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Abstract. In the present paper, we investigate some subordination-preserving
and superordination-preserving properties of a class of integral operators which are
defined on the space of meromorphic functions. Several sandwich-type results in-
volving this class of integral operators are also derived.
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1. Introduction and preliminaries

Let Σ denote the class of functions of the form

f(z) =
1
z

+
∞∑

k=0

akz
k, (1)

which are analytic in the punctured open unit disk

U∗ := {z : z ∈ C and 0 < |z| < 1} := U \ {0}.

Let H(U) be the linear space of all analytic functions in U. For a positive integer
number n and a ∈ C, we let

H[a, n] := { f ∈ H(U) : f(z) = a+ anz
n + an+1z

n+1 + · · · }.

Denote by Q the set of all functions f that are analytic and injective on U\E(f),
where

E(f) =
{
ε ∈ ∂U : lim

z→ε
f(z) = ∞

}
,

217



Z.G. Wang and F.H. Wen - A class of integral operators preserving...

and such that f ′(ε) 6= 0 for ε ∈ ∂U\E(f). The subclass of Q for which f(0) = a (a ∈
C) is denoted by Q(a).

Let f, g ∈ Σ , where f is given by (1) and g is defined by

g(z) =
1
z

+
∞∑

k=0

bkz
k.

Then the Hadamard product (or convolution) f ∗g of the functions f and g is defined
by

(f ∗ g)(z) :=
1
z

+
∞∑

k=0

akbkz
k =: (g ∗ f)(z).

For two functions f and g, analytic in U, we say that the function f is subordinate
to g in U, and write

f(z) ≺ g(z) (z ∈ U),

if there exists a Schwarz function ω, which is analytic in U with

ω(0) = 0 and |ω(z)| < 1 (z ∈ U)

such that
f(z) = g

(
ω(z)

)
(z ∈ U).

Indeed, it is known that

f(z) ≺ g(z) (z ∈ U) =⇒ f(0) = g(0) and f(U) ⊂ g(U).

Furthermore, if the function g is univalent in U, then we have the following equiva-
lence:

f(z) ≺ g(z) (z ∈ U) ⇐⇒ f(0) = g(0) and f(U) ⊂ g(U).

By setting

fn(z) :=
1

z(1− z)n+1
(n > 1) (2)

and let f∗n,µ(z) be so defined that

fn(z) ∗ f∗n,µ(z) :=
1

z(1− z)µ
(µ > 0). (3)

In a recent paper, Yuan et al. [6] defined a class of integral operators as follows:

In,µ(z) := f∗n,µ(z) ∗ f(z) (f ∈ Σ), (4)
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where (and throughout this paper unless otherwise mentioned) the parameters n
and µ are constrained as n > −1 and µ > 0.

We can easily find from (2), (3) and (4) that

In,µ(z) :=
1
z

+
∞∑

k=0

(µ)k+1

(n+ 1)k+1
akz

k (z ∈ U), (5)

where (κ)m is the Pochhammer symbol defined by

(κ)0 = 1 and (κ)m = υ(υ + 1) · · · (υ +m− 1) (k ∈ N).

It is readily verified from (5) that

z (In+1,µf)′ (z) = (n+ 1)In,µf(z)− (n+ 2))In+1,µf(z), (6)

and
z (In,µf)′ (z) = µIn,µ+1f(z)− (µ+ 1)In,µf(z). (7)

In order to prove our main results, we need the following lemmas.

Lemma 1. (see [1]) Suppose that the function H : C2 → C for all real s and for all

t 5 −
n

(
1 + s2

)
2

(n ∈ N)

satisfies the condition <(H(is, t)) 5 0. If the function

p (z) = 1 + pnz
n + pn+1z

n+1 + · · ·

is analytic in U and

<
(
H(p (z), zp′(z))

)
> 0 (z ∈ U),

then
<(p (z)) > 0 (z ∈ U).

