-\frac{J_{s-1, b} f(z)}{J_{s, b} f(z)}\right)\right\}>\beta \tag{2.9}
\end{equation*}
$$

then $f(z) \in \mathcal{G}(s, b, \gamma, \zeta)$, where $\beta=\frac{3 \zeta-1}{2 \zeta}$ and $G(s, b, \gamma, \zeta)$ is given by (1.17).
Putting $n=0, \lambda=1$ and $g(z)=z+\sum_{k=2}^{\infty}\left(\frac{2}{k+1}\right)^{\alpha} z^{k}(\alpha \geq 0)$ in Theorem 1, we obtain the following corollary:

Corollary 7. Let $f \in A$. If

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z\left(\mathrm{I}^{\alpha} f(z)\right)^{\prime \prime}}{\left(\mathrm{I}^{\alpha} f(z)\right)^{\prime}}+2 \gamma\left(1-\frac{\mathrm{I}^{\alpha-1} f(z)}{\mathrm{I}^{\alpha} f(z)}\right)\right\}>\beta \tag{2.10}
\end{equation*}
$$

then $f(z) \in \mathcal{H}(\alpha, \gamma, \zeta)$, where $\beta=\frac{3 \zeta-1}{2 \zeta}$ and $\mathcal{H}(\alpha, \gamma, \zeta)$ is given by (1.18).
Putting $n=0, \lambda=1$ and $g(z)=z+\frac{\Gamma(1+\alpha+\beta)}{\Gamma(1+\beta)} \sum_{k=2}^{\infty} \frac{\Gamma(k+\beta)}{\Gamma(k+\alpha+\beta)} z^{k} \quad(\alpha \geq 0, \beta>-1)$ in Theorem 1, we obtain the following corollary:

Corollary 8. Let $f \in A$. If

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z\left(Q_{\beta}^{\alpha} f(z)\right)^{\prime \prime}}{\left(Q_{\beta}^{\alpha} f(z)\right)^{\prime}}+\gamma(\alpha+\beta)\left(1-\frac{Q_{\beta}^{\alpha-1} f(z)}{Q_{\beta}^{\alpha} f(z)}\right)\right\}>\beta \tag{2.11}
\end{equation*}
$$

M. K. Aouf, A. O. Mostafa, A. M. Shahin and S. M. Madian - A note on subclass...
then $f(z) \in \mathcal{Z}(\gamma, \zeta, \alpha, \beta)$, where $\beta=\frac{3 \zeta-1}{2 \zeta}$ and $\mathcal{Z}(\gamma, \zeta, \alpha, \beta)$ is given by (1.19).
Putting $n=0, \lambda=1$ and $g(z)=z+\sum_{k=2}^{\infty} \frac{(1+\mu)^{v}}{(k+\mu)^{v}} \Gamma_{k}\left(a_{1}\right) z^{k}$, where $\Gamma_{k}\left(a_{1}\right)$ is given by (1.11), $\mu \neq-1$ and $v \in \mathbb{N}_{0}$ in Theorem 1 , we obtain the following corollary:

Corollary 9. Let $f \in A$. If

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z\left(\mathcal{K}_{\mu, q, s}^{v}\left(a_{1}\right) f(z)\right)^{\prime \prime}}{\left(\mathcal{K}_{\mu, q, s}^{v}\left(a_{1}\right) f(z)\right)^{\prime}}+\gamma \alpha_{1}\left(1-\frac{z\left(\mathcal{K}_{\mu, q, s}^{v}\left(a_{1}+1\right) f(z)\right)^{\prime}}{\mathcal{K}_{\mu, q, s}^{v}\left(a_{1}\right) f(z)}\right)\right\}>\beta \tag{2.12}
\end{equation*}
$$

then $f(z) \in \mathcal{L}\left(\gamma, \zeta, \mu, q, s, v, a_{1}\right)$, where $\beta=\frac{3 \zeta-1}{2 \zeta}$ and $\mathcal{L}\left(\gamma, \zeta, \mu, q, s, v, a_{1}\right)$ is given by (1.20).

Putting $n=0, \lambda=1$ and $g(z)=z+\sum_{k=2}^{\infty}\left(\frac{1+b}{k+b}\right)^{s} \frac{\rho!(k+\mu-2)!}{(\mu-1)!(k+\rho-1)!} z^{k}\left(b \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}, s \in\right.$ $\mathbb{C}, \mu>0, \rho>-1)$ in Theorem 1, we obtain the following corollary:

Corollary 10. Let $f \in A$. If

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z\left(J_{s, b}^{\rho, \mu}(f)(z)\right)^{\prime \prime}}{\left(J_{s, b}^{\rho, \mu}(f)(z)\right)^{\prime}}+\gamma \mu\left(1-\frac{J_{s, b}^{\rho, \mu+1}(f)(z)}{J_{s, b}^{\rho, \mu}(f)(z)}\right)\right\}>\beta \tag{2.13}
\end{equation*}
$$

then $f(z) \in \mathcal{C}(\gamma, \zeta, \rho, \mu, s, b)$, where $\beta=\frac{3 \zeta-1}{2 \zeta}$ and $\mathcal{C}(\gamma, \zeta, \rho, \mu, s, b)$ is given by (1.21).
Putting $n=\lambda=\gamma=1, \zeta=\frac{1}{2}$ and $g(z)=\frac{z}{1-z}$ in Theorem 1, we obtain the following corollary:

Corollary 11. If $f \in A$ given by (1.1) and

$$
\operatorname{Re}\left\{\frac{z f^{\prime \prime \prime}(z)}{f^{\prime \prime}(z)}-\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>-\frac{3}{2} \quad(z \in U)
$$

then

$$
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\frac{1}{2} \quad(z \in U)
$$

Remarks. (i) Putting $n=0, \lambda=1$ and $g(z)=\frac{z}{1-z}$ in Theorem 1, we obtain the results obtained by Murugusundaramoorthy and Magesh [18, Corollary 4] and Frasin and Jahangiri [11, Theorem 2.3];
(ii) Putting $n=0, \lambda=\gamma=1, \zeta=\frac{1}{2}$ and $g(z)=\frac{z}{1-z}$ in Theorem 1, we obtain the results obtained by Murugusundaramoorthy and Magesh [18, Corollary 7] and Lupas and Catas [14, Corollary 2.7];
(iii) Putting $n=\gamma=0, \lambda=1, \zeta=\frac{1}{2}$ and $g(z)=\frac{z}{1-z}$ in Theorem 1, we obtain the results obtained by Murugusundaramoorthy and Magesh [18, Corollary 8] and Lupas and Catas [13, Corollary 2.6] and Lupas and Catas [14, Corollary $4]$.

References

[1] F. M. Al. Oboudi, On univalent functions defined by a generalized Sălăgean operator, Internat. J. Math. Math. Sci., 27 (2004), 1429-1436.
[2] K. Al-Shaqsi and M. Darus, On certain subclasses of analytic functions defined by a multiplier transformation with two parameters, Appl. Math. Sci., 3 (2009), no. 36, 1799-1810.
[3] M. K. Aouf and A. O. Mostafa, Sandwich theorems for analytic functions defined by convolution, Acta Univ. Apulensis, (2010), no. 21, 7-20.
[4] M. K. Aouf and T. M. Seoudy, On differential sandwich theorems of analytic functions defined by certain linear operator, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 64 (2010), no. 2, 1-14.
[5] A. Cătaş, G. I. Oros and G. Oros, Differential subordinations associated with multiplier transformations, Abstract Appl. Anal., 2008 (2008), ID 845724, 1-11.
[6] N. E. Cho and T. H. Kim, Multiplier transformations and strongly close-toconvex functions, Bull. Korean Math. Soc., 40 (2003), no. 3, 399-410.
[7] N. E. Cho and H. M. Srivastava, Argument estimates of certain analytic functions defined by a class of multiplier transformations, Math. Comput. Modelling, 37 (1-2) (2003), 39-49.
[8] M. Darus and K. Al-Shaqsi, On subordinations for certain analytic functions associated with generalized integral operator, Lobachevskii J. Math., 29 (2008), 9097.
[9] J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput., 103 (1999), 1-13.
[10] B. A. Frasin and M. Darus, On certain analytic univalent functions, Internat. J. Math. Math. Sci., 25 (2001), no. 5, 305-310.
[11] B. A. Frasin and J. M. Jahangiri, A new and comprehensive class of analytic functions, An. Univ. Oradea Fasc. mat., 15 (2008), 59-62.
[12] I. B. Jung, Y. C. Kim and H. M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl., 176 (1993), 138-147.
M. K. Aouf, A. O. Mostafa, A. M. Shahin and S. M. Madian - A note on subclass...
[13] A. A. Lupas and A. A. Cătaş, A note on a subclasses of analytic functions defined by Ruscheweyh derivative, J. Math. Inequal., 4 (2010), no. 2, 233-236.
[14] A. A. Lupas and A. A. Cătaş, A note on a subclasses of analytic functions defined by a generalized Sălăgean operator, Acta Univ. Apule., (2010), no. 22 , 35-39.
[15] S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure Appl. Math., Vol. 225, Marcel Dekker, New York and Basel, 2000.
[16] S. Miller and P. T. Mocanu, Subordinants of differential superordinations, Complex Var. Theory Appl., 48 (2003), no.10, 815-826.
[17] A. O. Mostafa and M. K. Aouf, Sandwich results for certain subclasses of analytic functions defined by convolution, General Math., (To appear).
[18] G. Murugusundaramoorthy and N. Magesh, On certain sufficient conditions for analytic univalent functions, European J. Pure Appl. Math., 4 (2011), 76-82.
[19] G. S. Sălăgean, Subclasses of univalent functions, Lecture Notes in Math. (Springer-Verlag) 1013 (1983), 362-372.
[20] C. Selvaraj and K. R. Karthikeyan, Subclasses of analytic functions involving a certain family of linear operators, Internat. J. Contemp. Math. Sci., 3 (2008), no. 13 , 615-627.
[21] H. M. Srivastava and A. A. Attiya, An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination, Integral Transforms Spec. Funct., 18 (2007), 207-216.
M. K. Aouf ${ }^{1}$, A. O. Mostafa ${ }^{2}$, A.M.Shahin ${ }^{3}$ and S. M. Madian ${ }^{4}$

Department of Mathematics
Faculty of Science
Mansoura University
Mansoura 35516, Egypt.
emails: ${ }^{1}$ mkaouf127@yahoo.com, ${ }^{2}$ adelaeg254@yahoo.com
${ }^{3}$ amshahin@mans.edu.eg, ${ }^{4}$ samar_math@yahoo.com