Lemma 2. (see [2]) Let κ, γ ∈ C with κ 6= 0 and let h ∈ H(U) with h(0) = c. If

<(κh(z) + γ) > 0 (z ∈ U),

then the solution of the following differential equation:

q(z) +
zq′(z)

κq(z) + γ
= h(z) (z ∈ U; q(0) = c)

is analytic in U and satisfies the inequality given by

<(κq(z) + γ) > 0 (z ∈ U).
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Lemma 3. (see [3]) Let p ∈ Q(a) and

q(z) = a+ anz
n + an+1z

n+1 + · · · (q 6= a; n ∈ N)

be analytic in U. If q is not subordinate to p, then there exists two points

z0 = r0e
iθ ∈ U and ξ0 ∈ ∂U\E(f)

such that

q(Ur0) ⊂ p (U), q(z0) = p (ξ0) and z0q
′(z0) = mξ0p

′(ξ0) (m = n).

A function P (z, t) (z ∈ U; t = 0) is said to be a subordination chain if P (., t)
is analytic and univalent in U for all t = 0, P (z, 0) is continuously differentiable on
[0,∞) for all z ∈ U and P (z, t1) ≺ P (z, t2) for all 0 5 t1 5 t2.

Lemma 4. (see [4]) The function P (z, t) : U× [0,∞) → C of the form

P (z, t) = a1(t)z + a2(t)z2 + · · · (a1(t) 6= 0; t = 0) ,

and lim
t→∞

|a1(t)| = ∞ is a subordination chain if and only if

<
(
z ∂P/∂z

∂P/∂t

)
> 0 (z ∈ U; t = 0).

Lemma 5. (see [5]) Let q ∈ H[a, 1] and φ : C2 → C. Also set

φ
(
q(z), zq′(z)

)
≡ h(z) (z ∈ U).

If P (z, t) := φ (q(z), tzq′(z)) is a subordination chain and p ∈ H[a, 1] ∩Q(a). Then

h(z) ≺ φ
(
p(z), zp′(z)

)
(z ∈ U)

implies that
q(z) ≺ p(z) (z ∈ U).

Furthermore, if φ (q(z), zq′(z)) = h(z) has a univalent solution q ∈ Q(a), then q is
the best subordination.

The main purpose of the present paper is to investigate some subordination-
preserving and superordination-preserving properties associated with the operator
In,µ. Several sandwich-type results involving this operator are also derived.
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2. Main Results

We begin by stating the following subordination result involving the operator
In,µ.

Theorem 1. Let f, g ∈ Σ and n > −1. If

<
(

1 +
zψ′′(z)
ψ′(z)

)
> −ρ (z ∈ U; ψ(z) := zIn,µg(z)) , (8)

where

ρ :=
1 + (n+ 1)2 −

∣∣1− (n+ 1)2
∣∣

4(n+ 1)
, (9)

then the following subordination relationship

zIn,µf(z) ≺ zIn,µg(z) (z ∈ U)

implies that
zIn+1,µf(z) ≺ zIn+1,µg(z) (z ∈ U).

Furthermore, the function In+1,µg(z) is the best dominant.

Proof. Let us define the functions F and G by

F(z) := zIn+1,µf(z), G(z) := zIn+1,µg(z). (10)

We here assume, without loss of generality, that G is analytic and univalent on U
and

G′(ζ) 6= 0 (|ζ| = 1).

If not, then we replace F and G by F(ρz) and G(ρz), respectively, with 0 < ρ < 1.
These new functions have the desired properties on U, and we can use them in the
proof of our result. Therefore, our results would follow by letting ρ→ 1.

We first show that if the function Q be defined by

Q(z) := 1 +
zG′′(z)
G′(z)

(z ∈ U), (11)

then
<(Q(z)) > 0 (z ∈ U).

By virtue of (6) and the definitions of G and ψ, we know that

ψ(z) = G(z) +
1

n+ 1
zG′(z). (12)
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Differentiating both sides of (12) with respect to z, we get

ψ′(z) =
(

1 +
1

n+ 1

)
G′(z) +

1
n+ 1

zG′′(z). (13)

After some simple calculations, in conjunction with (11) and (13), we easily get the
relationship

1 +
zψ′′(z)
ψ′(z)

= Q(z) +
zQ′(z)

Q(z) + n+ 1
:= h(z) (z ∈ U). (14)

We also deduce from (8) and (14) that

< (h(z) + n+ 1) > 0 (z ∈ U). (15)

Furthermore, by Lemma 2, we conclude that the differential equation (14) has a
solution Q ∈ H(U) with

h(0) = Q(0) = 1.

Let us put
H(u, v) := u+

v

u+ n+ 1
+ ρ, (16)

where ρ is given by (9). From (14), (15) and (16), we obtain

<
(
H(Q(z), zQ′(z))

)
> 0 (z ∈ U).

Now we proceed to show that

<(H(is, t)) 5 0
(
s ∈ R; t 5 −1 + s2

2

)
, (17)

Indeed, from (16), we have

<(H(is, t)) = <
(
is+

t

is+ n+ 1
+ ρ

)
=

(n+ 1)t
|n+ 1 + is|2

+ ρ 5 − Ψ(n, s)
2 |n+ 1 + is|2

,

where
Ψ(n, s) := (n+ 1− 2ρ)s2 − 4ρ(n+ 1)s− 2ρ(n+ 1)2 + n+ 1. (18)

For ρ given by (9), the coefficient of s2 in the quadratic expression Ψ(n, s) given
by (18) is positive or equal to zero. Furthermore, we observe that the quadratic
expression Ψ(n, s) by s in (18) is a perfect square, which implies that (17) holds.
Thus, by Lemma 1, we conclude that

<(Q(z)) > 0 (z ∈ U).

222



Z.G. Wang and F.H. Wen - A class of integral operators preserving...

By the definition of G(z), we know that G(z) is convex.
To prove F ≺ G, we let the function P (z, t) be defined by

P (z, t) := G(z) +
(

1 + t

n+ 1

)
zG′(z) (z ∈ U; 0 5 t <∞), (19)

since G is convex and λ > 0, we have

∂P (z, t)
∂z

|z=0 = G′(0)
(

1 +
1 + t

n+ 1

)
6= 0 (z ∈ U; 0 5 t <∞),

and

<
(
z ∂P (z, t)/∂z
∂P (z, t)/∂t

)
= (1 + t)< (Q(z)) + n+ 1 > 0 (z ∈ U).

Therefore, by Lemma 4, we obtain that P (z, t) is a subordination chain. It follows
from the definition of subordination chain that

ψ(z) = G(z) +
1

n+ 1
zG′(z) = P (z, 0),

and
P (z, 0) ≺ P (z, t) (z ∈ U; 0 5 t <∞),

which implies that

P (ζ, t) /∈ P (U, 0) = ψ(U) (ζ ∈ ∂U; 0 5 t <∞). (20)

If F is not subordinate to G, by Lemma 3, we know that there exist two points
z0 ∈ U and ζ0 ∈ ∂U such that

F(z0) = G(ζ0) and z0F ′(z0) = (1 + t)ζ0G′(ζ0) (0 5 t <∞). (21)

Hence, by virtue of (7) and 21, we have

P (ζ0, t) = G(ζ0) +
1 + t

n+ 1
ζ0G′(ζ0) = F(z0) +

1
n+ 1

z0F ′(z0) = z0In,µf(z0) ∈ ψ(U).

But this contradicts to (20). Thus, we deduce that F ≺ G. Considering F = G, we
see that the function G is the best dominant. The proof of Theorem 1 is evidently
completed.

By similarly applying the method of proof of Theorem 1 and using (7), we easily
get the following result.
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Corollary 1. Let f, g ∈ Σ and µ > 0. If

<
(

1 +
zϕ′′(z)
ϕ′(z)

)
> −η (z ∈ U; ϕ(z) := zIn,µ+1g(z)) ,

where

η :=
1 + µ2 −

∣∣1− µ2
∣∣

4µ
, (22)

then the following subordination relationship

zIn,µ+1f(z) ≺ zIn,µ+1g(z) (z ∈ U)

implies that
zIn,µf(z) ≺ zIn,µg(z) (z ∈ U).

Furthermore, the function zIn,µg(z) is the best dominant.

If f is subordinate to F , then F is superordinate to f . We now derive the
following superordination result.

Theorem 2. Let f, g ∈ Σ and n > −1. If

<
(

1 +
zψ′′(z)
ψ′(z)

)
> −ρ (z ∈ U; ψ(z) := zIn,µg(z)) ,

where ρ is given by (9), also let the function zIn,µg(z) is univalent in U and
zIn+1,µg(z) ∈ Q, then the following subordination relationship

zIn,µg(z) ≺ zIn,µf(z) (z ∈ U)

implies that
zIn+1,µg(z) ≺ zIn+1,µf(z) (z ∈ U).

Furthermore, the function zIn+1,µg(z) is the best subdominant.

Proof. Suppose that the functions F and G are defined by (10), Q is defined by (11).
By applying the similar method as in the proof of Theorem 1, we get

<(Q(z)) > 0 (z ∈ U).

Next, to arrive at our desired result, we show that G ≺ F . For this, we suppose that
the function P (z, t) be defined by (19). Since n > −1 and G is convex, by applying
the similar method as in Theorem 1, we deduce that P (z, t) is subordination chain.
Therefore, by Lemma 5, we conclude that G ≺ F . Furthermore, since the differential
equation

ψ(z) = G(z) +
1

n+ 1
zG′(z) := φ

(
G(z), zG′(z)

)
has a univalent solution G, it is the best subordination. We thus complete the proof
of Theorem 2.
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By similarly applying the method of proof of Theorem 2 and using (7), we easily
get the following result.

Corollary 2. Let f, g ∈ Σ and µ > 0. If

<
(

1 +
zϕ′′(z)
ϕ′(z)

)
> −η (z ∈ U; ϕ(z) := zIn,µ+1g(z)) ,

where η is given by (22), also let the function zIn,µ+1g(z) is univalent in U and
zIn,µg(z) ∈ Q, then the following subordination relationship

zIn,µ+1g(z) ≺ zIn,µ+1f(z) (z ∈ U)

implies that
zIn,µg(z) ≺ zIn,µf(z) (z ∈ U).

Furthermore, the function zIn,µg(z) is the best subdominant.

Combining the above mentioned subordination and superordination results, we
get the following “sandwich-type result”.

Corollary 3. Let f, gk ∈ Σ (k = 1, 2) and n > −1. If

<
(

1 +
zψ′′k(z)
ψ′k(z)

)
> −ρ (z ∈ U; ψk(z) := zIn,µgk(z) (k = 1, 2)) ,

where ρ is given by (9), also let the function zIn,µf(z) is univalent in U and
zIn+1,µf(z) ∈ Q, then the following subordination relationship

zIn,µg1(z) ≺ zIn,µf(z) ≺ zIn,µg2(z) (z ∈ U)

implies that

zIn+1,µg1(z) ≺ zIn+1,µf(z) ≺ zIn+1,µg2(z) (z ∈ U).

Furthermore, the functions zIn+1,µg1(z) and zIn+1,µg2(z) are, respectively, the best
subordinant and the best dominant.

Corollary 4. Let f, gk ∈ Σ (k = 1, 2) and µ > 0. If

<
(

1 +
zϕ′′k(z)
ϕ′k(z)

)
> −η (z ∈ U; ϕk(z) := zIn,µ+1gk(z) (k = 1, 2)) ,

where η is given by (22), also let the function zIn,µ+1f(z) is univalent in U and
zIn,µf(z) ∈ Q, then the following subordination relationship

zIn,µ+1g1(z) ≺ zIn,µ+1f(z) ≺ zIn,µ+1g2(z) (z ∈ U)
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implies that
zIn,µg1(z) ≺ zIn,µf(z) ≺ zIn,µg2(z) (z ∈ U).

Furthermore, the functions zIn,µg1(z) and zIn,µg2(z) are, respectively, the best sub-
ordinant and the best dominant.
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